1
|
Liu HY, Sun AR, Wu LY, Zhang ZL. Scalable fabrication of nano-to-micro carbon disk ultramicroelectrodes for single small extracellular vesicle detection. Chem Commun (Camb) 2025; 61:6010-6013. [PMID: 40146272 DOI: 10.1039/d5cc00793c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Small extracellular vesicles (sEVs) play a crucial role in intercellular communication, but their nanoscale size and heterogeneity make analysis challenging. This study introduces a scalable method for fabricating disk carbon fiber ultramicroelectrodes (UMEs) with precise size control. Size-matched UMEs enable single-sEV detection via blocking collisions, achieving a high signal-to-background ratio and low noise. This approach offers unprecedented resolution in determining sEV concentration and size distribution.
Collapse
Affiliation(s)
- Hong-Yuan Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - An-Rong Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Li-Yuan Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
2
|
Shen H, Chen J, Liu M, Zhao M, Hu D, Xie F, Jin Q, Xiao D, Peng Z, Qin T, Rao D, Huang D. Research progress of extracellular vesicles derived from mesenchymal stem cells in the treatment of neurodegenerative diseases. Front Immunol 2025; 16:1496304. [PMID: 40242755 PMCID: PMC12000061 DOI: 10.3389/fimmu.2025.1496304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/10/2025] [Indexed: 04/18/2025] Open
Abstract
As the world's population ages, neurodegenerative diseases are becoming more widely acknowledged as serious global health and socioeconomic issues. Although many resources have been devoted to the research of these illnesses, little progress has been made in the creation of novel diagnostic and therapeutic approaches. Extracellular vesicles (EVs) are released by all cell types and contain proteins, microRNAs, mRNAs, and other biologically active molecules. EVs play an important role in intercellular communication as well as in the regulation of neuroinflammation. Determining the mechanisms by which EVs contribute to the pathogenesis of neurodegenerative diseases will aid in the development of new therapeutic approaches and diagnostic tools. Mesenchymal stem cells (MSCs) have been shown in studies to control immunological responses, promote the growth of new brain connections, promote the production of blood vessels, and heal damaged tissues. There is growing evidence that MSCs' ability to treat patients is mostly due to the neurotrophic compounds they secrete through EVs. Since their tiny size allows them to pass through biological barriers and reach injured parts of the central nervous system, MSC-derived extracellular vesicles (MSC-EVs) retain many of the therapeutic qualities of their parent MSCs. This review discusses the role of EVs in neurodegenerative diseases and highlights the potential of MSC-EVs in the treatment of neurodegenerative diseases. The paper also examines the challenges that still need to be overcome and the prospects for using MSC-EVs to treat neurodegenerative illnesses.
Collapse
Affiliation(s)
- Haibin Shen
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jie Chen
- Department of Laboratory Medicine, Yongchuan Hospital of Chongqing Medical University, Chongqing, Yongchuan, China
| | - Meijin Liu
- Laboratory Medicine, People’s Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Minghong Zhao
- Laboratory Medicine, Guizhou Aerospace Hospital, Zunyi, China
| | - Die Hu
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Fangfang Xie
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qing Jin
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Dewang Xiao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Zongbo Peng
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Tao Qin
- Laboratory Medicine, Guizhou Aerospace Hospital, Zunyi, China
| | - Dingyu Rao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Defa Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
3
|
Kim TY, Kim NH, Chae JA, Oh HK, Yang S, Moon JB, Wi SM, An JH, Yu JM. Evaluation of cognitive and mobility function in geriatric dogs following treatment with stem cell and stem cell extracellular vesicles derived from embryonic stem cells: a pilot study. Front Vet Sci 2025; 12:1549870. [PMID: 40206251 PMCID: PMC11979104 DOI: 10.3389/fvets.2025.1549870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Introduction Declining physical or mental health in older dogs can lead to changes in the dog's cognitive and musculoskeletal function. Regrettably, these degenerative changes cannot be remedied. In the present study, geriatric small dogs exhibiting cognitive and behavioral changes were treated with human embryonic stem cell-derived mesenchymal stemcells (ES-MSCs, n = 21) and mesenchymal stem cell-derived extracellular vesicles (ES-MSC-EVs, n = 21). Methods Before and 2 weeks after treatment, the cognitive and mobility status of the dogs were assessed using theCanine Cognitive Dysfunction Rating (CCDR) and the Liverpool Osteoarthritis in Dogs (LOAD) scale. Additionally, safety assessments were conducted through blood tests such as complete blood count and serum chemistry. Results Following an assessment of clinical symptoms and blood tests in both the groups receiving ES-MSC and ES-MSC-EVs treatments, no notable side effects were detected. Moreover, the questionnaire survey revealed that both groups showed alleviation in CCDR and LOAD scores following administration. Discussion These findings suggest that ES-MSC and ES-MSC-EV treatments have the potential to be used as a therapeutic option for improving clinical symptoms of degenerative diseases such as canine cognitive dysfunction and degenerativemusculoskeletal diseases in elderly dogs.
Collapse
Affiliation(s)
- Tae-Yoon Kim
- Bio Research and Development Center, Daewoong, Co., Ltd., Yongin, Republic of Korea
| | - Nam-Hee Kim
- Department of Veterinary Emergency and Critical Care Medicine, College of Veterinary Medicine, Kangwon National University, Chuncheon-si, Republic of Korea
| | - Jin-A Chae
- Bio Research and Development Center, Daewoong, Co., Ltd., Yongin, Republic of Korea
| | - Hyun-Keun Oh
- Bio Research and Development Center, Daewoong, Co., Ltd., Yongin, Republic of Korea
| | - Seonghyun Yang
- Bio Research and Development Center, Daewoong, Co., Ltd., Yongin, Republic of Korea
| | | | - Seon Mi Wi
- Daewoong Pet, Corp., Seoul, Republic of Korea
| | - Ju-Hyun An
- Department of Veterinary Emergency and Critical Care Medicine, College of Veterinary Medicine, Kangwon National University, Chuncheon-si, Republic of Korea
| | - Ji Min Yu
- Bio Research and Development Center, Daewoong, Co., Ltd., Yongin, Republic of Korea
| |
Collapse
|
4
|
Derisfard F, Jafarinezhad Z, Azarpira N, Namavar MR, Aligholi H. Exosomes obtained from human adipose-derived stem cells alleviate epileptogenesis in the pentylenetetrazol model of epilepsy. Neuroreport 2025; 36:161-168. [PMID: 39976050 DOI: 10.1097/wnr.0000000000002133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
As exosome therapy is a promising treatment in neurological disorders including epilepsy, the present study aimed to evaluate the effects of exosomes obtained from human adipose-derived stem cells (ADSCs) on pentylenetetrazol (PTZ) model of epilepsy in mice. Thirty adult mice were divided into PTZ, diazepam + PTZ, and exosome (5, 10, and 15 µg) + PTZ groups. The exosomes were administered intranasally 30 min before PTZ injection. The seizure latency, tonic-clonic onset, seizure duration, and mortality protection rate were monitored. Also, the level of hippocampal malondialdehyde (MDA), the oxidative stress marker, was evaluated. Exosomes in 5 and 15 µg concentration significantly increased seizure latency. Only 15 µg of exosomes induced a considerable delay in tonic-clonic onset. Seizure duration was significantly attenuated in the 5 µg exosome group. In addition, the 5-µg exosome indicated the highest mortality protection rate. Furthermore, the MDA level was significantly reduced in all animals treated by exosomes. Exosomes obtained from human ADSCs could alleviate epileptogenesis induced by PTZ maybe through reducing hippocampal oxidative stress.
Collapse
Affiliation(s)
- Fateme Derisfard
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies
| | - Zahra Jafarinezhad
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies
| | | | - Mohammad Reza Namavar
- Department of Anatomical Sciences, Histomorphometry and Stereology Research Center
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies
| |
Collapse
|
5
|
Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, Algehainy N, Alanazi MA, Abou-Samra AB, Kumar R, Al-Shabeeb Akil AS, Macha MA, Mir R, Bhat AA. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther 2024; 9:27. [PMID: 38311623 PMCID: PMC10838959 DOI: 10.1038/s41392-024-01735-1] [Citation(s) in RCA: 166] [Impact Index Per Article: 166.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous structures secreted into the extracellular space. They exhibit diverse sizes, contents, and surface markers and are ubiquitously released from cells under normal and pathological conditions. Human serum is a rich source of these EVs, though their isolation from serum proteins and non-EV lipid particles poses challenges. These vesicles transport various cellular components such as proteins, mRNAs, miRNAs, DNA, and lipids across distances, influencing numerous physiological and pathological events, including those within the tumor microenvironment (TME). Their pivotal roles in cellular communication make EVs promising candidates for therapeutic agents, drug delivery systems, and disease biomarkers. Especially in cancer diagnostics, EV detection can pave the way for early identification and offers potential as diagnostic biomarkers. Moreover, various EV subtypes are emerging as targeted drug delivery tools, highlighting their potential clinical significance. The need for non-invasive biomarkers to monitor biological processes for diagnostic and therapeutic purposes remains unfulfilled. Tapping into the unique composition of EVs could unlock advanced diagnostic and therapeutic avenues in the future. In this review, we discuss in detail the roles of EVs across various conditions, including cancers (encompassing head and neck, lung, gastric, breast, and hepatocellular carcinoma), neurodegenerative disorders, diabetes, viral infections, autoimmune and renal diseases, emphasizing the potential advancements in molecular diagnostics and drug delivery.
Collapse
Affiliation(s)
- Mudasir A Kumar
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Sadaf K Baba
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Sara Al Marzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
6
|
Saglam-Metiner P, Duran E, Sabour-Takanlou L, Biray-Avci C, Yesil-Celiktas O. Differentiation of Neurons, Astrocytes, Oligodendrocytes and Microglia From Human Induced Pluripotent Stem Cells to Form Neural Tissue-On-Chip: A Neuroinflammation Model to Evaluate the Therapeutic Potential of Extracellular Vesicles Derived from Mesenchymal Stem Cells. Stem Cell Rev Rep 2024; 20:413-436. [PMID: 37938408 DOI: 10.1007/s12015-023-10645-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/09/2023]
Abstract
Advances in stem cell (SC) technology allow the generation of cellular models that recapitulate the histological, molecular and physiological properties of humanized in vitro three dimensional (3D) models, as well as production of cell-derived therapeutics such as extracellular vesicles (EVs). Improvements in organ-on-chip platforms and human induced pluripotent stem cells (hiPSCs) derived neural/glial cells provide unprecedented systems for studying 3D personalized neural tissue modeling with easy setup and fast output. Here, we highlight the key points in differentiation procedures for neurons, astrocytes, oligodendrocytes and microglia from single origin hiPSCs. Additionally, we present a well-defined humanized neural tissue-on-chip model composed of differentiated cells with the same genetic backgrounds, as well as the therapeutic potential of bone marrow mesenchymal stem cells (BMSCs)-derived extracellular vesicles to propose a novel treatment for neuroinflammation derived diseases. Around 100 nm CD9 + EVs promote a more anti-inflammatory and pro-remodeling of cell-cell interaction cytokine responses on tumor necrosis factor-α (TNF-α) induced neuroinflammation in neural tissue-on-chip model which is ideal for modeling authentic neural-glial patho-physiology.
Collapse
Affiliation(s)
- Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
- Department of Translational Neuroscience, Division of Neuroscience, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elif Duran
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | | | - Cigir Biray-Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.
| |
Collapse
|
7
|
Nguyen QT, Thanh LN, Hoang VT, Phan TTK, Heke M, Hoang DM. Bone Marrow-Derived Mononuclear Cells in the Treatment of Neurological Diseases: Knowns and Unknowns. Cell Mol Neurobiol 2023; 43:3211-3250. [PMID: 37356043 PMCID: PMC11410020 DOI: 10.1007/s10571-023-01377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
Bone marrow-derived mononuclear cells (BMMNCs) have been used for decades in preclinical and clinical studies to treat various neurological diseases. However, there is still a knowledge gap in the understanding of the underlying mechanisms of BMMNCs in the treatment of neurological diseases. In addition, prerequisite factors for the efficacy of BMMNC administration, such as the optimal route, dose, and number of administrations, remain unclear. In this review, we discuss known and unknown aspects of BMMNCs, including the cell harvesting, administration route and dose; mechanisms of action; and their applications in neurological diseases, including stroke, cerebral palsy, spinal cord injury, traumatic brain injury, amyotrophic lateral sclerosis, autism spectrum disorder, and epilepsy. Furthermore, recommendations on indications for BMMNC administration and the advantages and limitations of BMMNC applications for neurological diseases are discussed. BMMNCs in the treatment of neurological diseases. BMMNCs have been applied in several neurological diseases. Proposed mechanisms for the action of BMMNCs include homing, differentiation and paracrine effects (angiogenesis, neuroprotection, and anti-inflammation). Further studies should be performed to determine the optimal cell dose and administration route, the roles of BMMNC subtypes, and the indications for the use of BMMNCs in neurological conditions with and without genetic abnormalities.
Collapse
Affiliation(s)
- Quyen Thi Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam.
- College of Health Science, Vin University, Vinhomes Ocean Park, Gia Lam District, Hanoi, 12400, Vietnam.
- Vinmec International Hospital-Times City, Vinmec Healthcare System, 458 Minh Khai, Hanoi, 11622, Vietnam.
| | - Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Trang T K Phan
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Michael Heke
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Duc M Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| |
Collapse
|
8
|
Iyaswamy A, Lu K, Guan XJ, Kan Y, Su C, Liu J, Jaganathan R, Vasudevan K, Paul J, Thakur A, Li M. Impact and Advances in the Role of Bacterial Extracellular Vesicles in Neurodegenerative Disease and Its Therapeutics. Biomedicines 2023; 11:2056. [PMID: 37509695 PMCID: PMC10377521 DOI: 10.3390/biomedicines11072056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial Extracellular Vesicles (BEVs) possess the capability of intracellular interactions with other cells, and, hence, can be utilized as an efficient cargo for worldwide delivery of therapeutic substances such as monoclonal antibodies, proteins, plasmids, siRNA, and small molecules for the treatment of neurodegenerative diseases (NDs). BEVs additionally possess a remarkable capacity for delivering these therapeutics across the blood-brain barrier to treat Alzheimer's disease (AD). This review summarizes the role and advancement of BEVs for NDs, AD, and their treatment. Additionally, it investigates the critical BEV networks in the microbiome-gut-brain axis, their defensive and offensive roles in NDs, and their interaction with NDs. Furthermore, the part of BEVs in the neuroimmune system and their interference with ND, as well as the risk factors made by BEVs in the autophagy-lysosomal pathway and their potential outcomes on ND, are all discussed. To conclude, this review aims to gain a better understanding of the credentials of BEVs in NDs and possibly discover new therapeutic strategies.
Collapse
Affiliation(s)
- Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Kejia Lu
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xin-Jie Guan
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuxuan Kan
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chengfu Su
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jia Liu
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ravindran Jaganathan
- Preclinical Department, Faculty of Medicine, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Malaysia
| | | | - Jeyakumari Paul
- Department of Physiology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai 600005, India
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
9
|
Palanisamy CP, Pei J, Alugoju P, Anthikapalli NVA, Jayaraman S, Veeraraghavan VP, Gopathy S, Roy JR, Janaki CS, Thalamati D, Mironescu M, Luo Q, Miao Y, Chai Y, Long Q. New strategies of neurodegenerative disease treatment with extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs). Theranostics 2023; 13:4138-4165. [PMID: 37554286 PMCID: PMC10405853 DOI: 10.7150/thno.83066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
Neurodegenerative diseases are characterized by the progressive loss of neurons and intricate interactions between different cell types within the affected regions. Reliable biomarkers that can accurately reflect disease activity, diagnose, and monitor the progression of neurodegenerative diseases are crucial for the development of effective therapies. However, identifying suitable biomarkers has been challenging due to the heterogeneous nature of these diseases, affecting specific subsets of neurons in different brain regions. One promising approach for promoting brain regeneration and recovery involves the transplantation of mesenchymal stem cells (MSCs). MSCs have demonstrated the ability to modulate the immune system, promote neurite outgrowth, stimulate angiogenesis, and repair damaged tissues, partially through the release of their extracellular vesicles (EVs). MSC-derived EVs retain some of the therapeutic characteristics of their parent MSCs, including their ability to regulate neurite outgrowth, promote angiogenesis, and facilitate tissue repair. This review aims to explore the potential of MSC-derived EVs as an emerging therapeutic strategy for neurodegenerative diseases, highlighting their role in modulating disease progression and promoting neuronal recovery. By elucidating the mechanisms by which MSC-derived EVs exert their therapeutic effects, we can advance our understanding and leverage their potential for the development of novel treatment approaches in the field of neurodegenerative diseases.
Collapse
Affiliation(s)
- Chella Perumal Palanisamy
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - JinJin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Phaniendra Alugoju
- Department of Clinical Chemistry, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Sridevi Gopathy
- Department of Physiology, SRM Dental College, Ramapuram campus, Chennai, Tamil Nadu 600089, India
| | - Jeane Rebecca Roy
- Department of Anatomy, Bhaarath Medical College and hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu 600073, India
| | - Coimbatore Sadagopan Janaki
- Department of Anatomy, Bhaarath Medical College and hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu 600073, India
| | | | - Monica Mironescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, Bv. Victoriei 10, 550024 Sibiu, Romania
| | - Qiang Luo
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| | - Yu Miao
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| | - Yuan Chai
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| | - Qianfa Long
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| |
Collapse
|
10
|
Sun C, Qin Y, Zhuang H, Zhang Y, Wu Z, Chen Y. Membrane Vesicles as Drug Delivery Systems: Source, Preparation, Modification, Drug Loading, In Vivo Administration and Biodistribution, and Application in Various Diseases. Pharmaceutics 2023; 15:1903. [PMID: 37514089 PMCID: PMC10383253 DOI: 10.3390/pharmaceutics15071903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Bioinspired (or biologically inspired) drug delivery systems (DDSs) have been intensively studied in the last decades. As bioinspired DDSs, membrane vesicles, including extracellular vesicles (EVs) released from eukaryotic cells, outer membrane vesicles (OMVs) from bacteria, cell-bound membrane vesicles (CBMVs) isolated in situ from cell surfaces, membrane vesicles reorganized after the isolation of the plasma membrane of cells, and others have been rapidly developed and are attracting more and more attention. Most recently, a collection of 25 papers on the advances in membrane vesicle-based drug delivery systems was published in a Special Issue of Pharmaceutics entitled "Advances of membrane vesicles in drug delivery systems". These papers cover many related topics including the source, preparation, modification, drug loading, and in vivo administration and biodistribution of membrane vesicles (mainly extracellular vesicles or exosomes and bacterial outer membrane vesicles), as well as application of membrane vesicles as DDSs in the treatment of various diseases.
Collapse
Affiliation(s)
- Chenhan Sun
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Ying Qin
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Hongda Zhuang
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Yuan Zhang
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Zhiwen Wu
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Yong Chen
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| |
Collapse
|
11
|
Krzyżek P, Marinacci B, Vitale I, Grande R. Extracellular Vesicles of Probiotics: Shedding Light on the Biological Activity and Future Applications. Pharmaceutics 2023; 15:522. [PMID: 36839844 PMCID: PMC9967243 DOI: 10.3390/pharmaceutics15020522] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
For many decades, the proper functioning of the human body has become a leading scientific topic. In the course of numerous experiments, a striking impact of probiotics on the human body has been documented, including maintaining the physiological balance of endogenous microorganisms, regulating the functioning of the immune system, enhancing the digestive properties of the host, and preventing or alleviating the course of many diseases. Recent research, especially from the last decade, shows that this health-benefiting activity of probiotics is largely conditioned by the production of extracellular vesicles. Although the importance of extracellular vesicles in the virulence of many live-threatening pathogens is widely described in the literature, much less is known with respect to the health-promoting effect of extracellular vesicles secreted by non-pathogenic microorganisms, including probiotics. Based on this, in the current review article, we decided to collect the latest literature data on the health-inducing properties of extracellular vesicles secreted by probiotics. The characteristics of probiotics' extracellular vesicles will be extended by the description of their physicochemical properties and the proteome in connection with the biological activities exhibited by these structures.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Beatrice Marinacci
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, University “Gabriele d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Irene Vitale
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Rossella Grande
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| |
Collapse
|
12
|
Syed MH, Zahari MAKM, Khan MMR, Beg MDH, Abdullah N. An overview on recent biomedical applications of biopolymers: Their role in drug delivery systems and comparison of major systems. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|