1
|
Liu Q, Liang Z, Wang J, Wang Y, Wang J, Wang S, Du Z, Zhao L, Wei Y, Huang D. Mannose-modified multifunctional iron-based nanozyme for hepatocellular carcinoma treatment by remodeling the tumor microenvironment. Colloids Surf B Biointerfaces 2025; 250:114548. [PMID: 39923382 DOI: 10.1016/j.colsurfb.2025.114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/12/2025] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, with conventional treatments often accompanied by severe side effects. Recently, nanozymes have been extensively employed in cancer therapy due to their enhanced enzymatic activities, stability compared to native enzymes. However, a standalone nanozyme exhibits insufficient targeting capability and fails to specifically localize to the pathological site. In this study, we successfully synthesized a multifunctional iron-based-nanozyme delivery system - Fe3O4-OA-DHCA-PEI-MAN@DSF modified with PEI and MAN by the thermal decomposition method. This mannose-modified nanozyme can specifically target HCC cells via an external magnetic field and mannose-mannose receptor (MRC2) binding. In addition, it exhibits good biocompatibility and pH-dependent drug release characteristics. Within the acidic tumor microenvironment, the iron-based nanozyme initiates intracellular fenton reactions, boosting reactive oxygen species (ROS) production, which ultimately induces apoptosis in HCC cells. Concurrently, the disulfiram small molecule released from the Fe3O4-OA-DHCA-PEI-MAN@DSF nanozyme binds to the FROUNT factor within monocyte-macrophages, thereby inhibiting their response to chemotactic signals emitted by liver cancer cells. This process ultimately suppresses the recruitment of macrophages by HCC cells, reshaping the tumor microenvironment and supporting effective liver cancer treatment. Moreover, this nanozyme system holds potential for MRI-guided targeted chemotherapy combined with chemodynamic therapy, aiming to refine the early diagnosis and precision treatment of hepatic carcinoma, and paving the way for the creation of sophisticated integrated nanoplatforms melding diagnostic and therapeutic functionalities.
Collapse
Affiliation(s)
- Qi Liu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ziwei Liang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China; NHC Key Laboratory of Glycoconjuates Research Department of Biochemistry and Molecular, Biology School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China; Shanxi Provincial Key Laboratory for Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd, Taiyuan 030032, China.
| | - Jiapu Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yuhui Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jie Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shaojie Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhi Du
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Liqin Zhao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China; Shanxi Provincial Key Laboratory for Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd, Taiyuan 030032, China.
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China; Shanxi Provincial Key Laboratory for Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd, Taiyuan 030032, China.
| |
Collapse
|
2
|
Riaz S, Ali S, Summer M, Akhtar U, Noor S, Haqqi R, Farooq MA, Sardar I. Multifunctional Magnetic Nanoparticles for Targeted Drug Delivery Against Cancer: A Review of Mechanisms, Applications, Consequences, Limitations, and Tailoring Strategies. Ann Biomed Eng 2025:10.1007/s10439-025-03712-3. [PMID: 40140150 DOI: 10.1007/s10439-025-03712-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/14/2025] [Indexed: 03/28/2025]
Abstract
Magnetic nanoparticles (MNPs) have revolutionized cancer therapy by serving as effective drug transporters through active and passive targeting of tumor sites in conjugation with external alternating magnetic fields (AMFs), thus minimizing off-target effects. This precise targeting strategy guarantees a focused and controlled drug release at the tumor site, reducing the drawbacks of standard drug delivery systems and enhancing treatment effectiveness. Magnetic nanoparticles usually follow in magnetic hyperthermia (MHT) therapy, where AMFs raise the temperature at the tumor site, efficiently eliminating cancer cells and presenting a hopeful complement to conventional cancer treatments. In addition, side effects are reduced by launching a smart drug delivery system (SDDSs) in which treatment efficacy is enhanced by reducing the dosage frequency. Intrinsic properties of MNPs are measured when they serve as contrast agents in magnetic resonance imaging (MRI), providing a diagnostic aspect to their therapeutic capabilities and enabling medical professionals to monitor and record treatment outcomes with precision and higher accuracy. This comprehensive review highlights the multifaceted potential of MNPs in reshaping cancer treatment, emphasizing their role in targeted drug delivery, hyperthermia therapy, and imaging applications, and underscoring their transformative impact on the future of oncological care.
Collapse
Affiliation(s)
- Shumaila Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Urva Akhtar
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Rimsha Haqqi
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Muhammad Adeel Farooq
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Iqra Sardar
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
3
|
Esmaeilpour D, Ghomi M, Zare EN, Sillanpää M. Recent advances in DNA nanotechnology for cancer detection and therapy: A review. Int J Biol Macromol 2025; 307:142136. [PMID: 40107552 DOI: 10.1016/j.ijbiomac.2025.142136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/04/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Deoxyribonucleic acid (DNA) nanotechnology has rapidly emerged as a transformative field in biomedical research, offering innovative solutions for the detection and treatment of cancer. This review provides a comprehensive analysis of the role of DNA-based nanosystems in oncology, emphasizing their potential to address the limitations of conventional diagnostic and therapeutic approaches. Key advancements in DNA nanotechnology include the development of highly specific and sensitive nanostructures for early cancer detection, as well as precision-targeted delivery systems that enhance the efficacy of cancer therapies while minimizing side effects. The objectives of this review are threefold: first, to summarize the latest advancements in DNA nanotechnology, highlighting innovations in cancer biomarker detection and therapeutic applications; second, to explore the molecular mechanisms that enable these DNA-based nanosystems to interact with cancer cells with remarkable precision, including their design principles, self-assembly processes, and biological interactions; and third, to discuss the future implications of these technologies, considering the challenges, potential breakthroughs, and the steps needed to integrate DNA nanotechnology into clinical practice. By achieving these objectives, the review aims to offer insights into how DNA nanotechnology could revolutionize cancer care, providing new strategies for more personalized and effective treatments, and ultimately improving patient outcomes in the battle against cancer.
Collapse
Affiliation(s)
- Donya Esmaeilpour
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Science, Shiraz 71345-1583, Iran.
| | - Matineh Ghomi
- Department of Chemistry, Jundi-Shapur University of Technology, Dezful, Iran
| | - Ehsan Nazarzadeh Zare
- School of Chemistry, Damghan University, Damghan 36716-45667, Iran; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India.
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
4
|
Theivendren P, Kunjiappan S, Pavadai P, Ravi K, Murugavel A, Dayalan A, Santhana Krishna Kumar A. Revolutionizing Cancer Immunotherapy: Emerging Nanotechnology-Driven Drug Delivery Systems for Enhanced Therapeutic Efficacy. ACS MEASUREMENT SCIENCE AU 2025; 5:31-55. [PMID: 39991031 PMCID: PMC11843507 DOI: 10.1021/acsmeasuresciau.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 02/25/2025]
Abstract
Cancer immunotherapy is an innovative way of treating cancer by stimulating individual cells to overcome cancer. Widespread biomedical studies were carried out with the aim of exploring immunotherapy cancer therapeutics, and this review spotlights some mechanisms in which it was developed, namely immune checkpoint inhibitors (E.G PD-1/PD-L1, CTLA-4), adoptive cell therapy (e.g., CAR T-cell therapy), and cancer vaccines. Although it has shown clinical benefit in a number of cancer types, including melanoma and non-small-cell lung cancer, several challenges have dampened enthusiasm for this approach, from the differing patient response rates to toxicities. Nanotechnology in drug delivery systems must play a role in overcoming the same. Nanotechnology enables increased specificity and controlled drug release, improved solubility and bioavailability, can treat the tumor specifically, and localized drug delivery at the disease site decreases systemic toxicity. The review also features advances in the construction of lipid-based, polymeric, and inorganic nanoparticles that improve drug stability and allow the delivery of cotherapeutic agents. Nanotechnology-based delivery systems can be used alone or in combination with immunotherapy to assist in improving the immune response, gaining access to the tumor microenvironment, and overcoming biological barriers. Thus, the nano-DDS were both safe and effective in preclinical studies, and ongoing clinical trials have shown that they are capable of increasing the therapeutic index of anticancer drugs. Lastly, the review also discusses current challenges and regulatory issues in advancing these technologies and highlights the importance of further research to devise appropriate methodology for efficient functionalization of nanotechnology for individualized cancer solutions in cancer treatment.
Collapse
Affiliation(s)
- Panneerselvam Theivendren
- Department
of Pharmaceutical Chemistry, Swamy Vivekanandha
College of Pharmacy, Elayampalayam 637205, Namakkal, Tamil Nadu, India
| | - Selvaraj Kunjiappan
- Department
of Biotechnology, Kalasalingam Academy of
Research and Education, Krishnankoil 626126, Tamil Nadu, India
| | - Parasuraman Pavadai
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M. S. R. Nagar, Bengaluru 560054, Karnataka, India
| | - Kaveena Ravi
- Department
of Pharmaceutics, Swamy Vivekananda College
of Pharmacy, Elayampalayam 637205, Namakkal, Tamil Nadu, India
| | - Anusuya Murugavel
- Center
for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Avinash Dayalan
- Center
for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - A. Santhana Krishna Kumar
- Department
of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung City 80424, Taiwan
- Department
of Chemistry, Saveetha School of Engineering, Saveetha Institute of
Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, Tamil Nadu, India
| |
Collapse
|
5
|
Pregowska A, Roszkiewicz A, Osial M, Giersig M. How scanning probe microscopy can be supported by artificial intelligence and quantum computing? Microsc Res Tech 2024; 87:2515-2539. [PMID: 38864463 DOI: 10.1002/jemt.24629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024]
Abstract
The impact of Artificial Intelligence (AI) is rapidly expanding, revolutionizing both science and society. It is applied to practically all areas of life, science, and technology, including materials science, which continuously requires novel tools for effective materials characterization. One of the widely used techniques is scanning probe microscopy (SPM). SPM has fundamentally changed materials engineering, biology, and chemistry by providing tools for atomic-precision surface mapping. Despite its many advantages, it also has some drawbacks, such as long scanning times or the possibility of damaging soft-surface materials. In this paper, we focus on the potential for supporting SPM-based measurements, with an emphasis on the application of AI-based algorithms, especially Machine Learning-based algorithms, as well as quantum computing (QC). It has been found that AI can be helpful in automating experimental processes in routine operations, algorithmically searching for optimal sample regions, and elucidating structure-property relationships. Thus, it contributes to increasing the efficiency and accuracy of optical nanoscopy scanning probes. Moreover, the combination of AI-based algorithms and QC may have enormous potential to enhance the practical application of SPM. The limitations of the AI-QC-based approach were also discussed. Finally, we outline a research path for improving AI-QC-powered SPM. RESEARCH HIGHLIGHTS: Artificial intelligence and quantum computing as support for scanning probe microscopy. The analysis indicates a research gap in the field of scanning probe microscopy. The research aims to shed light into ai-qc-powered scanning probe microscopy.
Collapse
Affiliation(s)
- Agnieszka Pregowska
- Department of Information and Computational Science, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Roszkiewicz
- Department of Information and Computational Science, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Osial
- Department of Information and Computational Science, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Michael Giersig
- Department of Information and Computational Science, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Al-Balushi RA, Haque A, Saeed M, Al-Harthy T, Al-Hinaai M, Al-Hashmi S. Unlocking the Anticancer Potential of Frankincense Essential Oils (FEOs) Through Nanotechnology: A Review. Mol Biotechnol 2024; 66:3013-3024. [PMID: 37914864 DOI: 10.1007/s12033-023-00918-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023]
Abstract
Cancer is a group of heterogeneous diseases that occur when cells in the body proliferate and divide uncontrollably. As the current treatment modalities have pros and cons, the discovery of new chemotherapeutic agents with the least side effects is one of the most investigated research areas. In this context, plant-based natural products are a rich source of drugs and have served humanity for ages. Frankincense essential oils (FEOs) are among the most promising plant-based oils in Gulf countries. In addition to their high cultural value, FEOs are also famous for their engaging biological activities, including anti-cancerous. However, the practical application of FEOs is often hindered/by their low water solubility, limited bioavailability, high volatility, and sensitivity toward heat, humidity, light, or oxygen. Thus, a significant demand for technological advancement would improve their ability to target particular cells and tissues. Nanotechnology emerged as an exciting approach in this context. Through suitable nano-formulation (functionalization or encapsulation into a nanostructure), issues arising due to solubility, targeting capability, and delivery can be controlled.
Collapse
Affiliation(s)
- Rayya A Al-Balushi
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra, 400, Sultanate of Oman.
| | - Ashanul Haque
- Department of Chemistry, College of Science, University of Hail, Hail, Kingdom of Saudi Arabia.
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Thuraya Al-Harthy
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra, 400, Sultanate of Oman
| | - Mohammed Al-Hinaai
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra, 400, Sultanate of Oman
| | - Salim Al-Hashmi
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra, 400, Sultanate of Oman
| |
Collapse
|
7
|
Liu S. Self-assembled lipid-based nanoparticles for chemotherapy against breast cancer. Front Bioeng Biotechnol 2024; 12:1482637. [PMID: 39534673 PMCID: PMC11555772 DOI: 10.3389/fbioe.2024.1482637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024] Open
Abstract
Self-assembled lipid-based nanoparticles have been shown to have improved therapeutic efficacy and lower toxic side effects. Breast cancer is a common type of malignant tumor in women. Conventional drugs such as doxorubicin (DOX) have shown low therapeutic efficacy and high drug toxicity in antitumor therapy. This paper surveys research on self-assembled lipid-based nanoparticles by categorizing them under three groups: self-assembled liposomal nanostructures, self-assembled niosomes, and self-assembled lipid-polymer hybrid nanoparticles. Subsequently, the structural features and operating mechanisms of each group are summarized individually along with examples of representative drugs from each group.
Collapse
Affiliation(s)
- Shan Liu
- Department of Oncology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Shamjetsabam ND, Rana R, Malik P, Ganguly NK. CRISPR/Cas9: an overview of recent developments and applications in cancer research. Int J Surg 2024; 110:6198-6213. [PMID: 38377059 PMCID: PMC11486967 DOI: 10.1097/js9.0000000000001081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/27/2023] [Indexed: 02/22/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9) has risen as a potent gene editing method with vast potential across numerous domains, including its application in cancer research and therapy. This review article provides an extensive overview of the research that has been done so far on CRISPR-Cas9 with an emphasis on how it could be utilized in the treatment of cancer. The authors go into the underlying ideas behind CRISPR-Cas9, its mechanisms of action, and its application for the study of cancer biology. Furthermore, the authors investigate the various uses of CRISPR-Cas9 in cancer research, spanning from the discovery of genes and the disease to the creation of novel therapeutic approaches. The authors additionally discuss the challenges and limitations posed by CRISPR-Cas9 technology and offer insights into the potential applications and future directions of this cutting-edge field of research. The article intends to consolidate the present understanding and stimulate more research into CRISPR-Cas9's promise as a game-changing tool for cancer research and therapy.
Collapse
Affiliation(s)
| | - Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital New Delhi
| | - Priyanka Malik
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda, Punjab, India
| | | |
Collapse
|
9
|
Mishra S, Yadav MD. Magnetic Nanoparticles: A Comprehensive Review from Synthesis to Biomedical Frontiers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17239-17269. [PMID: 39132737 DOI: 10.1021/acs.langmuir.4c01532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Nanotechnology has opened new doors of exploration, particularly in materials science and healthcare. Magnetic nanoparticles (MNP), the tiny magnets, because of their various properties, have the potential to bring about radical changes in the field of medicine. The distinctive surface chemistry, nontoxicity, biocompatibility, and, in particular, the inducible magnetic moment of magnetic materials has attracted a great deal of interest in morphological structures from a variety of scientific domains. This review presents a concise overview of MNPs and their crucial properties and synthesis routes. It also aims to highlight the continuous synthesis methods available for MNP production. In recent years, the use of computational methods for understanding the behavior of nanoparticles has been on the rise. Thus, we also discuss the numerical models developed to understand how magnetic nanoparticles can be used in magnetic hyperthermia and targeting the Circle of Wilis. With the increasing use of MNPs in biomedical applications, it becomes necessary to understand the mechanisms of toxicity, which are elucidated in this review. The review focuses on the biomedical applications of MNPs in drug delivery, theranostics, and MRI contrasting agents. We anticipate that this article will broaden the perspective on magnetic nanoparticles and help to understand their functionality and applicability better.
Collapse
Affiliation(s)
- Shlok Mishra
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai 400019, India
| | - Manishkumar D Yadav
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai 400019, India
| |
Collapse
|
10
|
Andoh V, Ocansey DKW, Naveed H, Wang N, Chen L, Chen K, Mao F. The Advancing Role of Nanocomposites in Cancer Diagnosis and Treatment. Int J Nanomedicine 2024; 19:6099-6126. [PMID: 38911500 PMCID: PMC11194004 DOI: 10.2147/ijn.s471360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024] Open
Abstract
The relentless pursuit of effective cancer diagnosis and treatment strategies has led to the rapidly expanding field of nanotechnology, with a specific focus on nanocomposites. Nanocomposites, a combination of nanomaterials with diverse properties, have emerged as versatile tools in oncology, offering multifunctional platforms for targeted delivery, imaging, and therapeutic interventions. Nanocomposites exhibit great potential for early detection and accurate imaging in cancer diagnosis. Integrating various imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and fluorescence imaging, into nanocomposites enables the development of contrast agents with enhanced sensitivity and specificity. Moreover, functionalizing nanocomposites with targeting ligands ensures selective accumulation in tumor tissues, facilitating precise imaging and diagnostic accuracy. On the therapeutic front, nanocomposites have revolutionized cancer treatment by overcoming traditional challenges associated with drug delivery. The controlled release of therapeutic agents from nanocomposite carriers enhances drug bioavailability, reduces systemic toxicity, and improves overall treatment efficacy. Additionally, the integration of stimuli-responsive components within nanocomposites enables site-specific drug release triggered by the unique microenvironment of the tumor. Despite the remarkable progress in the field, challenges such as biocompatibility, scalability, and long-term safety profiles remain. This article provides a comprehensive overview of recent developments, challenges, and prospects, emphasizing the transformative potential of nanocomposites in revolutionizing the landscape of cancer diagnostics and therapeutics. In Conclusion, integrating nanocomposites in cancer diagnosis and treatment heralds a new era for precision medicine.
Collapse
Affiliation(s)
- Vivian Andoh
- School of Life Sciences, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Dickson Kofi Wiredu Ocansey
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, People’s Republic of China
- Directorate of University Health Services, University of Cape Coast, Cape Coast, Central Region, CC0959347, Ghana
| | - Hassan Naveed
- School of Life Sciences, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Naijian Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Fei Mao
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, People’s Republic of China
| |
Collapse
|
11
|
Tiwari ON, Bobby MN, Kondi V, Halder G, Kargarzadeh H, Ikbal AMA, Bhunia B, Thomas S, Efferth T, Chattopadhyay D, Palit P. Comprehensive review on recent trends and perspectives of natural exo-polysaccharides: Pioneering nano-biotechnological tools. Int J Biol Macromol 2024; 265:130747. [PMID: 38479657 DOI: 10.1016/j.ijbiomac.2024.130747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 04/18/2024]
Abstract
Exopolysaccharides (EPSs), originating from various microbes, and mushrooms, excel in their conventional role in bioremediation to showcase diverse applications emphasizing nanobiotechnology including nano-drug carriers, nano-excipients, medication and/or cell encapsulation, gene delivery, tissue engineering, diagnostics, and associated treatments. Acknowledged for contributions to adsorption, nutrition, and biomedicine, EPSs are emerging as appealing alternatives to traditional polymers, for biodegradability and biocompatibility. This article shifts away from the conventional utility to delve deeply into the expansive landscape of EPS applications, particularly highlighting their integration into cutting-edge nanobiotechnological methods. Exploring EPS synthesis, extraction, composition, and properties, the discussion emphasizes their structural diversity with molecular weight and heteropolymer compositions. Their role as raw materials for value-added products takes center stage, with critical insights into recent applications in nanobiotechnology. The multifaceted potential, biological relevance, and commercial applicability of EPSs in contemporary research and industry align with the nanotechnological advancements coupled with biotechnological nano-cleansing agents are highlighted. EPS-based nanostructures for biological applications have a bright future ahead of them. Providing crucial information for present and future practices, this review sheds light on how eco-friendly EPSs derived from microbial biomass of terrestrial and aquatic environments can be used to better understand contemporary nanobiotechnology for the benefit of society.
Collapse
Affiliation(s)
- Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Md Nazneen Bobby
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh 522213, India
| | - Vanitha Kondi
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Medak 502313, Telangana, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, West Bengal 713209, India
| | - Hanieh Kargarzadeh
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Seinkiewicza 112, 90-363 Lodz, Poland
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India
| | - Biswanath Bhunia
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Sabu Thomas
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Priyadarshini Hills, Athirampuzha, Kerala, 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O. Box, 17011, Doornfontein, 2028, Johannesburg, South Africa
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; School of Life Sciences, Swami Vivekananda University, Barrackpore, Kolkata 700102, India
| | - Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India.
| |
Collapse
|
12
|
Anitha K, Chenchula S, Surendran V, Shvetank B, Ravula P, Milan R, Chikatipalli R, R P. Advancing cancer theranostics through biomimetics: A comprehensive review. Heliyon 2024; 10:e27692. [PMID: 38496894 PMCID: PMC10944277 DOI: 10.1016/j.heliyon.2024.e27692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Nanotheranostics, especially those employing biomimetic approaches, are of substantial interest for molecular imaging and cancer therapy. The incorporation of diagnostics and therapeutics, known as cancer theranostics, represents a promising strategy in modern oncology. Biomimetics, inspired by nature, offers a multidisciplinary avenue with potential in advancing cancer theranostics. This review comprehensively analyses recent progress in biomimetics-based cancer theranostics, emphasizing its role in overcoming current treatment challenges, with a focus on breast, prostate, and skin cancers. Biomimetic approaches have been explored to address multidrug resistance (MDR), emphasizing their role in immunotherapy and photothermal therapy. The specific areas covered include biomimetic drug delivery systems bypassing MDR mechanisms, biomimetic platforms for immune checkpoint blockade, immune cell modulation, and photothermal tumor ablation. Pretargeting techniques enhancing radiotherapeutic agent uptake are discussed, along with a comprehensive review of clinical trials of global nanotheranostics. This review delves into biomimetic materials, nanotechnology, and bioinspired strategies for cancer imaging, diagnosis, and targeted drug delivery. These include imaging probes, contrast agents, and biosensors for enhanced specificity and sensitivity. Biomimetic strategies for targeted drug delivery involve the design of nanoparticles, liposomes, and hydrogels for site-specific delivery and improved therapeutic efficacy. Overall, this current review provides valuable information for investigators, clinicians, and biomedical engineers, offering insights into the latest biomimetics applications in cancer theranostics. Leveraging biomimetics aims to revolutionize cancer diagnosis, treatment, and patient outcomes.
Collapse
Affiliation(s)
- Kuttiappan Anitha
- Department of Pharmacology, School of Pharmacy and Technology Management (SPTM), SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Shirpur, 425405, India
| | - Santenna Chenchula
- Department of Clinical Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhopal, 462020, Madhya Pradesh, India
| | - Vijayaraj Surendran
- Dr Kalam College of Pharmacy, Thanjavur District, Tamil Nadu, 614 623, India
| | - Bhatt Shvetank
- School of Health Sciences and Technology, Dr Vishwanath Karad MIT World Peace University, Pune, 411038, Maharashtra, India
| | - Parameswar Ravula
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Rhythm Milan
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Radhika Chikatipalli
- Sri Venkateshwara College of Pharmacy, Chittoor District, Andhra Pradesh, 517520, India
| | - Padmavathi R
- SVS Medical College, Mahbubnagar, Telangana, India
| |
Collapse
|
13
|
Inam H, Sprio S, Tavoni M, Abbas Z, Pupilli F, Tampieri A. Magnetic Hydroxyapatite Nanoparticles in Regenerative Medicine and Nanomedicine. Int J Mol Sci 2024; 25:2809. [PMID: 38474056 DOI: 10.3390/ijms25052809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
This review focuses on the latest advancements in magnetic hydroxyapatite (mHA) nanoparticles and their potential applications in nanomedicine and regenerative medicine. mHA nanoparticles have gained significant interest over the last few years for their great potential, offering advanced multi-therapeutic strategies because of their biocompatibility, bioactivity, and unique physicochemical features, enabling on-demand activation and control. The most relevant synthetic methods to obtain magnetic apatite-based materials, either in the form of iron-doped HA nanoparticles showing intrinsic magnetic properties or composite/hybrid compounds between HA and superparamagnetic metal oxide nanoparticles, are described as highlighting structure-property correlations. Following this, this review discusses the application of various magnetic hydroxyapatite nanomaterials in bone regeneration and nanomedicine. Finally, novel perspectives are investigated with respect to the ability of mHA nanoparticles to improve nanocarriers with homogeneous structures to promote multifunctional biological applications, such as cell stimulation and instruction, antimicrobial activity, and drug release with on-demand triggering.
Collapse
Affiliation(s)
- Hina Inam
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Material Science and Technology, University of Parma, 43121 Parma, Italy
| | - Simone Sprio
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
| | - Marta Tavoni
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Material Science and Technology, University of Parma, 43121 Parma, Italy
| | - Zahid Abbas
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy
| | - Federico Pupilli
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Chemical Sciences, University of Padova, 35122 Padova, Italy
| | - Anna Tampieri
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
| |
Collapse
|
14
|
Ndlovu H, Lawal IO, Mokoala KMG, Sathekge MM. Imaging Molecular Targets and Metabolic Pathways in Breast Cancer for Improved Clinical Management: Current Practice and Future Perspectives. Int J Mol Sci 2024; 25:1575. [PMID: 38338854 PMCID: PMC10855575 DOI: 10.3390/ijms25031575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and leading cause of cancer-related deaths worldwide. Timely decision-making that enables implementation of the most appropriate therapy or therapies is essential for achieving the best clinical outcomes in breast cancer. While clinicopathologic characteristics and immunohistochemistry have traditionally been used in decision-making, these clinical and laboratory parameters may be difficult to ascertain or be equivocal due to tumor heterogeneity. Tumor heterogeneity is described as a phenomenon characterized by spatial or temporal phenotypic variations in tumor characteristics. Spatial variations occur within tumor lesions or between lesions at a single time point while temporal variations are seen as tumor lesions evolve with time. Due to limitations associated with immunohistochemistry (which requires invasive biopsies), whole-body molecular imaging tools such as standard-of-care [18F]FDG and [18F]FES PET/CT are indispensable in addressing this conundrum. Despite their proven utility, these standard-of-care imaging methods are often unable to image a myriad of other molecular pathways associated with breast cancer. This has stimulated interest in the development of novel radiopharmaceuticals targeting other molecular pathways and processes. In this review, we discuss validated and potential roles of these standard-of-care and novel molecular approaches. These approaches' relationships with patient clinicopathologic and immunohistochemical characteristics as well as their influence on patient management will be discussed in greater detail. This paper will also introduce and discuss the potential utility of novel PARP inhibitor-based radiopharmaceuticals as non-invasive biomarkers of PARP expression/upregulation.
Collapse
Affiliation(s)
- Honest Ndlovu
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| | - Ismaheel O. Lawal
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA
| | - Kgomotso M. G. Mokoala
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| | - Mike M. Sathekge
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| |
Collapse
|
15
|
Zadeh Shirazi A, Tofighi M, Gharavi A, Gomez GA. The Application of Artificial Intelligence to Cancer Research: A Comprehensive Guide. Technol Cancer Res Treat 2024; 23:15330338241250324. [PMID: 38775067 PMCID: PMC11113055 DOI: 10.1177/15330338241250324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
Advancements in AI have notably changed cancer research, improving patient care by enhancing detection, survival prediction, and treatment efficacy. This review covers the role of Machine Learning, Soft Computing, and Deep Learning in oncology, explaining key concepts and algorithms (like SVM, Naïve Bayes, and CNN) in a clear, accessible manner. It aims to make AI advancements understandable to a broad audience, focusing on their application in diagnosing, classifying, and predicting various cancer types, thereby underlining AI's potential to better patient outcomes. Moreover, we present a tabular summary of the most significant advances from the literature, offering a time-saving resource for readers to grasp each study's main contributions. The remarkable benefits of AI-powered algorithms in cancer care underscore their potential for advancing cancer research and clinical practice. This review is a valuable resource for researchers and clinicians interested in the transformative implications of AI in cancer care.
Collapse
Affiliation(s)
- Amin Zadeh Shirazi
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Morteza Tofighi
- Department of Electrical Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran
| | - Alireza Gharavi
- Department of Computer Science, Azad University, Mashhad Branch, Mashhad, Iran
| | - Guillermo A. Gomez
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
16
|
Kaushik M, Kumar S, Singh M, Sharma H, Bhowmick M, Bhowmick P, Ashique S, Khatoon H, Pal R, Ansari MA. Bio-inspired Nanomaterials in Cancer Theranostics. NANOTHERANOSTICS FOR DIAGNOSIS AND THERAPY 2024:95-123. [DOI: https:/doi.org/10.1007/978-981-97-3115-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
|
17
|
Thenuwara G, Curtin J, Tian F. Advances in Diagnostic Tools and Therapeutic Approaches for Gliomas: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:9842. [PMID: 38139688 PMCID: PMC10747598 DOI: 10.3390/s23249842] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Gliomas, a prevalent category of primary malignant brain tumors, pose formidable clinical challenges due to their invasive nature and limited treatment options. The current therapeutic landscape for gliomas is constrained by a "one-size-fits-all" paradigm, significantly restricting treatment efficacy. Despite the implementation of multimodal therapeutic strategies, survival rates remain disheartening. The conventional treatment approach, involving surgical resection, radiation, and chemotherapy, grapples with substantial limitations, particularly in addressing the invasive nature of gliomas. Conventional diagnostic tools, including computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), play pivotal roles in outlining tumor characteristics. However, they face limitations, such as poor biological specificity and challenges in distinguishing active tumor regions. The ongoing development of diagnostic tools and therapeutic approaches represents a multifaceted and promising frontier in the battle against this challenging brain tumor. The aim of this comprehensive review is to address recent advances in diagnostic tools and therapeutic approaches for gliomas. These innovations aim to minimize invasiveness while enabling the precise, multimodal targeting of localized gliomas. Researchers are actively developing new diagnostic tools, such as colorimetric techniques, electrochemical biosensors, optical coherence tomography, reflectometric interference spectroscopy, surface-enhanced Raman spectroscopy, and optical biosensors. These tools aim to regulate tumor progression and develop precise treatment methods for gliomas. Recent technological advancements, coupled with bioelectronic sensors, open avenues for new therapeutic modalities, minimizing invasiveness and enabling multimodal targeting with unprecedented precision. The next generation of multimodal therapeutic strategies holds potential for precision medicine, aiding the early detection and effective management of solid brain tumors. These innovations offer promise in adopting precision medicine methodologies, enabling early disease detection, and improving solid brain tumor management. This review comprehensively recognizes the critical role of pioneering therapeutic interventions, holding significant potential to revolutionize brain tumor therapeutics.
Collapse
Affiliation(s)
- Gayathree Thenuwara
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland;
- Institute of Biochemistry, Molecular Biology, and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka
| | - James Curtin
- Faculty of Engineering and Built Environment, Technological University Dublin, Bolton Street, D01 K822 Dublin, Ireland;
| | - Furong Tian
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland;
| |
Collapse
|
18
|
Huang Y, Zheng Y, Lu X, Zhao Y, Zhou D, Zhang Y, Liu G. Simulation and Optimization: A New Direction in Supercritical Technology Based Nanomedicine. Bioengineering (Basel) 2023; 10:1404. [PMID: 38135995 PMCID: PMC10741229 DOI: 10.3390/bioengineering10121404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
In recent years, nanomedicines prepared using supercritical technology have garnered widespread research attention due to their inherent attributes, including structural stability, high bioavailability, and commendable safety profiles. The preparation of these nanomedicines relies upon drug solubility and mixing efficiency within supercritical fluids (SCFs). Solubility is closely intertwined with operational parameters such as temperature and pressure while mixing efficiency is influenced not only by operational conditions but also by the shape and dimensions of the nozzle. Due to the special conditions of supercriticality, these parameters are difficult to measure directly, thus presenting significant challenges for the preparation and optimization of nanomedicines. Mathematical models can, to a certain extent, prognosticate solubility, while simulation models can visualize mixing efficiency during experimental procedures, offering novel avenues for advancing supercritical nanomedicines. Consequently, within the framework of this endeavor, we embark on an extensive review encompassing the application of mathematical models, artificial intelligence (AI) methodologies, and computational fluid dynamics (CFD) techniques within the medical domain of supercritical technology. We undertake the synthesis and discourse of methodologies for calculating drug solubility in SCFs, as well as the influence of operational conditions and experimental apparatus upon the outcomes of nanomedicine preparation using supercritical technology. Through this comprehensive review, we elucidate the implementation procedures and commonly employed models of diverse methodologies, juxtaposing the merits and demerits of these models. Furthermore, we assert the dependability of employing models to compute drug solubility in SCFs and simulate the experimental processes, with the capability to serve as valuable tools for aiding and optimizing experiments, as well as providing guidance in the selection of appropriate operational conditions. This, in turn, fosters innovative avenues for the development of supercritical pharmaceuticals.
Collapse
Affiliation(s)
- Yulan Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; (Y.H.); (Y.Z.); (G.L.)
| | - Yating Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; (Y.H.); (Y.Z.); (G.L.)
| | - Xiaowei Lu
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361002, China;
| | - Yang Zhao
- Shenzhen Research Institute, Xiamen University, Shenzhen 518000, China;
| | - Da Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
| | - Yang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; (Y.H.); (Y.Z.); (G.L.)
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; (Y.H.); (Y.Z.); (G.L.)
| |
Collapse
|
19
|
Zou J. Site-specific delivery of cisplatin and paclitaxel mediated by liposomes: A promising approach in cancer chemotherapy. ENVIRONMENTAL RESEARCH 2023; 238:117111. [PMID: 37734579 DOI: 10.1016/j.envres.2023.117111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023]
Abstract
The site-specific delivery of drugs, especially anti-cancer drugs has been an interesting field for researchers and the reason is low accumulation of cytotoxic drugs in cancer cells. Although combination cancer therapy has been beneficial in providing cancer drug sensitivity, targeted delivery of drugs appears to be more efficient. One of the safe, biocompatible and efficient nano-scale delivery systems in anti-cancer drug delivery is liposomes. Their particle size is small and they have other properties such as adjustable physico-chemical properties, ease of functionalization and high entrapment efficiency. Cisplatin is a chemotherapy drug with clinical approval in patients, but its accumulation in cancer cells is low due to lack of targeted delivery and repeated administration results in resistance development. Gene and drug co-administration along with cisplatin/paclitaxel have resulted in increased sensitivity in tumor cells, but there is still space for more progress in cancer therapy. The delivery of cisplatin/paclitaxel by liposomes increases accumulation of drug in tumor cells and impairs activity of efflux pumps in promoting cytotoxicity. Moreover, phototherapy along with cisplatin/paclitaxel delivery can increase potential in tumor suppression. Smart nanoparticles including pH-sensitive nanoparticles provide site-specific delivery of cisplatin/paclitaxel. The functionalization of liposomes can be performed by ligands to increase targetability towards tumor cells in mediating site-specific delivery of cisplatin/paclitaxel. Finally, liposomes can mediate co-delivery of cisplatin/paclitaxel with drugs or genes in potentiating tumor suppression. Since drug resistance has caused therapy failure in cancer patients, and cisplatin/paclitaxel are among popular chemotherapy drugs, delivery of these drugs mediates targeted suppression of cancers and prevents development of drug resistance. Because of biocompatibility and safety of liposomes, they are currently used in clinical trials for treatment of cancer patients. In future, the optimal dose of using liposomes and optimal concentration of loading cisplatin/paclitaxel on liposomal nanocarriers in clinical trials should be determined.
Collapse
Affiliation(s)
- Jianyong Zou
- Department of Thoracic Surgery, The first Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, PR China.
| |
Collapse
|
20
|
Jafari B, Gholizadeh E, Jafari B, Zhoulideh M, Adibnia E, Ghafariasl M, Noori M, Golmohammadi S. Highly sensitive label-free biosensor: graphene/CaF 2 multilayer for gas, cancer, virus, and diabetes detection with enhanced quality factor and figure of merit. Sci Rep 2023; 13:16184. [PMID: 37758823 PMCID: PMC10533514 DOI: 10.1038/s41598-023-43480-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023] Open
Abstract
One of the primary goals for the researchers is to create a high-quality sensor with a simple structure because of the urgent requirement to identify biomolecules at low concentrations to diagnose diseases and detect hazardous chemicals for health early on. Recently graphene has attracted much interest in the field of improved biosensors. Meanwhile, graphene with new materials such as CaF2 has been widely used to improve the applications of graphene-based sensors. Using the fantastic features of the graphene/CaF2 multilayer, this article proposes an improvement sensor in the sensitivity (S), the figure of merit (FOM), and the quality factor (Q). The proposed sensor is based on the five-layers graphene/dielectric grating integrated with a Fabry-Perot cavity. By tuning graphene chemical potential (µc), due to the semi-metal features of graphene, the surface plasmon resonance (SPR) waves excited at the graphene/dielectric boundaries. Due to the vertical polarization of the source to the gratings and the symmetry of the electric field, both corners of the grating act as electric dipoles, and this causes the propagation of plasmonic waves on the graphene surface to propagate towards each other. Finally, it causes Fabry-Perot (FP) interference on the surface of graphene in the proposed structure's active medium (the area where the sample is located). In this article, using the inherent nature of FP interference and its S to the environment's refractive index (RI), by changing a minimal amount in the RI of the sample, the resonance wavelength (interferometer order) shifts sharply. The proposed design can detect and sense some cancers, such as Adrenal Gland Cancer, Blood Cancer, Breast Cancer I, Breast Cancer II, Cervical Cancer, and skin cancer precisely. By optimizing the structure, we can achieve an S as high as 9000 nm/RIU and a FOM of about 52.14 for the first resonance order (M1). Likewise, the remarkable S of 38,000 nm/RIU and the FOM of 81 have been obtained for the second mode (M2). In addition, the proposed label-free SPR sensor can detect changes in the concentration of various materials, including gases and biomolecules, hemoglobin, breast cancer, diabetes, leukemia, and most alloys, with an accuracy of 0.001. The proposed sensor can sense urine concentration with a maximum S of 8500 nm/RIU and cancers with high S in the 6000 nm/RIU range to 7000 nm/RIU. Also, four viruses, such as M13 bacteriophage, HIV type one, Herpes simplex type 1, and influenza, have been investigated, showing Maximum S (for second resonance mode of λR(M2) of 8000 nm/RIU (λR(M2) = 11.2 µm), 12,000 nm/RIU (λR(M2) = 10.73 µm), 38,000 nm/RIU (λR(M2) = 11.78 µm), and 12,000 nm/RIU (λR(M2) = 10.6 µm), respectively, and the obtained S for first resonance mode (λR(M1)) for mentioned viruses are 4740 nm/RIU (λR(M1) = 8.7 µm), 8010 nm/RIU (λR(M1) = 8.44 µm), 8100 nm/RIU (λR(M1) = 10.15 µm), and 9000 (λR(M1) = 8.36 µm), respectively.
Collapse
Affiliation(s)
- Behnam Jafari
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, 5166616471, Iran.
| | - Elnaz Gholizadeh
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| | - Bahram Jafari
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada
| | - Moheimen Zhoulideh
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University (Sechenov university), Moscow, Russia
| | - Ehsan Adibnia
- Faculty of Electrical and Computer Engineering, University of Sistan and Baluchestan (USB), Zahedan, Iran
| | - Mahdi Ghafariasl
- Department of Physics and Astronomy, University of Georgia, Athens, GA, 30602, USA
| | - Mohammad Noori
- Electrical Engineering Department, Technical and Engineering Faculty, University of Bonab, Bonab, East Azerbaijan, Iran
| | - Saeed Golmohammadi
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| |
Collapse
|
21
|
Cheng Y, Qu Z, Jiang Q, Xu T, Zheng H, Ye P, He M, Tong Y, Ma Y, Bao A. Functional Materials for Subcellular Targeting Strategies in Cancer Therapy: Progress and Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305095. [PMID: 37665594 DOI: 10.1002/adma.202305095] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/26/2023] [Indexed: 09/05/2023]
Abstract
Neoadjuvant and adjuvant therapies have made significant progress in cancer treatment. However, tumor adjuvant therapy still faces challenges due to the intrinsic heterogeneity of cancer, genomic instability, and the formation of an immunosuppressive tumor microenvironment. Functional materials possess unique biological properties such as long circulation times, tumor-specific targeting, and immunomodulation. The combination of functional materials with natural substances and nanotechnology has led to the development of smart biomaterials with multiple functions, high biocompatibilities, and negligible immunogenicities, which can be used for precise cancer treatment. Recently, subcellular structure-targeting functional materials have received particular attention in various biomedical applications including the diagnosis, sensing, and imaging of tumors and drug delivery. Subcellular organelle-targeting materials can precisely accumulate therapeutic agents in organelles, considerably reduce the threshold dosages of therapeutic agents, and minimize drug-related side effects. This review provides a systematic and comprehensive overview of the research progress in subcellular organelle-targeted cancer therapy based on functional nanomaterials. Moreover, it explains the challenges and prospects of subcellular organelle-targeting functional materials in precision oncology. The review will serve as an excellent cutting-edge guide for researchers in the field of subcellular organelle-targeted cancer therapy.
Collapse
Affiliation(s)
- Yanxiang Cheng
- Department of Gynecology, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Zhen Qu
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Qian Jiang
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Tingting Xu
- Department of Clinical Laboratory, Wuhan Blood Center (WHBC), No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Hongyun Zheng
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Peng Ye
- Department of Pharmacy, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Mingdi He
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Yongqing Tong
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Yan Ma
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Anyu Bao
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| |
Collapse
|
22
|
Vasil’kov A, Voronova A, Batsalova T, Moten D, Naumkin A, Shtykova E, Volkov V, Teneva I, Dzhambazov B. Evolution of Gold and Iron Oxide Nanoparticles in Conjugates with Methotrexate: Synthesis and Anticancer Effects. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3238. [PMID: 37110074 PMCID: PMC10146258 DOI: 10.3390/ma16083238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/02/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Au and Fe nanoparticles and their conjugates with the drug methotrexate were obtained by an environmentally safe method of metal-vapor synthesis (MVS). The materials were characterized by transmission and scanning electron microscopy (TEM, SEM), X-ray photoelectron spectroscopy (XPS), and small-angle X-ray scattering using synchrotron radiation (SAXS). The use of acetone as an organic reagent in the MVS makes it possible to obtain Au and Fe particles with an average size of 8.3 and 1.8 nm, respectively, which was established by TEM. It was found that Au, both in the NPs and the composite with methotrexate, was in the Au0, Au+ and Au3+ states. The Au 4f spectra for Au-containing systems are very close. The effect of methotrexate was manifested in a slight decrease in the proportion of the Au0 state-from 0.81 to 0.76. In the Fe NPs, the main state is the Fe3+ state, and the Fe2+ state is also present in a small amount. The analysis of samples by SAXS registered highly heterogeneous populations of metal nanoparticles coexisting with a wide proportion of large aggregates, the number of which increased significantly in the presence of methotrexate. For Au conjugates with methotrexate, a very wide asymmetric fraction with sizes up to 60 nm and a maximum of ~4 nm has been registered. In the case of Fe, the main fraction consists of particles with a radius of 4.6 nm. The main fraction consists of aggregates up to 10 nm. The size of the aggregates varies in the range of 20-50 nm. In the presence of methotrexate, the number of aggregates increases. The cytotoxicity and anticancer activity of the obtained nanomaterials were determined by MTT and NR assays. Fe conjugates with methotrexate showed the highest toxicity against the lung adenocarcinoma cell line and Au nanoparticles loaded with methotrexate affected the human colon adenocarcinoma cell line. Both conjugates displayed lysosome-specific toxicity against the A549 cancer cell line after 120 h of culture. The obtained materials may be promising for the creation of improved agents for cancer treatment.
Collapse
Affiliation(s)
- Alexander Vasil’kov
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119334 Moscow, Russia; (A.V.)
| | - Anastasiia Voronova
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119334 Moscow, Russia; (A.V.)
| | - Tsvetelina Batsalova
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria; (T.B.); (D.M.)
| | - Dzhemal Moten
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria; (T.B.); (D.M.)
| | - Alexander Naumkin
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119334 Moscow, Russia; (A.V.)
| | - Eleonora Shtykova
- Shubnikov Institute of Crystallography, FSRC “Crystallography and Photonics”, RAS, 119333 Moscow, Russia; (E.S.); (V.V.)
| | - Vladimir Volkov
- Shubnikov Institute of Crystallography, FSRC “Crystallography and Photonics”, RAS, 119333 Moscow, Russia; (E.S.); (V.V.)
| | - Ivanka Teneva
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria; (T.B.); (D.M.)
| | - Balik Dzhambazov
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria; (T.B.); (D.M.)
| |
Collapse
|
23
|
Mamun A, Sabantina L. Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications-Technology, Mechanism, and Materials. Polymers (Basel) 2023; 15:1902. [PMID: 37112049 PMCID: PMC10143376 DOI: 10.3390/polym15081902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The number of cancer patients is rapidly increasing worldwide. Among the leading causes of human death, cancer can be regarded as one of the major threats to humans. Although many new cancer treatment procedures such as chemotherapy, radiotherapy, and surgical methods are nowadays being developed and used for testing purposes, results show limited efficiency and high toxicity, even if they have the potential to damage cancer cells in the process. In contrast, magnetic hyperthermia is a field that originated from the use of magnetic nanomaterials, which, due to their magnetic properties and other characteristics, are used in many clinical trials as one of the solutions for cancer treatment. Magnetic nanomaterials can increase the temperature of nanoparticles located in tumor tissue by applying an alternating magnetic field. A very simple, inexpensive, and environmentally friendly method is the fabrication of various types of functional nanostructures by adding magnetic additives to the spinning solution in the electrospinning process, which can overcome the limitations of this challenging treatment process. Here, we review recently developed electrospun magnetic nanofiber mats and magnetic nanomaterials that support magnetic hyperthermia therapy, targeted drug delivery, diagnostic and therapeutic tools, and techniques for cancer treatment.
Collapse
Affiliation(s)
- Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Lilia Sabantina
- Faculty of Clothing Technology and Garment Engineering, HTW-Berlin University of Applied Sciences, 12459 Berlin, Germany
| |
Collapse
|