1
|
Davoodbasha M, Mani A, Arunachalam K, Jagadeesan A, Kamli MR, Kim JW, Thajuddin N. Isolation and Characterization of Probiotic Bacteria from Traditional Foods. Appl Biochem Biotechnol 2025; 197:2197-2215. [PMID: 39714558 DOI: 10.1007/s12010-024-05125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 12/24/2024]
Abstract
A probiotic is a live bacterium that, when given in sufficient proportions, helps to improve the host's gut health. Kimchi and pearl millet, two traditional foods, were used to isolate probiotic bacterial strains. This study's primary goals were to isolate, identify and analyse the microorganisms for potential probiotic traits, tolerance to gastrointestinal environments, and antimicrobial activity, and produce probiotic capsule. The present investigation resulted with identification of two probiotic strains (KAC1 and PAC1) from conventional foods, such as kimchi and pearl millet porridge. The isolated probiotics were identified as Enterobacteriaceae family by 16S rRNA sequencing and are deposited in GenBank (NCBI), accession numbers OQ629827 (KAC1) and OQ629828 (PAC1), respectively. These strains exhibited the characteristics of possible probiotic traits, such as the ability to tolerate simulated gastric juice, inhibits the growth of pathogenic bacteria, auto-aggregation, co-aggregation, and hydrophobicity. Furthermore, spectroscopic analysis divulges some critical findings which corroborate the results obtained. Finally, capsules containing freeze-dried probiotics was successfully produced.
Collapse
Affiliation(s)
- MubarakAli Davoodbasha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India.
- Crescent Global Outreach Mission (CGOM): Research & Development, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India.
| | - Abinaya Mani
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India
| | - Kannappan Arunachalam
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Arunkumar Jagadeesan
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25701, USA
| | - Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Center of Excellence in Bionanoscience Research, King AbdulAziz University, Jeddah, 21589, Saudi Arabia
| | - Jung-Wan Kim
- Division of Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Nooruddin Thajuddin
- Crescent Global Outreach Mission (CGOM): Research & Development, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India
| |
Collapse
|
2
|
Sadeghi E, Taghavi R, Hasanzadeh A, Rostamnia S. Bactericidal behavior of silver nanoparticle decorated nano-sized magnetic hydroxyapatite. NANOSCALE ADVANCES 2024:d4na00183d. [PMID: 39386118 PMCID: PMC11459644 DOI: 10.1039/d4na00183d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is the most common cause of acute bacterial arthritis. Due to the increase in antibiotic resistance in these bacteria, the discovery of new antibacterial agents has become one of the hot topics in the scientific community. Here, we prepared a nano-sized porous biocompatible magnetic hydroxyapatite through a solvothermal method. Then, we adopted a post-synthesis modification strategy to modify its surface for the stabilization of Ag NPs through a green reduction by the euphorbia plant extract. Moreover, the results show that the prepared composite perfectly prevents the aggregation of Ag NPs. This composite was used as a bactericidal and antibiofilm agent against MRSA bacteria in an in vitro environment, which showed excellent results. Also, the cell viability assay indicates that the prepared composite has low cytotoxicity, making it a perfect antibacterial agent for in vivo experiments.
Collapse
Affiliation(s)
- Ebrahim Sadeghi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences Urmia 57157-89400 Iran
| | - Reza Taghavi
- Organic and Nano Group, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Amir Hasanzadeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences Urmia 57157-89400 Iran
| | - Sadegh Rostamnia
- Organic and Nano Group, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| |
Collapse
|
3
|
Costa JP, Sousa SA, Leitão JH, Marques F, Alves MM, Carvalho MFNN. Insights into the Dual Anticancer and Antibacterial Activities of Composites Based on Silver Camphorimine Complexes. J Funct Biomater 2024; 15:240. [PMID: 39330216 PMCID: PMC11433458 DOI: 10.3390/jfb15090240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024] Open
Abstract
Hydroxyapatite (HAp) is a widely used biocompatible material in orthopedic composite preparations. However, HAp composites that exhibit both anticancer and antibacterial activities through bioactive coordination complexes are relatively rare. To explore orthopedic applications, we blended several silver camphorimine compounds with HAp to create [Ag(I)] composites. All compounds [Ag(NO3)(L)n] (n = 1,2) based on camphorimine (LA), camphor sulfonimine (LB) or imine bi-camphor (LC) ligands demonstrated significant cytotoxic activity (IC50 = 0.30-2.6 μgAg/mL) against osteosarcoma cancer cells (HOS). Based on their structural and electronic characteristics, four complexes (1-4) were selected for antibacterial evaluation against Escherichia coli, Burkholderia contaminans, Pseudomonas aeruginosa, and Staphylococcus aureus. All complexes (1-4) revealed combined anticancer and antibacterial activities; therefore, they were used to prepare [Ag(I)]:HAp composites of 50:50% and 20:80% weight compositions and the activities of the composites were assessed. Results showed that they retain the dual anticancer and antibacterial characteristics of their precursor complexes. To replicate the clinical context of bone-filling applications, hand-pressed surfaces (pellets) were prepared. It is worth highlighting that no agglutination agent was necessary for the pellet's consistency. The biological properties of the so-prepared pellets were assessed, and the HOS cells and bacteria spreading on the pellet's surface were analyzed by SEM. Notably, composite 4B, derived from the bicamphor (LC) complex [Ag(NO3)(OC10H14N(C6H4)2NC10H14O)], exhibited significant anticancer activity against HOS cells and antibacterial activity against P. aeruginosa, fostering potential clinical applications on post-surgical OS treatment.
Collapse
Affiliation(s)
- Joana P Costa
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida António José de Almeida, n.º 12, 1000-043 Lisboa, Portugal
| | - Sílvia A Sousa
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida António José de Almeida, n.º 12, 1000-043 Lisboa, Portugal
| | - Jorge H Leitão
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida António José de Almeida, n.º 12, 1000-043 Lisboa, Portugal
| | - Fernanda Marques
- C2TN-Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, EN 10, km 139.7, Bobadela, 2695-066 Loures, Portugal
| | - Marta M Alves
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida António José de Almeida, n.º 12, 1000-043 Lisboa, Portugal
| | - M Fernanda N N Carvalho
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida António José de Almeida, n.º 12, 1000-043 Lisboa, Portugal
| |
Collapse
|
4
|
Nallasamy P, Muthalagu SMR, Natarajan S. Fishwaste Derived Hydroxyapatite Nanostructure Combined with Black Rice Wine for Potential Antioxidant and Antimicrobial Response. Curr Microbiol 2024; 81:278. [PMID: 39030448 DOI: 10.1007/s00284-024-03790-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/28/2024] [Indexed: 07/21/2024]
Abstract
Hospital-acquired infection remains a serious threat globally, due to development of resistance to conventional antibiotics, which necessitates the urge for alternative therapy. Green nanotechnology has emerged as a holistic approach to address antibiotic resistance by combining environmental sustainability with improved therapeutic outcome. Nanostructure hydroxyapatite (HAP) has received significant attention in therapeutic and regenerative purposes due to its porous scaffold structure and biocompatible nature. In the present study, hydroxyapatite (HAP) nanoparticle was fabricated from the fish scale waste of red snapper fish. Black rice wine (BRW) was extracted from black rice commonly termed as Karupu kavuni/forbidden rice known for its nutritious effects. The present study focused on encapsulation of BRW within HAP nanoparticles (HAP@BRW) and evaluated its potential against nosocomial infections. Spectral and microscopic characterization of HAP@BRW revealed uniform encapsulation of BRW in HAP nanoparticles, aggregated irregular-shaped morphology of size 117.6 nm. Maximum release of BRW (72%) within 24 h indicates HAP as suitable drug delivery system suitable for biomedical applications. Antimicrobial studies revealed that HAP@BRW exhibited potent bactericidal effect against MRSA, MSSA, and Pseudomonas aeruginosa. Furthermore, HAP@BRW significantly inhibited the biofilm forming ability of MSSA and P. aeruginosa. Rich antioxidant property of HAP@BRW might be due to the presence of rich source of total polyphenolic, flavonoid, and anthocyanin content in BRW. In vitro and in vivo toxicity studies revealed biocompatible nature of HAP@BRW. Antibiofilm, antimicrobial, antioxidant, and biocompatible nature of HAP@BRW makes it a promising candidate for coating medical implants to avoid implant-associated infections and nosocomial infections.
Collapse
Affiliation(s)
- Prakashkumar Nallasamy
- Bionanomaterials Research Lab, Department of Nanoscience and Technology, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Suganthy Natarajan
- Bionanomaterials Research Lab, Department of Nanoscience and Technology, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
5
|
MubarakAli D, Kim SM, Ko YB, Kim JW, Jang YJ, Lee SY. Synthesis of Ag-Doped Tetrahedral Amorphous Carbon Coatings and Their Antibiofilm Efficacy for Medical Implant Application. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1017. [PMID: 38921893 PMCID: PMC11206989 DOI: 10.3390/nano14121017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024]
Abstract
Tetrahedral amorphous carbon (taC) is a hydrogen-free carbon with extensive properties such as hardness, optical transparency, and chemical inertness. taC coatings have attracted much attention in recent times, as have coatings doped with a noble metal. A known antimicrobial metal agent, silver (Ag), has been used as a dopant in taC, with different Ag concentrations on the Ti64 coupons using a hybrid filtered cathodic vacuum arc (FCVA) and magnetron sputtering system. The physiochemical properties of the coated surface were investigated using spectroscopic and electron microscopy techniques. A doping effect of Ag-taC on biofilm formation was investigated and found to have a significant effect on the bacterial-biofilm-forming bacteria Staphylococcus aureus and Pseudomonas aeruginosa depending on the concentration of Ag. Further, the effect of coated and uncoated Ag-taC films on a pathogenic bacterium was examined using SEM. The result revealed that the Ag-taC coatings inhibited the biofilm formation of S. aureus. Therefore, this study demonstrated the possible use of Ag-taC coatings against biofilm-related complications on medical devices and infections from pathogenic bacteria.
Collapse
Affiliation(s)
- Davoodbasha MubarakAli
- Center for Surface Technology and Applications, Korea Aerospace University, Goyang 10540, Republic of Korea;
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
- Crescent Global Outreach Mission (CGOM), B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| | - Sung-Min Kim
- Heat and Surface Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Incheon 21999, Republic of Korea;
| | - Yu-Been Ko
- Division of Bioengineering, Incheon National University, Songdo, Incheon 22012, Republic of Korea; (Y.-B.K.); (J.-W.K.)
| | - Jung-Wan Kim
- Division of Bioengineering, Incheon National University, Songdo, Incheon 22012, Republic of Korea; (Y.-B.K.); (J.-W.K.)
| | - Young-Jun Jang
- Surface Technology Division, Korea Institute of Material Sciences, Changwon 51508, Republic of Korea;
| | - Sang-Yul Lee
- Center for Surface Technology and Applications, Korea Aerospace University, Goyang 10540, Republic of Korea;
| |
Collapse
|
6
|
Li Q, Xiu P, Yang X, Wang L, Liu L, Song Y. A comparison of anterior reconstruction of spinal defect using nano-hydroxyapatite/polyamide 66 cage and autologous iliac bone for thoracolumbar tuberculosis: a stepwise propensity score matching analysis. Front Bioeng Biotechnol 2024; 12:1376596. [PMID: 38798951 PMCID: PMC11116778 DOI: 10.3389/fbioe.2024.1376596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Purpose Previous studies have confirmed the advantages and disadvantages of autogenous iliac bone and nano-hydroxyapatite/polyamide 66 (n-HA/PA66) cage. However, there is no conclusive comparison between the efficacy of the two implant materials in spinal tuberculosis bone graft fusion. The aim of this study was to analyze the mid-to long-term clinical and radiologic outcomes between n-HA/PA66 cage and autogenous iliac bone for anterior reconstruction application of spinal defect for thoracolumbar tuberculosis. Methods We retrospectively reviewed all patients who underwent anterior debridement and strut graft with n-HA/PA66 cage or iliac bone combined with anterior instrumentations between June 2009 and June 2014. One-to-one nearest-neighbor propensity score matching (PSM) was used to match patients who underwent n-HA/PA66 cage to those who underwent iliac bone. Clinical outcomes were assessed using the Japanese Orthopaedic Association (JOA) and visual analogue score (VAS). Radiographic evaluations included cage subsidence and segmental angle. Results At the end of the PSM analysis, 16 patients from n-HA/PA66 cage group were matched to 16 patients in Iliac bone group. The C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) values in the n-HA/PA66 group decreased significantly from 33.19 ± 10.89 and 46.63 ± 15.65 preoperatively, to 6.56 ± 2.48 and 9.31 ± 3.34 at the final follow-up, respectively (p < 0.001). There were no significant differences in the CRP and ESR values between the two groups at the final follow-up. The VAS and JOA scores in the iliac bone and n-HA/PA66 group were significantly improved at the 3-month follow-up postoperatively (both p < 0.001). Then, improvements of VAS and JOA scores continue long at final follow-up. However, there were no significant differences in the VAS and JOA scores at any time point between the two groups (p > 0.05). Although the segmental angle (SA) significantly increased after surgery in both groups, there was no significant difference at any time point after surgery (p > 0.05). There were no significant differences in the cage subsidence and fusion time between the two groups. Conclusion Overall, our data suggest that the n-HA/PA66 cage outcomes are comparable to those in the autogenous iliac bone, with a similar high fusion rate as autogenous iliac bone.
Collapse
Affiliation(s)
| | | | | | - Lei Wang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | | | - Yueming Song
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Exploring Possible Ways to Enhance the Potential and Use of Natural Products through Nanotechnology in the Battle against Biofilms of Foodborne Bacterial Pathogens. Pathogens 2023; 12:pathogens12020270. [PMID: 36839543 PMCID: PMC9967150 DOI: 10.3390/pathogens12020270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Biofilms enable pathogenic bacteria to survive in unfavorable environments. As biofilm-forming pathogens can cause rapid food spoilage and recurrent infections in humans, especially their presence in the food industry is problematic. Using chemical disinfectants in the food industry to prevent biofilm formation raises serious health concerns. Further, the ability of biofilm-forming bacterial pathogens to tolerate disinfection procedures questions the traditional treatment methods. Thus, there is a dire need for alternative treatment options targeting bacterial pathogens, especially biofilms. As clean-label products without carcinogenic and hazardous potential, natural compounds with growth and biofilm-inhibiting and biofilm-eradicating potentials have gained popularity as natural preservatives in the food industry. However, the use of these natural preservatives in the food industry is restricted by their poor availability, stability during food processing and storage. Also there is a lack of standardization, and unattractive organoleptic qualities. Nanotechnology is one way to get around these limitations and as well as the use of underutilized bioactives. The use of nanotechnology has several advantages including traversing the biofilm matrix, targeted drug delivery, controlled release, and enhanced bioavailability, bioactivity, and stability. The nanoparticles used in fabricating or encapsulating natural products are considered as an appealing antibiofilm strategy since the nanoparticles enhance the activity of the natural products against biofilms of foodborne bacterial pathogens. Hence, this literature review is intended to provide a comprehensive analysis of the current methods in nanotechnology used for natural products delivery (biofabrication, encapsulation, and nanoemulsion) and also discuss the different promising strategies employed in the recent and past to enhance the inhibition and eradication of foodborne bacterial biofilms.
Collapse
|