1
|
M A, S KB, Liyana EP, Jasmine JS. Transformative potential of plant-based nanoparticles in cancer diagnosis and treatment: bridging traditional medicine and modern therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04113-y. [PMID: 40237799 DOI: 10.1007/s00210-025-04113-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025]
Abstract
Cancer is a primary global health concern, with an estimated 35.3 million cancer cases expected worldwide, representing a 76.6% increase in 2022, and 20 million by 2050, resulting from genetic mutation and environmental factors that cause uncontrolled cell growth. Other factors including smoking, unhealthy diets, physical inactivity, exposure to carcinogens, UV radiation, and aging increase DNA damage. Current cancer treatments like chemotherapy, radiation therapy, immunotherapy, and surgery are effective, but those have significant effects like lack of specificity, development of drug resistance, and significant side effects to healthy tissues. An advancement to conventional therapies is plant-based nanoparticles as transformative approaches in cancer diagnosis and treatment. These nanoparticles synthesized using plant bioactive compounds like flavonoids, alkaloids, polyphenols, and some metals-oxides like gold, silver, copper, zinc, etc. offer eco-friendly, cost-effective, and biocompatible alternatives. They enhance targeted drug delivery, allowing anticancer agents specifically to tumor cells, minimizing damage to health. Improves imaging techniques like MRI and fluorescence imaging, and helps early detection, cancer biomarkers, allowing for prompt intervention. Recent findings show that nanocarriers made from plant-based materials, such as polyphenols (curcumin, resveratrol) and plant-extracted metal nanoparticles (gold, silver), can improve drug stability and selectively target tumor cells. Plant-derived nanoparticles play a crucial role in cancer immunotherapy and nanovaccines. Biodegradable plant-based nanocarriers can deliver cancer vaccines, stimulating long-term immunity against tumors. Graphene oxide and gold nanoparticles synthesized from plant extracts can absorb near-infrared (NIR) light, generating heat to destroy cancer cells with minimal damage to surrounding tissues. This study discusses the types of plant-based nanoparticles like plant virus nanoparticles (TMV, PVX, CPMV), plant metallic nanoparticles (Au, Ag., Cu, Zn, Mg, Ca, and Mn), and flavonoid nanoparticles found in cancer treatment, their significant roles, chemotherapy-based nanomedicines available in the medical field, and a detailed vision of nanomaterial applications in cancer diagnosis, treatment, and targeted drug delivery.
Collapse
Affiliation(s)
- Aswini M
- Department of Biotechnology, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India.
| | - Kavitha Bagya S
- Department of Biotechnology, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India
| | - E P Liyana
- Department of Biotechnology, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India
| | | |
Collapse
|
2
|
Subramani K, Wutthithien P, Saha R, Lindblad P, Incharoensakdi A. Characterization and potentiality of plant-derived silver nanoparticles for enhancement of biomass and hydrogen production in Chlorella sp. under nitrogen deprived condition. CHEMOSPHERE 2024; 361:142514. [PMID: 38830468 DOI: 10.1016/j.chemosphere.2024.142514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/24/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Energy is a crucial entity for the development and it has various alternative forms of energy sources. Recently, the synthesis of nanoparticles using benign biocatalyst has attracted increased attention. In this study, silver nanoparticles were synthesized and characterized using Azadirachta indica plant-derived phytochemical as the reducing agent. Biomass of the microalga Chlorella sp. cultivated in BG11 medium increased after exposure to low concentrations of up to 0.48 mg L-1 AgNPs. In addition, algal cells treated with 0.24 mg L-1 AgNPs and cultivated in BG110 medium which contained no nitrogen source showed the highest hydrogen yield of 10.8 mmol L-1, whereas the untreated cells under the same conditions showed very low hydrogen yield of 0.003 mmol L-1. The enhanced hydrogen production observed in the treated cells was consistent with an increase in hydrogenase activity. Treatment of BG110 grown cells with low concentration of green synthesized AgNPs at 0.24 mg L-1 enhanced hydrogenase activity with a 5-fold increase of enzyme activity compared to untreated BG110 grown cells. In addition, to improve photolytic water splitting efficiency for hydrogen production, cells treated with AgNPs at 0.24 mg L-1 showed highest oxygen evolution signifying improvement in photosynthesis. The silver nanoparticles synthesized using phytochemicals derived from plant enhanced both microalgal biomass and hydrogen production with an added advantage of CO2 reduction which could be achieved due to an increase in biomass. Hence, treating microalgae with nanoparticles provided a promising strategy to reduce the atmospheric carbon dioxide as well as increasing production of hydrogen as clean energy.
Collapse
Affiliation(s)
- Karthik Subramani
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 103330, Thailand
| | - Palaya Wutthithien
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 103330, Thailand
| | - Raunak Saha
- Centre for Nanoscience and Technology, K S Rangasamy College of Technology, Tiruchengode, 637215, Tamil Nadu, India
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 103330, Thailand; Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand.
| |
Collapse
|
3
|
Rana N, Banu AN, Kumar B, Singh SK, Abdel-razik NE, Jalal NA, Bantun F, Vamanu E, Singh MP. Phytofabrication, characterization of silver nanoparticles using Hippophae rhamnoides berries extract and their biological activities. Front Microbiol 2024; 15:1399937. [PMID: 39113841 PMCID: PMC11303148 DOI: 10.3389/fmicb.2024.1399937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Fabrication of plant-based metal nanoparticles has yielded promising results, establishing this approach as viable, sustainable, and non-toxic in the biomedical sector for targeted drug delivery, diagnostic imaging, biosensing, cancer therapy, and antimicrobial treatments. Methods The present work demonstrates the suitability of Hippophae rhamnoides berries for the instant green synthesis of silver nanoparticles to check their antioxidant, lipid peroxidation, and antimicrobial potential. The preliminary characterization of Hippophae rhamnoides-mediated AgNPs was validated by monitoring the color shift in the solution from pale yellow to reddish brown, which was further confirmed by UV-vis spectroscopy and the plasmon peaks were observed at 450 nm. Field Emission Scanning Electron Microscopy (FESEM) and X-ray diffraction (XRD) were used to evaluate the surface topography and structure of AgNPs. Herein, the antioxidant potential of synthesized AgNPs was investigated using DPPH free radical assay and the antimicrobial efficacy of similar was checked against E. coli and S. aureus by following MIC (minimum inhibitory concentration) and MBC (Minimum bactericidal concentration) assay. Along with the inhibitory percentage of lipid peroxidation was analysed by following TBARS (Thiobarbituric acid reactive species) assay. Results & discussion The results revealed that the AgNPs were spherical in shape with an average size distribution within the range of 23.5-28 nm and a crystalline structure. Negative zeta potential (-19.7 mV) revealed the physical stability of synthesized AgNPs as the repulsive force to prevent immediate aggregation. The bioactive functional moieties involved in reducing bulk AgNO3 into AgNPs were further validated by FTIR. TBARS was adapted to test lipid peroxidation, and Hippophae rhamnoides-mediated AgNPs showed a 79% inhibition in lipid peroxidation compared to Hippophae rhamnoides berries extract as 65%. Furthermore, the antibacterial tests showed 37 ± 0.01 mm and 35 ± 0.0132 mm, zones of inhibition against E. coli MTCC 1698 and S. aureus MTCC 3160 with MIC and MBC values of 1 mg/mL, respectively.
Collapse
Affiliation(s)
- Neha Rana
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - A. Najitha Banu
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Sandeep K. Singh
- Indian Scientific Education and Technology Foundation, Lucknow, India
| | - Noha E. Abdel-razik
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Gizan, Saudi Arabia
| | - Naif A. Jalal
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, Bucharest, Romania
| | | |
Collapse
|
4
|
Urbano-Gámez JD, Guzzi C, Bernal M, Solivera J, Martínez-Zubiaurre I, Caro C, García-Martín ML. Tumor versus Tumor Cell Targeting in Metal-Based Nanoparticles for Cancer Theranostics. Int J Mol Sci 2024; 25:5213. [PMID: 38791253 PMCID: PMC11121233 DOI: 10.3390/ijms25105213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The application of metal-based nanoparticles (mNPs) in cancer therapy and diagnostics (theranostics) has been a hot research topic since the early days of nanotechnology, becoming even more relevant in recent years. However, the clinical translation of this technology has been notably poor, with one of the main reasons being a lack of understanding of the disease and conceptual errors in the design of mNPs. Strikingly, throughout the reported studies to date on in vivo experiments, the concepts of "tumor targeting" and "tumor cell targeting" are often intertwined, particularly in the context of active targeting. These misconceptions may lead to design flaws, resulting in failed theranostic strategies. In the context of mNPs, tumor targeting can be described as the process by which mNPs reach the tumor mass (as a tissue), while tumor cell targeting refers to the specific interaction of mNPs with tumor cells once they have reached the tumor tissue. In this review, we conduct a critical analysis of key challenges that must be addressed for the successful targeting of either tumor tissue or cancer cells within the tumor tissue. Additionally, we explore essential features necessary for the smart design of theranostic mNPs, where 'smart design' refers to the process involving advanced consideration of the physicochemical features of the mNPs, targeting motifs, and physiological barriers that must be overcome for successful tumor targeting and/or tumor cell targeting.
Collapse
Affiliation(s)
- Jesús David Urbano-Gámez
- Biomedical Magnetic Resonance Laboratory—BMRL, Andalusian Public Foundation Progress and Health—FPS, 41092 Seville, Spain; (J.D.U.-G.); (C.G.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma BIONAND, C/Severo Ochoa, 35, 29590 Malaga, Spain;
| | - Cinzia Guzzi
- Biomedical Magnetic Resonance Laboratory—BMRL, Andalusian Public Foundation Progress and Health—FPS, 41092 Seville, Spain; (J.D.U.-G.); (C.G.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma BIONAND, C/Severo Ochoa, 35, 29590 Malaga, Spain;
| | - Manuel Bernal
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma BIONAND, C/Severo Ochoa, 35, 29590 Malaga, Spain;
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, 29071 Malaga, Spain
| | - Juan Solivera
- Department of Neurosurgery, Reina Sofia University Hospital, 14004 Cordoba, Spain;
| | - Iñigo Martínez-Zubiaurre
- Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, P.O. Box 6050, Langnes, 9037 Tromsö, Norway;
| | - Carlos Caro
- Biomedical Magnetic Resonance Laboratory—BMRL, Andalusian Public Foundation Progress and Health—FPS, 41092 Seville, Spain; (J.D.U.-G.); (C.G.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma BIONAND, C/Severo Ochoa, 35, 29590 Malaga, Spain;
| | - María Luisa García-Martín
- Biomedical Magnetic Resonance Laboratory—BMRL, Andalusian Public Foundation Progress and Health—FPS, 41092 Seville, Spain; (J.D.U.-G.); (C.G.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma BIONAND, C/Severo Ochoa, 35, 29590 Malaga, Spain;
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
5
|
Rahman S, Sadaf S, Hoque ME, Mishra A, Mubarak NM, Malafaia G, Singh J. Unleashing the promise of emerging nanomaterials as a sustainable platform to mitigate antimicrobial resistance. RSC Adv 2024; 14:13862-13899. [PMID: 38694553 PMCID: PMC11062400 DOI: 10.1039/d3ra05816f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
The emergence and spread of antibiotic-resistant (AR) bacterial strains and biofilm-associated diseases have heightened concerns about exploring alternative bactericidal methods. The WHO estimates that at least 700 000 deaths yearly are attributable to antimicrobial resistance, and that number could increase to 10 million annual deaths by 2050 if appropriate measures are not taken. Therefore, the increasing threat of AR bacteria and biofilm-related infections has created an urgent demand for scientific research to identify novel antimicrobial therapies. Nanomaterials (NMs) have emerged as a promising alternative due to their unique physicochemical properties, and ongoing research holds great promise for developing effective NMs-based treatments for bacterial and viral infections. This review aims to provide an in-depth analysis of NMs based mechanisms combat bacterial infections, particularly those caused by acquired antibiotic resistance. Furthermore, this review examines NMs design features and attributes that can be optimized to enhance their efficacy as antimicrobial agents. In addition, plant-based NMs have emerged as promising alternatives to traditional antibiotics for treating multidrug-resistant bacterial infections due to their reduced toxicity compared to other NMs. The potential of plant mediated NMs for preventing AR is also discussed. Overall, this review emphasizes the importance of understanding the properties and mechanisms of NMs for the development of effective strategies against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Sazedur Rahman
- Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology Dhaka Bangladesh
| | - Somya Sadaf
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology Dhaka Bangladesh
| | - Akash Mishra
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei Bandar Seri Begawan BE1410 Brunei Darussalam
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University Jalandhar Punjab India
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute Urutaí GO Brazil
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University Mohali-140413 India
| |
Collapse
|
6
|
Jiang M, Althomali RH, Ansari SA, Saleh EAM, Gupta J, Kambarov KD, Alsaab HO, Alwaily ER, Hussien BM, Mustafa YF, Narmani A, Farhood B. Advances in preparation, biomedical, and pharmaceutical applications of chitosan-based gold, silver, and magnetic nanoparticles: A review. Int J Biol Macromol 2023; 251:126390. [PMID: 37595701 DOI: 10.1016/j.ijbiomac.2023.126390] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/11/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
During the last decades, the ever-increasing incidence of various diseases, like cancer, has led to a high rate of death worldwide. On the other hand, conventional modalities (such as chemotherapy and radiotherapy) have not indicated enough efficiency in the diagnosis and treatment of diseases. Thus, potential novel approaches should be taken into consideration to pave the way for the suppression of diseases. Among novel approaches, biomaterials, like chitosan nanoparticles (CS NPs, N-acetyl-glucosamine and D-glucosamine), have been approved by the FDA for some efficient pharmaceutical applications. These NPs owing to their physicochemical properties, modification with different molecules, biocompatibility, serum stability, less immune response, suitable pharmacokinetics and pharmacodynamics, etc. have received deep attention among researchers and clinicians. More importantly, the impact of CS polysaccharide in the synthesis, preparation, and delivery of metallic NPs (like gold, silver, and magnetic NPs), and combination of CS with these metallic NPs can further facilitate the diagnosis and treatment of diseases. Metallic NPs possess some features, like converting NIR photon energy into thermal energy and anti-microorganism capability, and can be a potential candidate for the diagnosis and treatment of diseases in combination with CS NPs. These combined NPs would be efficient pharmaceuticals in the future.
Collapse
Affiliation(s)
- Mingyang Jiang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China, 530021
| | - Raed H Althomali
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Shakeel Ahmed Ansari
- Department of Biochemistry, General Medicine Practice Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U. P., India
| | | | - Hashem O Alsaab
- Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Azad A, Zafar H, Raza F, Sulaiman M. Factors Influencing the Green Synthesis of Metallic Nanoparticles Using Plant Extracts: A Comprehensive Review. PHARMACEUTICAL FRONTS 2023; 05:e117-e131. [DOI: 10.1055/s-0043-1774289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
AbstractMethods for nanoparticle (NP) synthesis of the past were costly, generating toxic compounds, which necessitates a reduction in toxic contamination associated with chemical and physical syntheses. Green nano synthesis using plant extracts has emerged as a sustainable alternative in nanotechnology with applications in various fields. Factors such as pH, extract and salt concentrations, temperature, solvent, biomolecules in plants, and reaction time significantly influence the quality and quantity of metallic NPs synthesized via green nanotechnology. This review highlights crucial factors affecting the size and shape of metallic NPs as the overall properties of the NPs are size- and shape-dependent. Current and future research in green nano synthesis holds promise for expanding our understanding of the parameters that control the synthesis, size, and shape of NPs. Further investigation is necessary to comprehend the impact of these parameters on the synthesis of metallic NPs using plant extracts, which is considered the most sustainable approach for large-scale production.
Collapse
Affiliation(s)
- Aisha Azad
- Department of Chemistry, Lahore Garrison University, Lahore, Pakistan
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Muhammad Sulaiman
- School of Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
8
|
Rajeshkumar S, Parameswari RP, Sandhiya D, Al-Ghanim KA, Nicoletti M, Govindarajan M. Green Synthesis, Characterization and Bioactivity of Mangifera indica Seed-Wrapped Zinc Oxide Nanoparticles. Molecules 2023; 28:molecules28062818. [PMID: 36985789 PMCID: PMC10056584 DOI: 10.3390/molecules28062818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
In the realm of nanoparticles, metal-based nanoparticles have traditionally been regarded as the pioneering category. Compared to other nanoparticles, zinc oxide nanoparticles have several advantages, including optical and biological properties, which provide them a significant competitive advantage in clinical and biological applications. In the current investigation, we used an aqueous Mangifera indica seed extract to synthesize nanoparticles of zinc oxide (ZnO NPs). UV-Vis spectroscopy, Fourier transform infrared spectroscopy analysis, atomic force spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used to characterize the synthesized ZnO NPs. The nanoparticles were assessed for their potential to inhibit bacterial growth and protect cells from free radical damage. According to the current study's findings, zinc oxide nanoparticles that had been modified with the aid of mango seeds were very efficient in preventing the development of the tested bacteria and were also powerful antioxidants.
Collapse
Affiliation(s)
- Shanmugam Rajeshkumar
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha University, SIMATS, Chennai 600077, TN, India
| | | | - Dayalan Sandhiya
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marcello Nicoletti
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar 608002, TN, India
- Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612001, TN, India
| |
Collapse
|
9
|
Biosynthesis of Bixa orellana seed extract mediated silver nanoparticles with moderate antioxidant, antibacterial and antiproliferative activity. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|