1
|
Mardiana L, Milanda T, Hadisaputri YE, Chaerunisaa AY. Phytosome-Enhanced Secondary Metabolites for Improved Anticancer Efficacy: Mechanisms and Bioavailability Review. Drug Des Devel Ther 2025; 19:201-218. [PMID: 39816849 PMCID: PMC11734513 DOI: 10.2147/dddt.s483404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/24/2024] [Indexed: 01/18/2025] Open
Abstract
Purpose Phytosome technology, an advanced lipid-based delivery system, offers a promising solution for enhancing the bioavailability and therapeutic efficacy of secondary metabolites, particularly in cancer treatment. These metabolites, such as flavonoids, terpenoids, and alkaloids, possess significant anticancer potential but are often limited by poor solubility and low absorption. This review aims to investigate how phytosome encapsulation improves the pharmacokinetic profiles and anticancer effectiveness of these bioactive compounds. Patients and Methods This comprehensive review is based on an analysis of recent literature retrieved from PubMed, Scopus, and ScienceDirect databases. It focuses on findings from preclinical and in vitro studies that examine the pharmacokinetic enhancements provided by phytosome technology when applied to secondary metabolites. Results Phytosome-encapsulated secondary metabolites exhibit significantly improved solubility, absorption, distribution, and cellular uptake compared to non-encapsulated forms. This enhanced bioavailability facilitates more effective inhibition of cancer pathways, including NF-κB and PI3K/AKT, leading to increased anticancer efficacy in preclinical models. Conclusion Phytosome technology has demonstrated its potential to overcome bioavailability challenges, resulting in safer and more effective therapeutic options for cancer treatment. This review highlights the potential of phytosome-based formulations as a novel approach to anticancer therapy, supporting further development in preclinical, in vitro, and potential clinical applications.
Collapse
Affiliation(s)
- Lia Mardiana
- Doctoral Program, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Islam Kalimantan Muhammad Arsyad Al-Banjari, Banjarmasin, 70123, Indonesia
| | - Tiana Milanda
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Yuni Elsa Hadisaputri
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Anis Yohana Chaerunisaa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
2
|
Negreanu-Pirjol BS, Negreanu-Pirjol T, Busuricu F, Jurja S, Craciunescu O, Oprea O, Motelica L, Oprita EI, Roncea FN. The Role of Antioxidant Plant Extracts' Composition and Encapsulation in Dietary Supplements and Gemmo-Derivatives, as Safe Adjuvants in Metabolic and Age-Related Conditions: A Review. Pharmaceuticals (Basel) 2024; 17:1738. [PMID: 39770580 PMCID: PMC11677063 DOI: 10.3390/ph17121738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Given the current global circumstances, marked by severe environmental pollution-including the contamination of food-along with daily stress and a sedentary lifestyle, many consumers choose to improve their quality of life by using, among others, minimally processed food, food supplements, and gemmo-derivatives. Recent lab and clinical studies have shown the positive impact of specific nutrients with antioxidant capacities in the treatment of several conditions generated by oxidative stress. This paper reviews antioxidant plant extracts utilized as components in various dietary supplements and gemmoderivatives, highlighting their chemical composition and biological properties in preventing diseases caused by oxidative stress. A modern approach to food science brings to the fore the concept of dietary supplements vs. functional food, nutraceuticals, and gemmo-derivatives. The definitions of these terms are not being unanimously regulated in this respect and describe each category of compound and product, also emphasizing the need to implement adequate nutrivigilance. In order to enhance the absorption and bioavailability of dietary supplements and gemmo-derivatives based on antioxidant plant extracts, some encapsulation techniques are outlined.
Collapse
Affiliation(s)
- Bogdan-Stefan Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, 6, Capitan Aviator Al. Serbanescu Str., 900470 Constanta, Romania; (B.-S.N.-P.); (F.N.R.)
| | - Ticuta Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, 6, Capitan Aviator Al. Serbanescu Str., 900470 Constanta, Romania; (B.-S.N.-P.); (F.N.R.)
- Academy of Romanian Scientists, 3, Ilfov Str., 050044 Bucharest, Romania; (O.O.); (L.M.)
| | - Florica Busuricu
- Faculty of Pharmacy, Ovidius University of Constanta, 6, Capitan Aviator Al. Serbanescu Str., 900470 Constanta, Romania; (B.-S.N.-P.); (F.N.R.)
| | - Sanda Jurja
- Faculty of Medicine, Ovidius University of Constanta, 1, University Alley, 900470 Constanta, Romania;
| | - Oana Craciunescu
- National Institute of Research & Development for Biological Sciences, 296, Splaiul Independentei, 060031 Bucharest, Romania; (O.C.); (E.I.O.)
| | - Ovidiu Oprea
- Academy of Romanian Scientists, 3, Ilfov Str., 050044 Bucharest, Romania; (O.O.); (L.M.)
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7, Polizu Str., 011061 Bucharest, Romania
| | - Ludmila Motelica
- Academy of Romanian Scientists, 3, Ilfov Str., 050044 Bucharest, Romania; (O.O.); (L.M.)
- Research Center for Advanced Materials, Products and Processes, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Elena Iulia Oprita
- National Institute of Research & Development for Biological Sciences, 296, Splaiul Independentei, 060031 Bucharest, Romania; (O.C.); (E.I.O.)
| | - Florentina Nicoleta Roncea
- Faculty of Pharmacy, Ovidius University of Constanta, 6, Capitan Aviator Al. Serbanescu Str., 900470 Constanta, Romania; (B.-S.N.-P.); (F.N.R.)
| |
Collapse
|
3
|
Mishra VK, Rodriguez-Lecompte JC, Ahmed M. Nanoparticles mediated folic acid enrichment. Food Chem 2024; 456:139964. [PMID: 38876059 DOI: 10.1016/j.foodchem.2024.139964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
Folate is an essential component of many metabolic processes, and folate deficiency is known to cause various disorders. Folate and folic acid, a synthetic and chemically stable form of folate, enriched diet are typically used to overcome this deficiency. Folic acid and folate however, are susceptible to harsh environment and folates enrichment using nanoparticles is an intensively studied strategy in food industry. This review highlights the current methods and types of matrices utilized to develop folic acid/folate carrying nanoparticles. The folic acid/folate loaded nanoparticles prevent cargo degradation during gut absorption and under harsh food processing conditions including, high temperatures, UV light, and autoclaving. The data demonstrates that nanofortifcation of folates using proteins and biopolymers effectively enhances the bioavailability of the cargo. The encapsulation of folic acid in biopolymers by emulsion, spray drying and ionic gelation represent simplistic methods that can be easily scaled up with applications in food industry.
Collapse
Affiliation(s)
- Vineet Kumar Mishra
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada
| | - Juan Carlos Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; Faculty of Sustainable Design Engineering, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
4
|
Ganje M, Jamalifard R, Ghaderi S, Niakousari M. Nanoencapsulation of limonene in octenyl succinic anhydride-modified starch (OSA-ST) and maltodextrin: Investigation and comparison of physicochemical properties, efficiency and morphology of nanoparticles. Heliyon 2024; 10:e39387. [PMID: 39498092 PMCID: PMC11532230 DOI: 10.1016/j.heliyon.2024.e39387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024] Open
Abstract
In recent years, the application of nanoencapsulation has attracted enormous attention for various food and pharmaceutical purposes. In this study, a functional powder containing limonene (the nutraceutical at concentration of 5 and 10 %) was prepared using octenyl succinic anhydride-modified starch (OSA-ST) and maltodextrin as carriers at 15 and 30 %. The emulsions were sonicated at a frequency of 30 kHz and a power of 100 W for 9 and 18 min, and the final nanoparticles were prepared through freeze-drying. The particle sizes were in the ranges of 62-248 and 10-24 nm in the suspensions of OSA and maltodextrin, respectively. The smaller particles of the maltodextrin-prepared sample resulted in more transparency. The zeta potential and consequently the stability of the maltodextrin-prepared emulsions were higher than those of the OSA-ST-prepared ones. As the maltodextrin concentration increased, this parameter was elevated from -42 to -36 as a result of the coverage of the surface-active lipids. The results of solubility correlated with those of the zeta potential (89.21 % for maltodextrin-prepared and 82.51 % for OSA-ST-prepared samples). The highest encapsulation efficiency (EE = 0.9) belonged to the samples prepared with OSA-ST. Comparison of the scanning electron microscopy (SEM) images revealed that the type of the wall material influenced the physical structure of the nanoparticles which were mostly porous and flake-like. Considering its encapsulating-emulsifying properties, OSA-ST can be suggested as a carrier for limonene with the need for emulsifiers.
Collapse
Affiliation(s)
- Mohammad Ganje
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, Iran
| | - Raziyeh Jamalifard
- Doctoral School of Nutrition and Food Sciences, Faculty of Agriculture, Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Sajad Ghaderi
- Department of Nutrition, Faculty of Health and Nutrition Sciences, Yasuj University of Medical Science, Yasuj, Iran
| | - Mehrdad Niakousari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
5
|
da Silva VRP, Martins NO, dos Santos CR, Damas EBDO, Araujo PL, Silva GDO, Joanitti GA, Carneiro MLB. Annatto ( Bixa orellana)-Based Nanostructures for Biomedical Applications-A Systematic Review. Pharmaceutics 2024; 16:1275. [PMID: 39458606 PMCID: PMC11510392 DOI: 10.3390/pharmaceutics16101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 10/28/2024] Open
Abstract
Plants are a source of valuable organic chemical compounds with complex structures rich in therapeutic activities. The encapsulation of compounds in nanostructured systems is an alternative to avoid limitations, such as instability and low solubility, and to promote therapeutic use. The objective of the present review was to summarize the data in the literature on the physicochemical characteristics, biomedical efficacy, and toxicity of nanostructures containing extracts and oils obtained from annatto (Bixa orellana). For this, searches were conducted in the CINAHL, LILACS, Embase, FSTA, MEDLINE, ProQuest, PubMed, ScienceDirect, Scopus, and Web of Science databases. Studies that carried out the development, physical-chemical characterization, and evaluation of therapeutic efficacy and/or in vitro, in vivo, or clinical toxicity of nanostructures containing extracts and oils derived from annatto were included in the review. Of the 708 articles found, nine met the inclusion criteria. The included studies developed different nanostructures (nanofibers, nanocochleates, chitosan, lipid, polymeric, and metallic nanoparticles). These nanostructures showed leishmanicidal, photoprotective, antioxidant, antimicrobial, and immunomodulatory efficacy, and tissue regeneration potential with no or low toxic effects in the tested models. Thus, the present work supports the nanostructuring of annatto extracts and oils as a relevant approach to the development of new technologies for biomedical applications.
Collapse
Affiliation(s)
- Vitória Regina Pereira da Silva
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil; (V.R.P.d.S.); (N.O.M.); (C.R.d.S.); (E.B.d.O.D.); (P.L.A.); (G.d.O.S.); (M.L.B.C.)
- Post-Graduate Program in Pharmaceuticals Sciences, Faculty of Health Sciences, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
| | - Natália Ornelas Martins
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil; (V.R.P.d.S.); (N.O.M.); (C.R.d.S.); (E.B.d.O.D.); (P.L.A.); (G.d.O.S.); (M.L.B.C.)
| | - Carolina Ramos dos Santos
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil; (V.R.P.d.S.); (N.O.M.); (C.R.d.S.); (E.B.d.O.D.); (P.L.A.); (G.d.O.S.); (M.L.B.C.)
- Post-Graduate Program in Biomedical Engineering (PPGEB), Faculty of Gama, University of Brasilia, Special Area of Industry Projection A, Brasilia 72444-240, Brazil
| | - Elysa Beatriz de Oliveira Damas
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil; (V.R.P.d.S.); (N.O.M.); (C.R.d.S.); (E.B.d.O.D.); (P.L.A.); (G.d.O.S.); (M.L.B.C.)
- Post-Graduate Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
| | - Paula Lauane Araujo
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil; (V.R.P.d.S.); (N.O.M.); (C.R.d.S.); (E.B.d.O.D.); (P.L.A.); (G.d.O.S.); (M.L.B.C.)
- Post-Graduate Program in Biomedical Engineering (PPGEB), Faculty of Gama, University of Brasilia, Special Area of Industry Projection A, Brasilia 72444-240, Brazil
| | - Gabriella de Oliveira Silva
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil; (V.R.P.d.S.); (N.O.M.); (C.R.d.S.); (E.B.d.O.D.); (P.L.A.); (G.d.O.S.); (M.L.B.C.)
- Post-Graduate Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
| | - Graziella Anselmo Joanitti
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil; (V.R.P.d.S.); (N.O.M.); (C.R.d.S.); (E.B.d.O.D.); (P.L.A.); (G.d.O.S.); (M.L.B.C.)
- Post-Graduate Program in Pharmaceuticals Sciences, Faculty of Health Sciences, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
- Post-Graduate Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
| | - Marcella Lemos Brettas Carneiro
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil; (V.R.P.d.S.); (N.O.M.); (C.R.d.S.); (E.B.d.O.D.); (P.L.A.); (G.d.O.S.); (M.L.B.C.)
- Post-Graduate Program in Biomedical Engineering (PPGEB), Faculty of Gama, University of Brasilia, Special Area of Industry Projection A, Brasilia 72444-240, Brazil
- Post-Graduate Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
| |
Collapse
|
6
|
D'Amore T, Chaari M, Falco G, De Gregorio G, Zaraî Jaouadi N, Ali DS, Sarkar T, Smaoui S. When sustainability meets health and innovation: The case of Citrus by-products for cancer chemoprevention and applications in functional foods. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2024; 58:103163. [DOI: 10.1016/j.bcab.2024.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
|
7
|
Aanniz T, El Omari N, Elouafy Y, Benali T, Zengin G, Khalid A, Abdalla AN, Sakran AM, Bouyahya A. Innovative Encapsulation Strategies for Food, Industrial, and Pharmaceutical Applications. Chem Biodivers 2024; 21:e202400116. [PMID: 38462536 DOI: 10.1002/cbdv.202400116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 03/10/2024] [Indexed: 03/12/2024]
Abstract
Bioactive metabolites obtained from fruits and vegetables as well as many drugs have various capacities to prevent or treat various ailments. Nevertheless, their efficiency, in vivo, encounter many challenges resulting in lower efficacy as well as different side effects when high doses are used resulting in many challenges for their application. Indeed, demand for effective treatments with no or less unfavorable side effects is rising. Delivering active molecules to a particular site of action within the human body is an example of targeted therapy which remains a challenging field. Developments of nanotechnology and polymer science have great promise for meeting the growing demands of efficient options. Encapsulation of active ingredients in nano-delivery systems has become as a vitally tool for protecting the integrity of critical biochemicals, improving their delivery, enabling their controlled release and maintaining their biological features. Here, we examine a wide range of nano-delivery techniques, such as niosomes, polymeric/solid lipid nanoparticles, nanostructured lipid carriers, and nano-emulsions. The advantages of encapsulation in targeted, synergistic, and supportive therapies are emphasized, along with current progress in its application. Additionally, a revised collection of studies was given, focusing on improving the effectiveness of anticancer medications and addressing the problem of antimicrobial resistance. To sum up, this paper conducted a thorough analysis to determine the efficacy of encapsulation technology in the field of drug discovery and development.
Collapse
Affiliation(s)
- Tarik Aanniz
- Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, 10100, Morocco
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, 10100, Morocco
| | - Youssef Elouafy
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP, 1014, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Marrakech, 46030, Morocco
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, 45142, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Ashraf M Sakran
- Department of Anatomy, Faculty of Medicine, Umm Alqura University, Makkah, 21955, Saudi Arabia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| |
Collapse
|
8
|
Sharma M, Bains A, Goksen G, Sridhar K, Sharma M, Mousavi Khaneghah A, Chawla P. Bioactive polysaccharides from Aegle marmelos fruit: Recent trends on extraction, bio-techno functionality, and food applications. Food Sci Nutr 2024; 12:3150-3163. [PMID: 38726405 PMCID: PMC11077228 DOI: 10.1002/fsn3.4026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 05/12/2024] Open
Abstract
Polysaccharides from non-conventional sources, such as fruits, have gained significant attention recently. Aegle marmelos (Bael), a non-conventional fruit, is an excellent source of biologically active components with potential indigenous therapeutic and food applications. Apart from polyphenolic components, this is an excellent source of mucilaginous polysaccharides. Polysaccharides are one the major components of bael fruit, having a high amount of galactose and glucuronic acid, which contributes to its potential therapeutic properties. Therefore, this review emphasizes the conventional and emerging techniques of polysaccharide extraction from bael fruit. Insight into the attributes of polysaccharide components, their techno-functional properties, characterization of bael fruit polysaccharide, emulsifying properties, binding properties, reduction of hazardous dyes, application of polysaccharides in film formation, application of polysaccharide as a nanocomposite, and biological activities of bael fruit polysaccharides are discussed. This review also systematically overviews the relationship between extraction techniques, structural characteristics, and biological activities. Additionally, recommendations, future perspectives, and new valuable insight towards better utilization of bael fruit polysaccharide have been given importance, which can be promoted in the long term.
Collapse
Affiliation(s)
- Madhu Sharma
- Department of Food Technology and NutritionLovely Professional UniversityPhagwaraPunjabIndia
| | - Aarti Bains
- Department of MicrobiologyLovely Professional UniversityPhagwaraPunjabIndia
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial ZoneTarsus UniversityMersinTurkey
| | - Kandi Sridhar
- Department of Food TechnologyKarpagam Academy of Higher Education (Deemed to be University)CoimbatoreIndia
| | - Minaxi Sharma
- Department of Applied BiologyUniversity of Science and Technology MeghalayaBariduaIndia
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product TechnologyProf. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, State Research InstituteWarsawPoland
| | - Prince Chawla
- Department of Food Technology and NutritionLovely Professional UniversityPhagwaraPunjabIndia
| |
Collapse
|
9
|
Diedericks B, Kok AM, Mandiwana V, Lall N. A Review of the Potential of Poly-(lactide-co-glycolide) Nanoparticles as a Delivery System for an Active Antimycobacterial Compound, 7-Methyljuglone. Pharmaceutics 2024; 16:216. [PMID: 38399270 PMCID: PMC10893214 DOI: 10.3390/pharmaceutics16020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
7-Methyljuglone (7-MJ) is a pure compound isolated from the roots of Euclea natalensis A. DC., a shrub indigenous to South Africa. It exhibits significant promise as a potential treatment for the highly communicable disease tuberculosis (TB), owing to its effective antimycobacterial activity against Mycobacterium tuberculosis. Despite its potential therapeutic benefits, 7-MJ has demonstrated in vitro cytotoxicity against various cancerous and non-cancerous cell lines, raising concerns about its safety for consumption by TB patients. Therefore, this review focuses on exploring the potential of poly-(lactide-co-glycolic) acid (PLGA) nanoparticles as a delivery system, which has been shown to decrease in vitro cytotoxicity, and 7-MJ as an effective antimycobacterial compound.
Collapse
Affiliation(s)
- Bianca Diedericks
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa; (B.D.); (A.-M.K.)
| | - Anna-Mari Kok
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa; (B.D.); (A.-M.K.)
- Research Fellow, South African International Maritime Institute (SAIMI), Nelson Mandela University, Gqeberha 6019, South Africa
| | - Vusani Mandiwana
- Chemicals Cluster, Centre for Nanostructures and Advanced Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa;
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa; (B.D.); (A.-M.K.)
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
- College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 643001, India
- Senior Research Fellow, Bio-Tech R&D Institute, University of the West Indies, Kingston IAU-016615, Jamaica
| |
Collapse
|
10
|
Cruz-Maya I, Schiavone C, Ferraro R, Renkler NZ, Caserta S, Guarino V. Designing Advanced Drug Delivery Systems: Core-Shell Alginate Particles through Electro-Fluid Dynamic Atomization. Pharmaceutics 2024; 16:193. [PMID: 38399251 PMCID: PMC10893386 DOI: 10.3390/pharmaceutics16020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Innovations in drug delivery systems are crucial for enhancing therapeutic efficiency. Our research presents a novel approach based on using electro-fluid dynamic atomization (EFDA) to fabricate core-shell monophasic particles (CSMp) from sodium alginate blends of varying molecular weights. This study explores the morphological characteristics of these particles in relation to material properties and process conditions, highlighting their potential in drug delivery applications. A key aspect of our work is the development of a mathematical model that simulates the release kinetics of small molecules, specifically sodium diclofenac. By assessing the diffusion properties of different molecules and gel formulations through transport and rheological models, we have created a predictive tool for evaluating the efficiency of these particles in drug delivery. Our findings underscore two critical, independent parameters for optimizing drug release: the external shell thickness and the diffusivity ratios within the dual layers. This allows for precise control over the timing and intensity of the release profile. This study advances our understanding of EFDA in the fabrication of CSMp and offers promising avenues for enhancing drug delivery systems by tailoring release profiles through particle characteristic manipulation.
Collapse
Affiliation(s)
- Iriczalli Cruz-Maya
- Institute for Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy; (I.C.-M.); (N.Z.R.); (V.G.)
| | - Carmine Schiavone
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy; (C.S.); (R.F.)
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Rosalia Ferraro
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy; (C.S.); (R.F.)
- CEINGE Advanced Biotechnologies, 80131 Napoli, Italy
| | - Nergis Zeynep Renkler
- Institute for Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy; (I.C.-M.); (N.Z.R.); (V.G.)
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy; (C.S.); (R.F.)
| | - Sergio Caserta
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy; (C.S.); (R.F.)
- CEINGE Advanced Biotechnologies, 80131 Napoli, Italy
| | - Vincenzo Guarino
- Institute for Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy; (I.C.-M.); (N.Z.R.); (V.G.)
| |
Collapse
|
11
|
Aldayel TS, Badran MM, Alomrani AH, AlFaris NA, Altamimi JZ, Alqahtani AS, Nasr FA, Ghaffar S, Orfali R. Optimization of cationic nanoparticles stabilized by poloxamer 188: A potential approach for improving the biological activity of Aloeperryi. Heliyon 2023; 9:e22691. [PMID: 38125510 PMCID: PMC10730718 DOI: 10.1016/j.heliyon.2023.e22691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Aloe perryi (AP) has gained considerable interest as a medicinal herb in various biological applications due to its rich phytochemical composition. However, the therapeutic benefits of AP could be potentiated by utilizing nanotechnology. Moreover, cationic solid lipid nanoparticles (CSLNs) possess remarkable characteristics that can greatly enrich a variety of biological uses. An optimization approach was used to achieve high-quality CSLNs to maximize the therapeutic efficacy of AP. Therefore, a factorial design was used to investigate the influence of various variables on the attributes of CSLNs quality. In this study, the factors under investigation were compritol 888 ATO (C-888, X1), poloxamer 188 (PL188, X2), and chitosan (CS, X3), which served as independent variables. The parameters measured as dependent variables included particle size (Y1), zeta potential (Y2), and encapsulation efficiency EE (Y3). The relationship among these variables was determined by Analysis of Variance (ANOVA) and response surface plots. The results revealed that PL188 played a significant role in reducing the particle size of CSLNS (ranging from 207 to 261 nm with 1 % PL188 to 167-229 nm with 3 % PL188). Conversely, an increase in the concentration of CS led to a rise in the particle size. The magnitude of positive zeta potential values was dependent on the increased concentration of CS. Moreover, the higher amounts of C-888 and PL188 improved the EE% of the CSLNs from 42 % to 86 %. Furthermore, a concentration-dependent antioxidant effect of the optimized AP-CSLNs was observed. The antioxidant activity of the optimized AP-CSLNs at 100 μg/mL was 75 % compared to 62 % and 60 % for AP-SLNs and AP solution, respectively. A similar pattern of improvement was also observed with antimicrobial, and anticancer activities of the optimized AP-CSLNs. These findings demonstrated the potential of AP-CSLNs as a carrier system, enhancing the biological activities of AP, opening new possibilities in herbal medicines.
Collapse
Affiliation(s)
- Tahany Saleh Aldayel
- Clinical Nutrition, Department of Health Sciences, Faculty of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Mohamed M. Badran
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia
- Nanobiotechnology Unit, College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Abdullah H. Alomrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia
- Nanobiotechnology Unit, College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Nora A. AlFaris
- Department of Physical Sports Sciences, College of Sports Sciences & Physical Activity, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Jozaa Z. Altamimi
- Department of Physical Sports Sciences, College of Sports Sciences & Physical Activity, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Ali S. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fahd A. Nasr
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Safina Ghaffar
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
12
|
Pirozzi A, Donsì F. Impact of High-Pressure Homogenization on Enhancing the Extractability of Phytochemicals from Agri-Food Residues. Molecules 2023; 28:5657. [PMID: 37570626 PMCID: PMC10420202 DOI: 10.3390/molecules28155657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The primary objective of the Sustainable Development Goals is to reduce food waste by employing various strategies, including the reuse of agri-food residues that are abundantly available and the complete use of their valuable compounds. This study explores the application of high-pressure homogenization (HPH), an innovative nonthermal and green treatment, for the recovery of bioactive compounds from agri-food residues. The results demonstrate that the optimized HPH treatment offers advantages over conventional solid/liquid extraction (SLE), including shorter extraction time, solvent-free operation, low temperatures, and higher yields of phenol extraction (an approximately 20% improvement). Moreover, the micronization of agri-food residue-in-water suspensions results in a decrease in the size distribution to below the visual detection limit, achieved by disrupting the individual plant cells, thus enhancing suspension stability against sedimentation. These findings highlight the potential of HPH for environmentally friendly and efficient extraction processes.
Collapse
Affiliation(s)
- Annachiara Pirozzi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
- ProdAl Scarl, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|