1
|
da Silva EF, dos Santos FAL, Pires HM, Bastos LM, Ribeiro LNDM. Lipid Nanoparticles Carrying Essential Oils for Multiple Applications as Antimicrobials. Pharmaceutics 2025; 17:178. [PMID: 40006545 PMCID: PMC11859743 DOI: 10.3390/pharmaceutics17020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Lipid nanoparticles (LNPs) are versatile delivery systems with high interest because they allow the release of hydrophobic and hydrophilic molecules, such as essential oils (EOs) and plant extracts. This review covers published works between 2019 and 2024 that have reported the use of essential EO-based LNPs with antimicrobial properties and applications in human and animal health, as well as biopesticides. In the human healthcare field, reports have addressed the effect of encapsulating EOs in lipid nanosystems with antiviral, antibacterial, antiprotozoal and antifungal activities. In animal care, this still needs to be more deeply explored while looking for more sustainable alternatives against different types of parasites that affect animal health. Overall, the antibacterial activities of LNPs carrying EOs are described as alternatives to the use of synthetic antibiotics. In the field of agriculture, studies showed that these approaches in the control of phytopathogens and other pests that affect food production. There is a growing demand for innovative and more sustainable technologies. However, there are still some challenges to be overcome in order to allow these innovations to reach the market.
Collapse
Affiliation(s)
| | | | | | - Luciana Machado Bastos
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia 38405-302, Brazil;
| | | |
Collapse
|
2
|
Bousbaa H. Cutting-Edge Advances in Anticancer Therapies: Insights from the Third Edition of the Special Issue "Novel Anticancer Strategies". Pharmaceutics 2025; 17:54. [PMID: 39861702 PMCID: PMC11769241 DOI: 10.3390/pharmaceutics17010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
Cancer incidence and mortality continue to rise at an alarming rate worldwide, underscoring the urgent need for more effective therapeutic interventions [...].
Collapse
Affiliation(s)
- Hassan Bousbaa
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| |
Collapse
|
3
|
Rahimi S, Shirin F, Moassesfar M, Zafari H, Bahmaie N, Baghebani K, Bidmeshki Y, Sajjadi Manesh SM, Rasoulzadeh Darabad K, Bahmaie M, Nouri E, Kilic A, Ansarin M, Özışık P, Simsek E, Ozensoy Guler O. Role of Hypoxia Induced by Medicinal Plants; A Revolutionary Era of Cellular and Molecular Herbal Medicine in Neuroblastoma Treatment. FRONT BIOSCI-LANDMRK 2024; 29:422. [PMID: 39735975 DOI: 10.31083/j.fbl2912422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 12/31/2024]
Abstract
As one of the most common solid pediatric cancers, Neuroblastoma (NBL) accounts for 15% of all of the cancer-related mortalities in infants with increasing incidence all around the world. Despite current therapeutic approaches for NBL (radiotherapies, surgeries, and chemotherapies), these approaches could not be beneficial for all of patients with NBL due to their low effectiveness, and some severe side effects. These challenges lead basic medical scientists and clinical specialists toward an optimal medical interventions for clinical management of NBL. Regardingly, taking molecular and cellular immunopathophysiology involved in the hypoxic microenvironment of NBL into account, it can practically be a contributing approach in the development of "molecular medicine" for treatment of NBL. Interestingly, pivotal roles of "herbal medicine" in the hypoxic microenvironment of NBL have been extensively interrogated for treating a NBL, functionally being served as an anti-cancer agent via inducing a wide range of molecular and cellular signaling, like apoptosis, cell cycle arrest, and inhibiting angiogenesis. Hence, in this review study, the authors aim to summarize the anti-tumor effects of some medicinal plants and their phytoconstituents through molecular immunopathophysiological mechanisms involved in the hypoxic microenvironment of NBL. In addition, they try to open promising windows to immune gene-based therapies for NBL "precision medicine" through clinical advantages of herbal and molecular medicine. An interdisciplinary collaboration among translation and molecular medicine specialists, immunobiologists, herbal medicine specialists, and pediatric neuro-oncologists is highly recommended.
Collapse
Affiliation(s)
- Samin Rahimi
- Department of Genetics, Faculty of Natural Sciences, Tabriz University, 5166616471 Tabriz, Iran
| | - Fatemeh Shirin
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, 1651153311 Tehran, Iran
| | - Mahdi Moassesfar
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, 1651153311 Tehran, Iran
| | - Hossein Zafari
- Department of Chemical Engineering, Faculty of Chemical Engineering, Shahreza Branch, Islamic Azad University, 8648146411 Shahreza, Iran
| | - Nazila Bahmaie
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University (AYBU), 06800 Ankara, Turkey
| | - Kimia Baghebani
- Department of Biology, College of Basic Sciences, Kermanshah Branch, Islamic Azad University, 6718997551 Kermanshah, Iran
- Now with Department of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, 54896 Jeonbuk, Republic of Korea
| | - Yasna Bidmeshki
- Department of Biology, College of Basic Sciences, Kermanshah Branch, Islamic Azad University, 6718997551 Kermanshah, Iran
| | - Seyede Masoumeh Sajjadi Manesh
- Department of Biomedical Engineering, College of Basic Sciences, Qom Branch, Islamic Azad University, 3716146611 Qom, Iran
| | | | - Massoud Bahmaie
- Department of Herbal Medicine, University of Poona, 411007 Poona, India
| | - Elham Nouri
- Clinical Diagnosis Laboratory, Shahid Beheshti University-affiliated Hospital, Zanjan University of Medical Sciences (ZUMS), 4513956111 Zanjan, Iran
- Department of Medical Laboratory Science, Faculty of Paramedicine, Zanjan University of Medical Sciences (ZUMS), 4513956111 Zanjan, Iran
| | - Ahmet Kilic
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University (AYBU), 06800 Ankara, Turkey
| | - Melika Ansarin
- Department of Obstetrics and Gynecology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), 1449614535 Tehran, Iran
| | - Pınar Özışık
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Ankara Bilkent City Hospital, 06800 Ankara, Turkey
- Department of Brain and Nerve Surgery, Faculty of Medicine, Ankara Yildirim Beyazit University (AYBU), 06800 Ankara, Turkey
| | - Ender Simsek
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University (AYBU), 06800 Ankara, Turkey
| | - Ozen Ozensoy Guler
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University (AYBU), 06800 Ankara, Turkey
| |
Collapse
|
4
|
Hu Y, Xu L, Sun H, Wu W, Wang Y, Lu L, Zeng T, Sheng L, Cai Z. Water-in-oil-in-water (W/O/W) emulsions with antioxidant and bacteriostatic capabilities: A preliminary exploration of food preservation films. Int J Biol Macromol 2024; 283:137657. [PMID: 39561832 DOI: 10.1016/j.ijbiomac.2024.137657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
The development of stable water-in-oil-in-water (W/O/W) emulsions for edible preservation coatings and films, utilizing their properties, deserves scientific attention. In this study, oregano essential oil and D‑sodium erythorbate were simultaneously loaded into W/O/W emulsions, and the homogenization conditions of the W/O/W emulsions were optimized. The structure and interactions of gum Arabic (GA) and whey protein isolate (WPI) as the outer phase were analyzed. Stable W1/O/W2 emulsions with excellent antimicrobial and antioxidant activities could be produced under the conditions of GA: WPI at 1:1 and W2: W1/O at 5:5. The diphenyl-1-picrylhydrazyl radical (DPPH) and 2,2'-azinobis-(3-ethylbenzenthiazoline-6-sulphonic acid) (ABTS) radical scavenging rates were 86.35 % and 89.35 %, and the inhibition zone diameters for S. aureus and E. coli were 14.03 ± 0.42 mm and 14.17 ± 0.70 mm, respectively. Finally, the W1/O/W2 emulsions were successfully applied to prepare chitosan-based films. This study has the potential to promote the application of W/O/W emulsions in food preservation, emphasizing the need for advancements for real-world adaptability.
Collapse
Affiliation(s)
- Yue Hu
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Ligen Xu
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Haoyang Sun
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Wu
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanli Wang
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Long Sheng
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoxia Cai
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
5
|
Chan SW, Mahmoud VL, Wang X, Teoh ML, Loh KM, Ng CH, Wong WF, Looi CY. Chemical profiling and cytotoxicity screening of agarwood essential oil (Aquilaria sinensis) in brine shrimp nauplii and cancer cell lines. PLoS One 2024; 19:e0310770. [PMID: 39509364 PMCID: PMC11542896 DOI: 10.1371/journal.pone.0310770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/30/2024] [Indexed: 11/15/2024] Open
Abstract
Agarwood essential oil (AEO) has gained attention from healthcare industries due to its numerous pharmacological properties. However, a comprehensive understanding of the chemical composition and its cytotoxic property is lacking. The objective of this study was to investigate the chemical profile as well as the cytotoxic concentration range of AEO derived from Aquilaria sinensis agarwood. Gas chromatography-mass spectrometry (GC-MS) was employed to identify the AEO components. Results showed that sesquiterpenes and sesquiterpenoids constitute 95.85% of the AEO. Among the major compounds identified are allo-aromadendrene (13.04%), dihydro-eudesmol (8.81%), α-eudesmol (8.48%), bulnesol (7.63%), τ-cadinol (4.95%), dehydrofukinone (3.83%), valerenol (3.54%), cis-nerolidol (2.75%), agarospirol (2.72%), dehydrojinkoh-eremol (2.53%), selina-3,11-dien-9-al (2.36%), guaiol (2.12%) and caryophyllene oxide (2.0%). The presence of volatile quality marker compounds such as 10-epi-ϒ-eudesmol, aromadendrane, β-agarofuran, α-agarofuran, γ-eudesmol, agarospirol and guaiol, with no contaminants detected, indicates that the extracted AEO is of high purity. Interestingly, the AEO displayed moderate to high toxicity in brine shrimp lethality test (BLST). All studied tumor cell lines (MDA-MB-231, HepG2, B16F10) exhibited varying degrees of sensitivity to AEO, which resulted in time and dose-dependent reduction of cell proliferation. Moreover, flow cytometry analysis revealed that AEO could induce apoptosis in treated HepG2 cells. Our findings showed that AEO contains bioactive components that may be exploited in future studies for the development of anti-cancer therapeutics.
Collapse
Affiliation(s)
- Sook Wah Chan
- Faculty of Health and Medical Sciences, School of Biosciences, Taylor’s University, Subang Jaya, Selangor, Malaysia
- Food Security & Nutrition Impact Lab, Taylor’s University, Subang Jaya, Selangor, Malaysia
| | - Valizadeh Lakeh Mahmoud
- Faculty of Health and Medical Sciences, School of Biosciences, Taylor’s University, Subang Jaya, Selangor, Malaysia
| | - Xin Wang
- Faculty of Health and Medical Sciences, School of Biosciences, Taylor’s University, Subang Jaya, Selangor, Malaysia
| | - Ming-Li Teoh
- Faculty of Health and Medical Sciences, School of Biosciences, Taylor’s University, Subang Jaya, Selangor, Malaysia
- Clean Technology Impact Lab, Taylor’s University, Subang Jaya, Selangor, Malaysia
| | - Kar Min Loh
- Faculty of Medicine, Department of Medical Microbiology, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chun Howe Ng
- Faculty of Medicine, Department of Medical Microbiology, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Won Fen Wong
- Faculty of Medicine, Department of Medical Microbiology, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- Faculty of Health and Medical Sciences, School of Biosciences, Taylor’s University, Subang Jaya, Selangor, Malaysia
- Digital Health and Medical Advancements Impact Lab, Taylor’s University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
6
|
Chelu M. Hydrogels with Essential Oils: Recent Advances in Designs and Applications. Gels 2024; 10:636. [PMID: 39451288 PMCID: PMC11508064 DOI: 10.3390/gels10100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024] Open
Abstract
The innovative fusion of essential oils with hydrogel engineering offers an optimistic perspective for the design and development of next-generation materials incorporating natural bioactive compounds. This review provides a comprehensive overview of the latest advances in the use of hydrogels containing essential oils for biomedical, dental, cosmetic, food, food packaging, and restoration of cultural heritage applications. Polymeric sources, methods of obtaining, cross-linking techniques, and functional properties of hydrogels are discussed. The unique characteristics of polymer hydrogels containing bioactive agents are highlighted. These include biocompatibility, nontoxicity, effective antibacterial activity, control of the sustained and prolonged release of active substances, optimal porosity, and outstanding cytocompatibility. Additionally, the specific characteristics and distinctive properties of essential oils are explored, along with their extraction and encapsulation methods. The advantages and disadvantages of these methods are also discussed. We have considered limitations due to volatility, solubility, environmental factors, and stability. The importance of loading essential oils in hydrogels, their stability, and biological activity is analyzed. This review highlights through an in-depth analysis, the recent innovations, challenges, and future prospects of hydrogels encapsulated with essential oils and their potential for multiple applications including biomedicine, dentistry, cosmetics, food, food packaging, and cultural heritage conservation.
Collapse
Affiliation(s)
- Mariana Chelu
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| |
Collapse
|
7
|
Alabrahim OAA, Lababidi JM, Fritzsche W, Azzazy HMES. Beyond aromatherapy: can essential oil loaded nanocarriers revolutionize cancer treatment? NANOSCALE ADVANCES 2024:d4na00678j. [PMID: 39415775 PMCID: PMC11474398 DOI: 10.1039/d4na00678j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Cancer, a complex global health burden, necessitates the development of innovative therapeutic strategies. While chemotherapy remains the primary treatment approach, its severe side effects and chemoresistance drive the search for novel alternatives. Essential oils (EOs), consisting of diverse bioactive phytochemicals, offer promise as anticancer agents. However, their limitations, such as instability, limited bioavailability, and non-specific targeting, hinder their therapeutic potential. These challenges were circumvented by utilizing nanoparticles and nanosystems as efficient delivery platforms for EOs. This review highlights the accumulating evidence based on loading EOs into several nanocarriers, including polymeric nanoparticles, nanoemulsions, nanofibers, lipid-based nanocapsules and nanostructures, niosomes, and liposomes, as effective anticancer regimens. It covers extraction and chemical composition of EOs, their mechanisms of action, and targeting strategies to various tumors. Additionally, it delves into the diverse landscape of nanocarriers, including their advantages and considerations for cancer targeting and EO encapsulation. The effectiveness of EO-loaded nanocarriers in cancer targeting and treatment is examined, highlighting enhanced cellular uptake, controlled drug release, and improved therapeutic efficacy. Finally, the review addresses existing challenges and future perspectives, emphasizing the potential for clinical translation and personalized medicine approaches.
Collapse
Affiliation(s)
- Obaydah Abd Alkader Alabrahim
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, SSE # 1184, P.O. Box 74 New Cairo 11835 Egypt
| | - Jude Majed Lababidi
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, SSE # 1184, P.O. Box 74 New Cairo 11835 Egypt
| | - Wolfgang Fritzsche
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology Albert Einstein Str. 9 Jena 07745 Germany
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, SSE # 1184, P.O. Box 74 New Cairo 11835 Egypt
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology Albert Einstein Str. 9 Jena 07745 Germany
| |
Collapse
|
8
|
Ellithy MMA, Abdrabo RAM. Plant Based Extract Oil-Based Nano emulsions: Impact on Human Melanoma Cell Line. Asian Pac J Cancer Prev 2024; 25:1663-1671. [PMID: 38809638 PMCID: PMC11318800 DOI: 10.31557/apjcp.2024.25.5.1663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Cancer is a challenge for either the patient or the healthcare manager. Treatment protocols based on chemotherapy or radiotherapy, or both are interfering with the patient's life making him suffer rather than being alleviated. This burden pushed the scientists to search for new regimens that may help ameliorate patient as well as doctor inconvenience. Benefits of plant extracts as medical substitutes in cancer management have been proved. New nano formulated drug delivery systems may help overcoming remedy regimens barriers and obstacles. The present research topic aims to evaluate the anticancer power of two plant extracts in nano emulsion formulation on human melanoma cell line. METHODS Carvacrol and rosemary essential oils were obtained, and nano emulsions were formulated. NE were characterized using TEM for charge and size distribution. The A375 human melanoma cell line was cultured and propagated then IC50 of prepared NE was added. Assessment of cell cytotoxicity, effect on angiogenesis and apoptosis were tested. RESULTS After synthesis and characterization, both carvacrol nano emulsion (CNE) and rosemary nano emulsion (RNE) were capable of inhibiting melanoma cell line viability, angiogenesis and they enhanced the expression of caspase-3 proapoptotic marker. CONCLUSION Rosemary and carvacrol extract nano emulsions could be a new revolutionary agent in human melanoma therapy and these formulations can be applied locally.
Collapse
|
9
|
Liu Z, Lu T, Qian R, Wang Z, Qi R, Zhang Z. Exploiting Nanotechnology for Drug Delivery: Advancing the Anti-Cancer Effects of Autophagy-Modulating Compounds in Traditional Chinese Medicine. Int J Nanomedicine 2024; 19:2507-2528. [PMID: 38495752 PMCID: PMC10944250 DOI: 10.2147/ijn.s455407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
Background Cancer continues to be a prominent issue in the field of medicine, as demonstrated by recent studies emphasizing the significant role of autophagy in the development of cancer. Traditional Chinese Medicine (TCM) provides a variety of anti-tumor agents capable of regulating autophagy. However, the clinical application of autophagy-modulating compounds derived from TCM is impeded by their restricted water solubility and bioavailability. To overcome this challenge, the utilization of nanotechnology has been suggested as a potential solution. Nonetheless, the current body of literature on nanoparticles delivering TCM-derived autophagy-modulating anti-tumor compounds for cancer treatment is limited, lacking comprehensive summaries and detailed descriptions. Methods Up to November 2023, a comprehensive research study was conducted to gather relevant data using a variety of databases, including PubMed, ScienceDirect, Springer Link, Web of Science, and CNKI. The keywords utilized in this investigation included "autophagy", "nanoparticles", "traditional Chinese medicine" and "anticancer". Results This review provides a comprehensive analysis of the potential of nanotechnology in overcoming delivery challenges and enhancing the anti-cancer properties of autophagy-modulating compounds in TCM. The evaluation is based on a synthesis of different classes of autophagy-modulating compounds in TCM, their mechanisms of action in cancer treatment, and their potential benefits as reported in various scholarly sources. The findings indicate that nanotechnology shows potential in enhancing the availability of autophagy-modulating agents in TCM, thereby opening up a plethora of potential therapeutic avenues. Conclusion Nanotechnology has the potential to enhance the anti-tumor efficacy of autophagy-modulating compounds in traditional TCM, through regulation of autophagy.
Collapse
Affiliation(s)
- Zixian Liu
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Tianming Lu
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Ruoning Qian
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Zian Wang
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Ruogu Qi
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Zhengguang Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| |
Collapse
|
10
|
Chavda VP, Balar PC, Bezbaruah R, Vaghela DA, Rynjah D, Bhattacharjee B, Sugandhi VV, Paiva-Santos AC. Nanoemulsions: Summary of a Decade of Research and Recent Advances. Nanomedicine (Lond) 2024; 19:519-536. [PMID: 38293801 DOI: 10.2217/nnm-2023-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024] Open
Abstract
Nanoemulsions consist of a combination of several components such as oil, water, emulsifiers, surfactants and cosurfactants. Various techniques for producing nanoemulsions include high-energy and low-energy approaches such as high-pressure homogenization, microfluidization, jet disperser and phase inversion methods. The properties of a formulation can be influenced by elements such as the composition, concentration, size and charge of droplets, which in turn can affect the technique of manufacture. Characterization is conducted by the assessment of several factors such as physical properties, pH analysis, viscosity measurement and refractive index determination. This article offers a thorough examination of the latest developments in nanoemulsion technology, with a focus on their wide-ranging applications and promising future possibilities. It also discusses the administration of nanoemulsions through several methods.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India, 380009
| | - Pankti C Balar
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, India, 380009
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science & Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Institute of Pharmacy, Assam Medical College & Hospital, Dibrugarh, Assam, 786002, India
| | - Dixa A Vaghela
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, India, 380009
| | - Damanbhalang Rynjah
- Department of Pharmaceutical Sciences, Girijananda Chowdhury Institute of Pharmaceutical Science - Tezpur, Sonitpur, Assam, 784501, India
| | - Bedanta Bhattacharjee
- Department of Pharmaceutical Sciences, Girijananda Chowdhury Institute of Pharmaceutical Science - Tezpur, Sonitpur, Assam, 784501, India
| | - Vrashabh V Sugandhi
- Department of Industrial Pharmacy, College of Pharmacy and Health Sciences St. John's University, New York, 11439, USA
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal, 3000-370
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal, 3000-548
| |
Collapse
|
11
|
Thalappil MA, Singh P, Carcereri de Prati A, Sahoo SK, Mariotto S, Butturini E. Essential oils and their nanoformulations for breast cancer therapy. Phytother Res 2024; 38:556-591. [PMID: 37919622 DOI: 10.1002/ptr.8054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 11/04/2023]
Abstract
Breast Cancer (BC) is the most prevalent type of cancer in the world. Current treatments include surgery, radiation, and chemotherapy but often are associated with high toxicity to normal tissues, chemoresistance, and relapse. Thus, developing novel therapies which could combat these limitations is essential for effective treatment. In this context, phytochemicals are increasingly getting popular due to their safety profile, ability to efficiently target tumors, and circumvent limitations of existing treatments. Essential Oils (EOs) are mixtures of various phytochemicals which have shown potential anticancer activity in preclinical BC models. However, their clinical translation is limited by factors such as high volatility, low stability, and poor solubility. Nanotechnology has facilitated their encapsulation in a variety of nanostructures and proven to overcome these limitations. In this review, we have efficiently summarized the current knowledge on the anticancer effect of EOs and constituents in both in in vitro and in in vivo BC models. Further, we also provide a descriptive account on the potential of nanotechnology in enhancing the anti-BC activity of EOs and their constituents. The papers discussed in this review were selected using the keywords "antiproliferative Essential Oils in breast cancer," "anticancer activity of Essential Oil in breast cancer," and "cytotoxicity of Essential Oils in breast cancer" performed in PubMed and ScienceDirect databases.
Collapse
Affiliation(s)
- Muhammed Ashiq Thalappil
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Priya Singh
- Nanomedicine Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | - Alessandra Carcereri de Prati
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | | | - Sofia Mariotto
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Elena Butturini
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| |
Collapse
|
12
|
Boopathy LK, Roy A, Gopal T, Kandy RRK, Arumugam MK. Potential molecular mechanisms of myrtenal against colon cancer: A systematic review. J Biochem Mol Toxicol 2024; 38:e23525. [PMID: 37665681 DOI: 10.1002/jbt.23525] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/12/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
Colon cancer is a serious health problem across the globe with various dietary lifestyle modifications. It arises as an inflammation mediated crypts in the colon epithelial cells and undergoes uncontrolled cell division and proliferation. Bacterial enzymes contribute to a major outbreak in colon cancer development upon the release of toxic metabolites from the gut microflora. Pathogen associated molecular patterns and damage associated molecular patterns triggers the NLPR3 inflammasome pathways that releases pro-inflammatory cytokines to induce cancer of the colon. Contributing to this, specific chemokines and receptor complexes attribute to cellular proliferation and metastasis. Bacterial enzymes synergistically attack the colon mucosa and degenerate the cellular integrity causing lysosomal discharge. These factors further instigate the Tol like receptors (TLRs) and Nod like receptors (NLRs) to promote angiogenesis and supply nutrients for the cancer cells. Myrtenal, a monoterpene, is gaining more importance in recent times and it is being widely utilized against many diseases such as cancers, neurodegenerative diseases and diabetes. Based on the research data's, the reviews focus on the anticancer property of myrtenal by emphasizing its therapeutic properties which downregulate the inflammasome pathways and other signalling pathways. Combination therapy is gaining more importance as they can target every variant in the cellular stress condition. Clinical studies with compounds like myrtenal of the monoterpenes family is provided with positive results which might open an effective anticancer drug therapy. This review highlights myrtenal and its biological potency as a cost effective drug for prevention and treatment of colon cancer.
Collapse
Affiliation(s)
- Lokesh Kumar Boopathy
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Thiyagarajan Gopal
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rakhee Rathnam Kalari Kandy
- Department of Biochemistry and Molecular Biology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Madan Kumar Arumugam
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
13
|
Heya MS, García-Ponce R, Soto BAM, Verde-Star MJ, Soto-Domínguez A, García-Hernandez DG, Saucedo-Cárdenas O, Hernández-Salazar M, Guillén-Meléndez GA. Green Alternatives in Treatment of Liver Diseases: the Challenges of Traditional Medicine and Green Nanomedicine. Chem Biodivers 2023; 20:e202300463. [PMID: 37531499 DOI: 10.1002/cbdv.202300463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
Over the last decade, liver diseases have become a global problem, with approximately two million deaths per year. The high increase in the mortality rate of these diseases is mostly related to the limitations in the understanding of the evolutionary clinical cases of liver diseases, the low delivery of drugs in the liver, the non-specific administration of drugs, and the side effects generated at the systemic level by conventional therapeutic agents. Today it is common knowledge that phytochemicals have a high curative potential, even in the prevention and/or reversibility of liver disorders; however, even using these green molecules, researchers continue to deal with the same challenges implemented with conventional therapeutic agents, which limits the pharmacological potential of these friendly molecules. On the other hand, the latest advances in nanotechnology have proven that the use of nanocarriers as a delivery system for green active ingredients, as well as conventional ones, increases the pharmacological potential of these active ingredients due to their physicochemical characteristics (size, Zeta potential, etc.,) moldable depending on the therapeutic objective; in addition to the above, it should be noted that in recent years, nanoparticles have been developed for the specific delivery of drugs towards a specific target (stellar cells, hepatocytes, Kupffer cells), depending on the clinical state of the disease in the patient. The present review addresses the challenges of traditional medicine and green nanomedicine as alternatives in the treatment of liver diseases.
Collapse
Affiliation(s)
- Michel Stephane Heya
- Faculty of Public Health and Nutrition, Universidad Autónoma de Nuevo León, Ave. Pedro de Alba S/N & Ave. Manuel L. Barragán, San Nicolas de los Garza, 66451, Nuevo León, México
| | - Romario García-Ponce
- Biological Science School, Universidad Autónoma de Nuevo León, Ave., Pedro de Alba S/N & Ave. Manuel L. Barragán, San Nicolás de los Garza, 66451, Nuevo León, México
| | - Beatriz Amari Medina Soto
- Department of Microbiology, Faculty of Veterinary Medicine and Zootechnics., Universidad Autónoma de Nuevo León, Francisco Villa S/N, Ex Hacienda El Canadá, Gral. Escobedo, Nuevo León, México
| | - María Julia Verde-Star
- Biological Science School, Universidad Autónoma de Nuevo León, Ave., Pedro de Alba S/N & Ave. Manuel L. Barragán, San Nicolás de los Garza, 66451, Nuevo León, México
| | - Adolfo Soto-Domínguez
- Department of Histology, Faculty of Medicine, Universidad Autónoma de Nuevo León, Madero y Aguirre Pequeño S/N, Mitras Centro, 64460, Monterrey, Nuevo León, México
| | - David Gilberto García-Hernandez
- Biological Science School, Universidad Autónoma de Nuevo León, Ave., Pedro de Alba S/N & Ave. Manuel L. Barragán, San Nicolás de los Garza, 66451, Nuevo León, México
| | - Odila Saucedo-Cárdenas
- Department of Histology, Faculty of Medicine, Universidad Autónoma de Nuevo León, Madero y Aguirre Pequeño S/N, Mitras Centro, 64460, Monterrey, Nuevo León, México
| | - Marcelo Hernández-Salazar
- Faculty of Public Health and Nutrition, Universidad Autónoma de Nuevo León, Ave. Pedro de Alba S/N & Ave. Manuel L. Barragán, San Nicolas de los Garza, 66451, Nuevo León, México
| | - Gloria Arely Guillén-Meléndez
- Department of Histology, Faculty of Medicine, Universidad Autónoma de Nuevo León, Madero y Aguirre Pequeño S/N, Mitras Centro, 64460, Monterrey, Nuevo León, México
| |
Collapse
|
14
|
Xu J, Jiang Z, Peng J, Sun R, Zhang L, Chen Y, Pan D, Huang J, Gong Z, Chen Y, Shen X. Fabrication of a protein-dextran conjugates formed oral nanoemulsion and its application to deliver the essential oil from Alpinia zerumbet Fructus. Int J Biol Macromol 2023; 249:125918. [PMID: 37495002 DOI: 10.1016/j.ijbiomac.2023.125918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
The injury of vascular endothelial cells caused by high glucose (HG) is one of the driving factors of vascular complications of diabetes. Oral administration is the most common route of administration for the treatment of diabetes and its vascular complications. Essential oil extracts from Chinese medicine possess potential therapeutic effects on vascular endothelial injury. However, low solubility and volatility of essential oils generally result in poor oral absorption. Development of nanocarriers for essential oils is a promising strategy to overcome the physiological barriers of oral absorption. In this study, a nanoemulsion composed of bovine serum albumin (BSA)-dextran sulfate (DS) conjugate and sodium deoxycholate (SD) was constructed. The nanoemulsions were verified with promoted oral absorption and prolonged circulation time. After the primary evaluation of the nanoemulsion, essential oil from Alpinia zerumbet Fructus (EOFAZ)-loaded nanoemulsion (denoted as EOFAZ@BD5/S) was prepared and characterized. Compared to the free EOFAZ, EOFAZ@BD5/S increased the protective effects on HG-induced HUVEC injury in vitro and ameliorative effects on the vascular endothelium disorder and tunica media fibroelastosis in a T2DM mouse model. Collectively, this study provides a nanoemulsion for the oral delivery of essential oils, which holds strong promise in the treatment of diabetes-induced vascular endothelial injury.
Collapse
Affiliation(s)
- Jinzhuan Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Zhaohui Jiang
- The First People's Hospital of Guiyang, Guiyang 550002, China
| | - Jianqing Peng
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Runbin Sun
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Lili Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yan Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Di Pan
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Jing Huang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Zipeng Gong
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.
| | - Yi Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
15
|
Baldassari S, Balboni A, Drava G, Donghia D, Canepa P, Ailuno G, Caviglioli G. Phytochemicals and Cancer Treatment: Cell-Derived and Biomimetic Vesicles as Promising Carriers. Pharmaceutics 2023; 15:1445. [PMID: 37242687 PMCID: PMC10221807 DOI: 10.3390/pharmaceutics15051445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The majority of anticancer agents currently used derive from natural sources: plants, frequently the ones employed in traditional medicines, are an abundant source of mono- and diterpenes, polyphenols, and alkaloids that exert antitumor activity through diverse mechanisms. Unfortunately, many of these molecules are affected by poor pharmacokinetics and limited specificity, shortcomings that may be overcome by incorporating them into nanovehicles. Cell-derived nanovesicles have recently risen to prominence, due to their biocompatibility, low immunogenicity and, above all, targeting properties. However, due to difficult scalability, the industrial production of biologically-derived vesicles and consequent application in clinics is difficult. As an efficient alternative, bioinspired vesicles deriving from the hybridization of cell-derived and artificial membranes have been conceived, revealing high flexibility and appropriate drug delivery ability. In this review, the most recent advances in the application of these vesicles to the targeted delivery of anticancer actives obtained from plants are presented, with specific focus on vehicle manufacture and characterization, and effectiveness evaluation performed through in vitro and in vivo assays. The emerging overall outlook appears promising in terms of efficient drug loading and selective targeting of tumor cells, suggesting further engrossing developments in the future.
Collapse
Affiliation(s)
- Sara Baldassari
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Alice Balboni
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Giuliana Drava
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Daniela Donghia
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Paolo Canepa
- Department of Physics, University of Genova, 16146 Genova, Italy;
| | - Giorgia Ailuno
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Gabriele Caviglioli
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| |
Collapse
|
16
|
Ferreira MD, Duarte J, Veiga F, Paiva-Santos AC, Pires PC. Nanosystems for Brain Targeting of Antipsychotic Drugs: An Update on the Most Promising Nanocarriers for Increased Bioavailability and Therapeutic Efficacy. Pharmaceutics 2023; 15:pharmaceutics15020678. [PMID: 36840000 PMCID: PMC9959474 DOI: 10.3390/pharmaceutics15020678] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Orally administered antipsychotic drugs are the first-line treatment for psychotic disorders, such as schizophrenia and bipolar disorder. Nevertheless, adverse drug reactions jeopardize clinical outcomes, resulting in patient non-compliance. The design formulation strategies for enhancing brain drug delivery has been a major challenge, mainly due to the restrictive properties of the blood-brain barrier. However, recent pharmacokinetic and pharmacodynamic in vivo assays confirmed the advantage of the intranasal route when compared to oral and intravenous administration, as it allows direct nose-to-brain drug transport via neuronal pathways, reducing systemic side effects and maximizing therapeutic outcomes. In addition, the incorporation of antipsychotic drugs into nanosystems such as polymeric nanoparticles, polymeric mixed micelles, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, nanoemulgels, nanosuspensions, niosomes and spanlastics, has proven to be quite promising. The developed nanosystems, having a small and homogeneous particle size (ideal for nose-to-brain delivery), high encapsulation efficiency and good stability, resulted in improved brain bioavailability and therapeutic-like effects in animal models. Hence, although it is essential to continue research in this field, the intranasal delivery of nanosystems for the treatment of schizophrenia, bipolar disorder and other related disorders has proven to be quite promising, opening a path for future therapies with higher efficacy.
Collapse
Affiliation(s)
- Maria Daniela Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Joana Duarte
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence: (A.C.P.-S.); or (P.C.P.)
| | - Patrícia C. Pires
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Correspondence: (A.C.P.-S.); or (P.C.P.)
| |
Collapse
|
17
|
Radu CM, Radu CC, Bochiș SA, Arbănași EM, Lucan AI, Murvai VR, Zaha DC. Revisiting the Therapeutic Effects of Essential Oils on the Oral Microbiome. PHARMACY 2023; 11:pharmacy11010033. [PMID: 36827671 PMCID: PMC9958697 DOI: 10.3390/pharmacy11010033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The extensive use of antibiotics has resulted in the development of drug-resistant bacteria, leading to a decline in the efficacy of traditional antibiotic treatments. Essential oils (EOs) are phytopharmaceuticals, or plant-derived compounds, that possess beneficial properties such as anti-inflammatory, antibacterial, antimicrobial, antiviral, bacteriostatic, and bactericidal effects. In this review, we present scientific findings on the activity of EOs as an alternative therapy for common oral diseases. This narrative review provides a deeper understanding of the medicinal properties of EOs and their application in dentistry. It not only evaluates the effectiveness of these oils as antibacterial agents against common oral bacteria but also covers general information such as composition, methods of extraction, and potential toxicity. Further nonclinical and clinical studies must be conducted to determine their potential use and safety for treating oral diseases.
Collapse
Affiliation(s)
- Casandra-Maria Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania
| | - Carmen Corina Radu
- Department of Forensic Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540139 Targu Mures, Romania
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
- Correspondence: ; Tel.: +40-735852110
| | - Sergiu-Alin Bochiș
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania
| | - Emil Marian Arbănași
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
- Clinic of Vascular Surgery, Mureș County Emergency Hospital, 540136 Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540139 Targu Mures, Romania
| | - Alexandra Ioana Lucan
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania
- Faculty of Medicine and Pharmacy, Department of Preclinical Disciplines, University of Oradea, 1 December Sq, 410028 Oradea, Romania
| | - Viorela Romina Murvai
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania
- Faculty of Medicine and Pharmacy, Department of Preclinical Disciplines, University of Oradea, 1 December Sq, 410028 Oradea, Romania
| | - Dana Carmen Zaha
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania
- Faculty of Medicine and Pharmacy, Department of Preclinical Disciplines, University of Oradea, 1 December Sq, 410028 Oradea, Romania
| |
Collapse
|