1
|
Wang G, Wang Y, Sheng K, Wang Y. Effect of probiotic extracellular vesicles and their applications on health and disease. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3539-3549. [PMID: 39806860 DOI: 10.1002/jsfa.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/25/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Probiotics have been established to exert a positive impact on the treatment of various diseases. Indeed, these active microorganisms have garnered significant attention in recent years for their potential to prevent and treat illnesses. Their beneficial effects have been hypothesized to be linked to their released extracellular vesicles. These nanoscale structures, secreted during the growth and metabolism of probiotics, possess favorable biocompatibility and targeting properties, thereby promoting intercellular material transport and signaling. This article aimed to review the bioactive components and functions of these probiotics vesicles, highlighting their role in the treatment of various diseases and discussing their potential future applications. By exploring the mechanisms of probiotic extracellular vesicles in disease development, this review aimed to provide a theoretical reference for further research on their therapeutic potential. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangzhao Wang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| | - Yang Wang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| |
Collapse
|
2
|
Izquierdo-Altarejos P, Arenas YM, Montoliu C, Pérez-Martínez G, Llansola M, Felipo V. Extracellular vesicles from Lacticaseibacillus paracasei reduce neuroinflammation in hippocampus and restore some cognitive functions in hyperammonemic rats. Microbiol Res 2025; 294:128101. [PMID: 39978142 DOI: 10.1016/j.micres.2025.128101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Cirrhotic patients may show minimal hepatic encephalopathy (MHE) which impairs life quality and span. There is a need of new safe treatments for MHE. Hyperammonemia is a main contributor to MHE. Hyperammonemic rats reproduce the cognitive impairment present in patients with MHE, which is mediated by neuroinflammation and altered glutamatergic neurotransmission in hippocampus. Probiotics induce positive effects in MHE patients, which could be mediated by bacterial extracellular vesicles (EVs). The aims of this work were to evaluate in hyperammonemic rats: 1) if intravenous administration of EVs from L. paracasei improves memory and learning and 2) reduces neuroinflammation in hippocampus and 3) to study the mechanisms involved using an ex vivo approach. It is shown that intravenous injection of EVs from L. paracasei reverses glial activation in hippocampus and cognitive impairment in hyperammonemic rats. Ex vivo studies in hippocampal slices show that hyperammonemia increases TNFα and TNFR1 and S1PR2 membrane expression and activation, leading to increased IL-1β content and activation of IL-1 receptor and of Src. This increases CCL2 and BDNF and TrkB activation. This leads to increased membrane expression of the NR2B subunit of the NMDA receptor and of the GluA2 subunit of AMPA receptors and reduced membrane expression of the GluA1 subunit, leading to cognitive impairment. EVs from L. paracasei reduce neuroinflammation in hyperammonemic rats and restore the function of the TNFα-TNFR1-S1PR2-IL-1β-CCL2-BDNF-TrkB pathway, glutamatergic neurotransmission and cognitive function in rats with hyperammonemia and MHE. This suggests that these EVs could also improve cognitive function in cirrhotic patients with MHE.
Collapse
Affiliation(s)
| | - Yaiza M Arenas
- Laboratory of Lactic Acid Bacteria and Probiotics, Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (C.S.I.C.), Valencia, Spain; Departamento de Patología, Facultad de Medicina, Universidad Valencia, Valencia, Spain; INCLIVA Instituto de Investigación Sanitaria, Valencia, Spain.
| | - Carmina Montoliu
- Departamento de Patología, Facultad de Medicina, Universidad Valencia, Valencia, Spain; INCLIVA Instituto de Investigación Sanitaria, Valencia, Spain.
| | - Gaspar Pérez-Martínez
- Laboratory of Lactic Acid Bacteria and Probiotics, Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (C.S.I.C.), Valencia, Spain.
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
3
|
Pei J, Zhang C, Zhang Q, Yu H, Yuan H, Guo Y, Shen H, Liu H, Wang C, Meng F, Yu C, Tie J, Chen X, Wu X, Zhang G, Wang X. Probiotics alleviate chronic ethanol exposure-induced anxiety-like behavior and hippocampal neuroinflammation in male mice through gut microbiota-derived extracellular vesicles. J Nanobiotechnology 2024; 22:730. [PMID: 39578835 PMCID: PMC11585232 DOI: 10.1186/s12951-024-03017-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Probiotics can colonize both the human and animal bodies and consist of active microorganisms that are beneficial to health. The use of probiotics has been shown to alleviate certain neurological diseases and disturbances in gut microbiota resulting from chronic ethanol exposure. Research indicates that probiotics can influence the nervous system via the microbial-gut-brain axis, wherein extracellular vesicles secreted by the gut microbiota play a significant role in this process. RESULTS In this study, we first established a 30-day ethanol exposure and probiotic gavage mouse model, both of which influenced behavior and the composition of gut microbiota. We then extracted gut microbiota-derived extracellular vesicles from the feces of these model mice and injected them into new mice via the tail vein to assess the role of each set of extracellular vesicles. The results indicated that the extracellular vesicles derived from the intestinal microbiota in the ethanol group induced anxiety-like behavior and hippocampal neuroinflammation in the recipient mice. In contrast, the extracellular vesicles secreted by the gut microbiota from the probiotic group mitigated the anxiety-like behavior and neuroinflammation induced by ethanol-influenced extracellular vesicles. CONCLUSIONS Our study demonstrates that extracellular vesicles secreted by the gut microbiota can influence the nervous system via the microbial-gut-brain axis. Furthermore, we found that the extracellular vesicles secreted by the gut microbiota from the probiotic group exert a beneficial therapeutic effect on anxiety and hippocampal neuroinflammation.
Collapse
Affiliation(s)
- Jiaxin Pei
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
| | - Chaoxu Zhang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Qian Zhang
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, People's Republic of China
| | - Hao Yu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
| | - Huiya Yuan
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
- Department of Forensic Analytical Toxicology, China Medical University School of Forensic Medicine, Shenyang, 110122, Liaoning, People's Republic of China
| | - Yufu Guo
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
| | - Hui Shen
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
| | - Hao Liu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
| | - Changliang Wang
- The People's Procuratorate of Liaoning Province Judicial Authentication Center, Shenyang, Liaoning, People's Republic of China
- Collaborative Laboratory of Intelligentized Forensic Science (CLIFS), Shenyang, Liaoning, People's Republic of China
| | - Fanyue Meng
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
- Department of Morphology, Medical College of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chenyang Yu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
| | - Jinming Tie
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
| | - Xiaohuan Chen
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
| | - Xu Wu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China.
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China.
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China.
| | - Guohua Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China.
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China.
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China.
| | - Xiaolong Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China.
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China.
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
4
|
Wang W, Hou Y, Zhang J, Sun Z, Sun H. Improved Isolation Optimizes Downstream Application of Extracellular Vesicles Derived from Mycobacterium tuberculosis. Microorganisms 2024; 12:2129. [PMID: 39597520 PMCID: PMC11596817 DOI: 10.3390/microorganisms12112129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, secretes extracellular vesicles (EVs), which may play an important role in mediating interactions between bacteria and host cells. Mtb EVs can be isolated by means of various techniques, which differ in terms of their effectiveness. In the present study, we found that an exosome isolation kit (EI) yielded higher numbers of EVs than either differential centrifugation (DC) or exosome detection via an ultrafast-isolation system (EXODUS). We also found that the EXODUS method revealed a greater abundance of H37Rv components within EVs, compared with the DC and EI methods. Analysis of the downstream application of H37Rv EVs revealed their internalization by RAW264.7 macrophages, peaking at 6 h, with subsequent activation of the TLR2 signaling pathway leading to the expression of inflammatory cytokines including IL-6 and TNF-α. It was also found that H37Rv EVs could cross the blood-brain barrier (BBB) and enter the brain, peaking at 12 h post-injection, eliciting an inflammatory response in the cerebral parenchyma, cerebellum, and hippocampus that persisted for up to 6 days. These findings offer novel insights into the pathogenesis of Mtb-induced diseases and may guide the development of therapeutic strategies.
Collapse
Affiliation(s)
- Wenjing Wang
- Beijing Chest Hospital affiliated to Capital Medical University, Beijing 100000, China; (W.W.); (Y.H.); (J.Z.)
| | - Yue Hou
- Beijing Chest Hospital affiliated to Capital Medical University, Beijing 100000, China; (W.W.); (Y.H.); (J.Z.)
| | - Jingfang Zhang
- Beijing Chest Hospital affiliated to Capital Medical University, Beijing 100000, China; (W.W.); (Y.H.); (J.Z.)
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 100000, China
| | - Zhaogang Sun
- Beijing Chest Hospital affiliated to Capital Medical University, Beijing 100000, China; (W.W.); (Y.H.); (J.Z.)
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 100000, China
| | - Hong Sun
- Beijing Chest Hospital affiliated to Capital Medical University, Beijing 100000, China; (W.W.); (Y.H.); (J.Z.)
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 100000, China
| |
Collapse
|
5
|
Chen Q, Fang Z, Yang Z, Xv X, Yang M, Hou H, Li Z, Chen Y, Gong A. Lactobacillus plantarum-Derived Extracellular Vesicles Modulate Macrophage Polarization and Gut Homeostasis for Alleviating Ulcerative Colitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14713-14726. [PMID: 38885172 DOI: 10.1021/acs.jafc.4c01758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Extracellular vesicles released by probiotics have been demonstrated to effectively alleviate intestinal inflammation, yet the precise underlying mechanisms remain unclear. In this research, for the first time, Lactobacillus plantarum UJS001 (LP-UJS) was isolated from fermented sauerkraut in Zhenjiang, China. Thereafter, the therapeutic effect of LP-UJS-derived extracellular vesicles (LP-UJS-EVs) on dextran sulfate sodium-induced ulcerative colitis (UC) in mice was analyzed to elucidate the immune mechanisms. According to our findings, LP-UJS-EVs played a pivotal role in restoring the intestinal barrier and alleviating intestinal inflammation. Notably, LP-UJS-EVs induced M2 polarization of macrophages, promoted the release of IL-10 and TGF-β, inhibited the release of histamine, IL-6, and TNF-α, and exerted regulatory effects on intestinal microflora, as evidenced by the reduced abundances of Coprococcus, Parabacteroides, Staphylococcus, and Allobaculum, alongside the enhanced abundance of Prevotella. Furthermore, both LP-UJS and LP-UJS-EVs affected the lysine degradation pathway and significantly increased the abundance of related metabolites, especially oxoadipic acid. In summary, our results underscore the substantial therapeutic potential of LP-UJS and its secreted EVs in the treatment of UC.
Collapse
Affiliation(s)
- Qian Chen
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003, China
| | - Zhengzou Fang
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212003, China
| | - Zhe Yang
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212003, China
| | - Xiao Xv
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003, China
| | - Mengting Yang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003, China
| | - Hanjin Hou
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003, China
| | - Zhangzuo Li
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003, China
| | - Yanyan Chen
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003, China
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212003, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Aihua Gong
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003, China
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212003, China
| |
Collapse
|
6
|
Kim NY, Lee HY, Choi YY, Mo SJ, Jeon S, Ha JH, Park SD, Shim JJ, Lee J, Chung BG. Effect of gut microbiota-derived metabolites and extracellular vesicles on neurodegenerative disease in a gut-brain axis chip. NANO CONVERGENCE 2024; 11:7. [PMID: 38340254 DOI: 10.1186/s40580-024-00413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/21/2024] [Indexed: 02/12/2024]
Abstract
A new perspective suggests that a dynamic bidirectional communication system, often referred to as the microbiome-gut-brain axis, exists among the gut, its microbiome, and the central nervous system (CNS). This system may influence brain health and various brain-related diseases, especially in the realms of neurodevelopmental and neurodegenerative conditions. However, the exact mechanism is not yet understood. Metabolites or extracellular vesicles derived from microbes in the gut have the capacity to traverse the intestinal epithelial barrier or blood-brain barrier, gaining access to the systemic circulation. This phenomenon can initiate the physiological responses that directly or indirectly impact the CNS and its function. However, reliable and controllable tools are required to demonstrate the causal effects of gut microbial-derived substances on neurogenesis and neurodegenerative diseases. The integration of microfluidics enhances scientific research by providing advanced in vitro engineering models. In this study, we investigated the impact of microbe-derived metabolites and exosomes on neurodevelopment and neurodegenerative disorders using human induced pluripotent stem cells (iPSCs)-derived neurons in a gut-brain axis chip. While strain-specific, our findings indicate that both microbial-derived metabolites and exosomes exert the significant effects on neural growth, maturation, and synaptic plasticity. Therefore, our results suggest that metabolites and exosomes derived from microbes hold promise as potential candidates and strategies for addressing neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Na Yeon Kim
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | - Ho Yeon Lee
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | - Yoon Young Choi
- Institute of Integrated Biotechnology, Sogang University, Seoul, Korea
| | | | | | - Jang Ho Ha
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| | | | | | | | - Bong Geun Chung
- Department of Biomedical Engineering, Sogang University, Seoul, Korea.
- Institute of Integrated Biotechnology, Sogang University, Seoul, Korea.
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
- Institute of Smart Biosensor, Sogang University, Seoul, Korea.
| |
Collapse
|
7
|
Ajam-Hosseini M, Akhoondi F, Parvini F, Fahimi H. Gram-negative bacterial sRNAs encapsulated in OMVs: an emerging class of therapeutic targets in diseases. Front Cell Infect Microbiol 2024; 13:1305510. [PMID: 38983695 PMCID: PMC11232669 DOI: 10.3389/fcimb.2023.1305510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/26/2023] [Indexed: 07/11/2024] Open
Abstract
Small regulatory RNAs (sRNAs) encapsulated in outer membrane vesicles (OMVs) are critical post-transcriptional regulators of gene expression in prokaryotic and eukaryotic organisms. OMVs are small spherical structures released by Gram-negative bacteria that serve as important vehicles for intercellular communication and can also play an important role in bacterial virulence and host-pathogen interactions. These molecules can interact with mRNAs or proteins and affect various cellular functions and physiological processes in the producing bacteria. This review aims to provide insight into the current understanding of sRNA localization to OMVs in Gram-negative bacteria and highlights the identification, characterization and functional implications of these encapsulated sRNAs. By examining the research gaps in this field, we aim to inspire further exploration and progress in investigating the potential therapeutic applications of OMV-encapsulated sRNAs in various diseases.
Collapse
Affiliation(s)
- Mobarakeh Ajam-Hosseini
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Akhoondi
- Department of Molecular Biology of The Cell, Faculty of Bioscience, University of Milan, Milan, Italy
| | - Farshid Parvini
- Department of Biology, Faculty of Basic Sciences, Semnan University, Semnan, Iran
| | - Hossein Fahimi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Sun Y, Wang J, Li D, Cheng F. The Recent Progress of the Cellulose-Based Antibacterial Hydrogel. Gels 2024; 10:109. [PMID: 38391439 PMCID: PMC10887981 DOI: 10.3390/gels10020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Cellulose-based antibacterial hydrogel has good biocompatibility, antibacterial performance, biodegradability, and other characteristics. It can be very compatible with human tissues and degradation, while its good water absorption and moisturizing properties can effectively absorb wound exudates, keep the wound moist, and promote wound healing. In this paper, the structural properties, and physical and chemical cross-linking preparation methods of cellulose-based antibacterial hydrogels were discussed in detail, and the application of cellulose-based hydrogels in the antibacterial field was deeply studied. In general, cellulose-based antibacterial hydrogels, as a new type of biomaterial, have shown good potential in antimicrobial properties and have been widely used. However, there are still some challenges, such as optimizing the preparation process and performance parameters, improving the antibacterial and physical properties, broadening the application range, and evaluating safety. However, with the deepening of research and technological progress, it is believed that cellulose-based antibacterial hydrogels will be applied and developed in more fields in the future.
Collapse
Affiliation(s)
- Ying Sun
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
- Cold Area Hemp and Products Engineering Research Center of Ministry of Education, Qiqihar 161006, China
| | - Jiayi Wang
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
| | - Duanxin Li
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
- Cold Area Hemp and Products Engineering Research Center of Ministry of Education, Qiqihar 161006, China
| | - Feng Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
9
|
Sun B, Sawant H, Borthakur A, Bihl JC. Emerging therapeutic role of gut microbial extracellular vesicles in neurological disorders. Front Neurosci 2023; 17:1241418. [PMID: 37621715 PMCID: PMC10445154 DOI: 10.3389/fnins.2023.1241418] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
Extracellular vesicles (EVs) serve as cell-to-cell and inter-organ communicators by conveying proteins and nucleic acids with regulatory functions. Emerging evidence shows that gut microbial-released EVs play a pivotal role in the gut-brain axis, bidirectional communication, and crosstalk between the gut and the brain. Increasing pre-clinical and clinical evidence suggests that gut bacteria-released EVs are capable of eliciting distinct signaling to the brain with the ability to cross the blood-brain barrier, exerting regulatory function on brain cells such as neurons, astrocytes, and microglia, via their abundant and diversified protein and nucleic acid cargo. Conversely, EVs derived from certain species of bacteria, particularly from gut commensals with probiotic properties, have recently been shown to confer distinct therapeutic effects on various neurological disorders. Thus, gut bacterial EVs may be both a cause of and therapy for neuropathological complications. This review marshals the basic, clinical, and translational studies that significantly contributed to our up-to-date knowledge of the therapeutic potential of gut microbial-derived EVs in treating neurological disorders, including strokes, Alzheimer's and Parkinson's disease, and dementia. The review also discusses the newer insights in recent studies focused on developing superior therapeutic microbial EVs via genetic manipulation and/or dietary intervention.
Collapse
Affiliation(s)
- Bowen Sun
- Departments of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Harshal Sawant
- Departments of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Alip Borthakur
- Departments of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Ji Chen Bihl
- Departments of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| |
Collapse
|
10
|
Sun C, Qin Y, Zhuang H, Zhang Y, Wu Z, Chen Y. Membrane Vesicles as Drug Delivery Systems: Source, Preparation, Modification, Drug Loading, In Vivo Administration and Biodistribution, and Application in Various Diseases. Pharmaceutics 2023; 15:1903. [PMID: 37514089 PMCID: PMC10383253 DOI: 10.3390/pharmaceutics15071903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Bioinspired (or biologically inspired) drug delivery systems (DDSs) have been intensively studied in the last decades. As bioinspired DDSs, membrane vesicles, including extracellular vesicles (EVs) released from eukaryotic cells, outer membrane vesicles (OMVs) from bacteria, cell-bound membrane vesicles (CBMVs) isolated in situ from cell surfaces, membrane vesicles reorganized after the isolation of the plasma membrane of cells, and others have been rapidly developed and are attracting more and more attention. Most recently, a collection of 25 papers on the advances in membrane vesicle-based drug delivery systems was published in a Special Issue of Pharmaceutics entitled "Advances of membrane vesicles in drug delivery systems". These papers cover many related topics including the source, preparation, modification, drug loading, and in vivo administration and biodistribution of membrane vesicles (mainly extracellular vesicles or exosomes and bacterial outer membrane vesicles), as well as application of membrane vesicles as DDSs in the treatment of various diseases.
Collapse
Affiliation(s)
- Chenhan Sun
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Ying Qin
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Hongda Zhuang
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Yuan Zhang
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Zhiwen Wu
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Yong Chen
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| |
Collapse
|
11
|
Abd Mutalib N, Syed Mohamad SA, Jusril NA, Hasbullah NI, Mohd Amin MCI, Ismail NH. Lactic Acid Bacteria (LAB) and Neuroprotection, What Is New? An Up-To-Date Systematic Review. Pharmaceuticals (Basel) 2023; 16:712. [PMID: 37242494 PMCID: PMC10221206 DOI: 10.3390/ph16050712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/13/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND In recent years, the potential role of probiotics has become prominent in the discoveries of neurotherapy against neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Lactic acid bacteria (LAB) exhibit neuroprotective properties and exert their effects via various mechanisms of actions. This review aimed to evaluate the effects of LAB on neuroprotection reported in the literature. METHODS A database search on Google Scholar, PubMed, and Science Direct revealed a total of 467 references, of which 25 were included in this review based on inclusion criteria which comprises 7 in vitro, 16 in vivo, and 2 clinical studies. RESULTS From the studies, LAB treatment alone or in probiotics formulations demonstrated significant neuroprotective activities. In animals and humans, LAB probiotics supplementation has improved memory and cognitive performance mainly via antioxidant and anti-inflammatory pathways. CONCLUSIONS Despite promising findings, due to limited studies available in the literature, further studies still need to be explored regarding synergistic effects, efficacy, and optimum dosage of LAB oral bacteriotherapy as treatment or prevention against neurodegenerative diseases.
Collapse
Affiliation(s)
- Nurliana Abd Mutalib
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam 42300, Selangor, Malaysia
| | - Sharifah Aminah Syed Mohamad
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam 42300, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| | - Nor Atiqah Jusril
- Faculty Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia
| | - Nur Intan Hasbullah
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam 42300, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, Kuala Pilah 72000, Negeri Sembilan, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Selangor, Malaysia
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam 42300, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| |
Collapse
|
12
|
Krzyżek P, Marinacci B, Vitale I, Grande R. Extracellular Vesicles of Probiotics: Shedding Light on the Biological Activity and Future Applications. Pharmaceutics 2023; 15:522. [PMID: 36839844 PMCID: PMC9967243 DOI: 10.3390/pharmaceutics15020522] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
For many decades, the proper functioning of the human body has become a leading scientific topic. In the course of numerous experiments, a striking impact of probiotics on the human body has been documented, including maintaining the physiological balance of endogenous microorganisms, regulating the functioning of the immune system, enhancing the digestive properties of the host, and preventing or alleviating the course of many diseases. Recent research, especially from the last decade, shows that this health-benefiting activity of probiotics is largely conditioned by the production of extracellular vesicles. Although the importance of extracellular vesicles in the virulence of many live-threatening pathogens is widely described in the literature, much less is known with respect to the health-promoting effect of extracellular vesicles secreted by non-pathogenic microorganisms, including probiotics. Based on this, in the current review article, we decided to collect the latest literature data on the health-inducing properties of extracellular vesicles secreted by probiotics. The characteristics of probiotics' extracellular vesicles will be extended by the description of their physicochemical properties and the proteome in connection with the biological activities exhibited by these structures.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Beatrice Marinacci
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, University “Gabriele d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Irene Vitale
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Rossella Grande
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| |
Collapse
|
13
|
Bio-Inspired Drug Delivery Systems: From Synthetic Polypeptide Vesicles to Outer Membrane Vesicles. Pharmaceutics 2023; 15:pharmaceutics15020368. [PMID: 36839691 PMCID: PMC9965272 DOI: 10.3390/pharmaceutics15020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Nanomedicine is a broad field that focuses on the development of nanocarriers to deliver specific drugs to targeted sites. A synthetic polypeptide is a kind of biomaterial composed of repeating amino acid units that are linked by peptide bonds. The multiplied amphiphilicity segment of the polypeptide could assemble to form polypeptide vesicles (PVs) under suitable conditions. Different from polypeptide vesicles, outer membrane vesicles (OMVs) are spherical buds of the outer membrane filled with periplasmic content, which commonly originate from Gram-negative bacteria. Owing to their biodegradability and excellent biocompatibility, both PVs and OMVs have been utilized as carriers in delivering drugs. In this review, we discuss the recent drug delivery research based on PVs and OMVs. These related topics are presented: (1) a brief introduction to the production methods for PVs and OMVs; (2) a thorough explanation of PV- and OMV-related applications in drug delivery including the vesicle design and biological assessment; (3) finally, we conclude with a discussion on perspectives and future challenges related to the drug delivery systems of PVs and OMVs.
Collapse
|