1
|
Abboud HA, Zelkó R, Kazsoki A. A systematic review of liposomal nanofibrous scaffolds as a drug delivery system: a decade of progress in controlled release and therapeutic efficacy. Drug Deliv 2025; 32:2445259. [PMID: 39727310 DOI: 10.1080/10717544.2024.2445259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/14/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Drug-loaded liposomes incorporated in nanofibrous scaffolds is a promising approach as a multi-unit nanoscale system, which combines the merits of both liposomes and nanofibers (NFs), eliminating the drawback of liposomes' poor stability on the one hand and offering a higher potential of controlled drug release and enhanced therapeutic efficacy on the other hand. The current systematic review, which underwent a rigorous search process in PubMed, Web of Science, Scopus, Embase, and Central (Cochrane) employing (Liposome AND nanofib* AND electrosp*) as search keywords, aims to present the recent studies on using this synergic system for different therapeutic applications. The search was restricted to original, peer-reviewed studies published in English between 2014 and 2024. Of the 309 identified records, only 29 studies met the inclusion criteria. According to the literature, three different methods were identified to fabricate those nanofibrous liposomal scaffolds. The results consistently demonstrated the superiority of this dual system for numerous therapeutic applications in improving the therapy efficacy, enhancing both liposomes and drug stability, and releasing the encapsulated drug in a proper sustained release without significant initial burst release. Merging drug-loaded liposomes with NFs as liposomal nanofibrous scaffolds are a safe and efficient approach to deliver drug molecules and other substances for various pharmaceutical applications, particularly for wound dressing, tissue engineering, cancer therapy, and drug administration via the buccal and sublingual routes. However, further research is warranted to explore the potential of this system in other therapeutic applications.
Collapse
Affiliation(s)
- Houssam Aaref Abboud
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary
| | - Adrienn Kazsoki
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Ilgaz C, Casula L, Sarais G, Schlich M, Dessì D, Cardia MC, Sinico C, Kadiroglu P, Lai F. Proniosomal encapsulation of olive leaf extract for improved delivery of oleuropein: Towards the valorization of an agro-industrial byproduct. Food Chem 2025; 479:143877. [PMID: 40106918 DOI: 10.1016/j.foodchem.2025.143877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Olive leaf, a by-product of the olive oil industry, is rich in bioactive compounds, including the antioxidant and anti-inflammatory oleuropein. Olive leaf extracts have been explored for nutraceutical applications, but oleuropein's low bioavailability and stability limit its use in food and supplements. This work aimed to mitigate these issues by nano-encapsulating the olive leaf extract in proniosomes-free-flowing powders that form niosomes upon hydration. These niosomes can then be further processed into dosage forms or incorporated into functional foods. Proniosomes based on lactose or mannitol were developed and characterized. Hydration of the proniosomes yielded niosomes with high oleuropein loading and antioxidant activity. These niosomes controlled oleuropein release in simulated gastric and intestinal fluids, protecting it from degradation. Furthermore, niosomal encapsulation enhanced protection against oxidative stress in intestinal cells compared to the unformulated extract, suggesting improved intracellular delivery and making this formulation a suitable candidate as a functional food ingredient.
Collapse
Affiliation(s)
- Ceren Ilgaz
- Food Engineering Department, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | - Luca Casula
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Giorgia Sarais
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Michele Schlich
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Debora Dessì
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy; Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Maria Cristina Cardia
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Chiara Sinico
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Pınar Kadiroglu
- Food Engineering Department, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | - Francesco Lai
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
3
|
Wang H, Xia R, Zhou M, Williams GR, Amler E, Zhou FL, Tamaddon M, Liu C. The Development of a Coaxial Electrospinning Formula Using Fish Gelatin/PBS as the Core for Structurally Intact Liposome Loading and Release. Polymers (Basel) 2025; 17:944. [PMID: 40219333 PMCID: PMC11991009 DOI: 10.3390/polym17070944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/22/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
In electrospun scaffolds, coaxial electrospinning is gaining increased attention due to its potential for biocomponent encapsulation and controlled delivery. However, the encapsulation of biocomponents, such as liposomes, remains challenging because of their low stability in commonly used electrospinning solvents. This study, therefore, aims to develop a novel coaxial electrospinning formulation for crafting a liposome-encapsulated, rapid-release coaxial fiber. Liposomes demonstrated desirable stability in fish gelatin/phosphate-buffered saline (PBS) solutions, which remain liquid at room temperature and exhibit exceptional spinnability at concentrations exceeding 80 w/v% due to the reduction in surface tension. Fluorescent labelling examinations confirmed the successful encapsulation of liposomes within coaxial fibers electrospun from a 160 w/v% gelatin/PBS core and a 20 w/v% PCL/chloroform/N,N-dimethylformamide (DMF) shell. The gelatin/PBS core solution formed solid ends at the tips of the core-shell fiber post-spinning, while maintaining a liquid state within the shell, thereby enabling the encapsulation of liposomes within the PCL coaxial fiber. Upon exposure to medium, the solid ends dissolve, enabling the rapid release of liposomes. The successful development of this liposome-loaded electrospun coaxial fiber, using fish gelatin, highlights its potential for creating advanced liposome delivery systems.
Collapse
Affiliation(s)
- Haoyu Wang
- Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK; (H.W.); (R.X.); (M.Z.); (M.T.)
| | - Runnan Xia
- Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK; (H.W.); (R.X.); (M.Z.); (M.T.)
| | - Mo Zhou
- Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK; (H.W.); (R.X.); (M.Z.); (M.T.)
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Evzen Amler
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic;
| | - Feng-Lei Zhou
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London WC1V 6LJ, UK;
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Maryam Tamaddon
- Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK; (H.W.); (R.X.); (M.Z.); (M.T.)
| | - Chaozong Liu
- Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK; (H.W.); (R.X.); (M.Z.); (M.T.)
| |
Collapse
|
4
|
Cetin FN, Mignon A, Van Vlierberghe S, Kolouchova K. Polymer- and Lipid-Based Nanostructures Serving Wound Healing Applications: A Review. Adv Healthc Mater 2025; 14:e2402699. [PMID: 39543796 DOI: 10.1002/adhm.202402699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Management of hard-to-heal wounds often requires specialized care that surpasses the capabilities of conventional treatments. Even the most advanced commercial products lack the functionality to meet the needs of hard-to-heal wounds, especially those complicated by active infection, extreme bleeding, and chronic inflammation. The review explores how supramolecular nanovesicles and nanoparticles-such as dendrimers, micelles, polymersomes, and lipid-based nanocarriers-can be key to introducing advanced wound healing and monitoring properties to address the complex needs of hard-to-heal wounds. Their potential to enable advanced functions essential for next-generation wound healing products-such as hemostatic functions, transdermal penetration, macrophage polarization, targeted delivery, and controlled release of active pharmaceutical ingredients (antibiotics, gaseous products, anti-inflammatory drugs, growth factors)-is discussed via an extensive overview of the recent reports. These studies highlight that the integration of supramolecular systems in wound care is crucial for advancing toward a new generation of wound healing products and addressing significant gaps in current wound management practices. Current strategies and potential improvements regarding personalized therapies, transdermal delivery, and the promising critically evaluated but underexplored polymer-based nanovesicles, including polymersomes and proteinosomes, for wound healing.
Collapse
Affiliation(s)
- Fatma N Cetin
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Gent, 9000, Belgium
| | - Arn Mignon
- Department of Engineering Technology, KU Leuven, Andreas Vesaliusstraat 13, Leuven, 3000, Belgium
| | - Sandra Van Vlierberghe
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Gent, 9000, Belgium
| | - Kristyna Kolouchova
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Gent, 9000, Belgium
| |
Collapse
|
5
|
Casula L, Craparo EF, Lai E, Scialabba C, Valenti D, Schlich M, Sinico C, Cavallaro G, Lai F. Encapsulation of Nanocrystals in Mannitol-Based Inhalable Microparticles via Spray-Drying: A Promising Strategy for Lung Delivery of Curcumin. Pharmaceuticals (Basel) 2024; 17:1708. [PMID: 39770549 PMCID: PMC11676507 DOI: 10.3390/ph17121708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Curcumin is well known for its great anti-inflammatory and antioxidant efficacy, representing a potential strategy for the treatment of respiratory disorders. However, several drawbacks, such as chemical instability, poor water solubility and rapid metabolism, result in low bioavailability, limiting its clinical applications. In this study, curcumin nanocrystals were incorporated into mannitol-based microparticles to obtain an inhalable dry powder. METHODS A curcumin nanosuspension was produced by wet-ball media milling and thoroughly characterized. Spray drying was then used to produce mannitol microparticles incorporating curcumin nanocrystals. In vitro release/dissolution tests were carried out in simulated lung fluids, and the aerosolization properties were evaluated using a Next-Generation Impactor (NGI, Apparatus E Ph. Eu.). RESULTS The incorporation of curcumin nanocrystals into mannitol-based microparticles influenced their morphological properties, such as geometric diameters, and flowability. Despite these changes, nebulization studies confirmed optimal MMAD values (<5 µm), while multi-step dissolution/release studies evidenced the influence of mannitol. CONCLUSIONS The developed curcumin nanocrystals-loaded mannitol microparticles show promise as an inhalable treatment for respiratory diseases, combining effective aerodynamic properties with controlled drug release.
Collapse
Affiliation(s)
- Luca Casula
- Department of Life and Environmental Sciences, University of Cagliari, S.P. Monserrato-Sestu km 0.700, Monserrato, 09042 Cagliari, Italy; (L.C.); (E.L.); (D.V.); (M.S.); (C.S.)
| | - Emanuela Fabiola Craparo
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (E.F.C.); (C.S.); (G.C.)
| | - Eleonora Lai
- Department of Life and Environmental Sciences, University of Cagliari, S.P. Monserrato-Sestu km 0.700, Monserrato, 09042 Cagliari, Italy; (L.C.); (E.L.); (D.V.); (M.S.); (C.S.)
| | - Cinzia Scialabba
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (E.F.C.); (C.S.); (G.C.)
| | - Donatella Valenti
- Department of Life and Environmental Sciences, University of Cagliari, S.P. Monserrato-Sestu km 0.700, Monserrato, 09042 Cagliari, Italy; (L.C.); (E.L.); (D.V.); (M.S.); (C.S.)
| | - Michele Schlich
- Department of Life and Environmental Sciences, University of Cagliari, S.P. Monserrato-Sestu km 0.700, Monserrato, 09042 Cagliari, Italy; (L.C.); (E.L.); (D.V.); (M.S.); (C.S.)
| | - Chiara Sinico
- Department of Life and Environmental Sciences, University of Cagliari, S.P. Monserrato-Sestu km 0.700, Monserrato, 09042 Cagliari, Italy; (L.C.); (E.L.); (D.V.); (M.S.); (C.S.)
| | - Gennara Cavallaro
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (E.F.C.); (C.S.); (G.C.)
| | - Francesco Lai
- Department of Life and Environmental Sciences, University of Cagliari, S.P. Monserrato-Sestu km 0.700, Monserrato, 09042 Cagliari, Italy; (L.C.); (E.L.); (D.V.); (M.S.); (C.S.)
| |
Collapse
|
6
|
Zidar A, Zupančič Š, Kristl J, Jeras M. Impact of polycaprolactone, alginate, chitosan and zein nanofiber physical properties on immune cells for safe biomedical applications. Int J Biol Macromol 2024; 282:137029. [PMID: 39481718 DOI: 10.1016/j.ijbiomac.2024.137029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Nanofiber safety, especially immunogenicity, is important for their successful translation to clinical setting. This study provides a comprehensive evaluation of how nanofiber physical properties influence immune cells cultured on them, specifically peripheral blood mononuclear cells (PBMCs). We prepared nanofibers with a wide range of physical properties including various diameters, interfibrillar pore sizes and mat thicknesses, using four main polymers: polycaprolactone, alginate, chitosan, and zein. Our findings show that nanofiber diameters had only a marginal influence on the activity of immune cells, whereas interfibrillar nanofiber pore sizes had a significant effect, and mat thickness proved to have the greatest impact. Cells that penetrated deeper into the thick nanofiber mats ceased to proliferate but did not experience cytotoxicity. Moreover, we discovered that PBMCs penetrating the zein/PVP nanofiber mesh exhibited increased metabolic activity, indicating potential immunogenicity, whereas the other tested non-immunogenic nanofibers reduced it. To best of our knowledge, this study is the first to report on the impact of various nanofiber physical properties on in vitro immune cell behavior, thereby expanding the knowledge in the relatively unexplored field of nanofiber immunological safety. It underscores the need for rigorous preclinical nanofiber assessment and setting new standards for designing nanofiber-based biomedical products.
Collapse
Affiliation(s)
- Anže Zidar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Špela Zupančič
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Julijana Kristl
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Matjaž Jeras
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
7
|
Pittiu A, Pannuzzo M, Casula L, Pireddu R, Valenti D, Cardia MC, Lai F, Rosa A, Sinico C, Schlich M. Production of liposomes by microfluidics: The impact of post-manufacturing dilution on drug encapsulation and lipid loss. Int J Pharm 2024; 664:124641. [PMID: 39191334 DOI: 10.1016/j.ijpharm.2024.124641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Microfluidic mixing is recognized as a convenient method to produce liposomes for its scalability and reproducibility. Numerous studies have described the effect of process parameters such as flow rate ratios and total flow rate on size and size distribution of vesicles. In this work, we focused our attention on the effect of flow rate ratios on the encapsulation efficiency of liposomes, as we hypothesized that different amount of residual organic solvent could affect the retention of lipophilic drug molecules within the bilayer. In a further step, we investigated how the liposomes integrity and loading were impacted by different methods of solvent removal: direct dialysis and dilution & dialysis. Liposomes were prepared by rapidly mixing an ethanolic solution of lipids and a model drug with buffer in a herringbone micromixer, employing four different flow rate ratios (FRR, 4:1, 7:3, 3:2, 1:1). Quercetin, resveratrol and ascorbyl palmitate were used as model antioxidant drugs with different lipophilicity. Data showed that liposomes produced using lower flow rate ratios (i.e., with more residual ethanol) had lower encapsulation efficiencies as well as a more prominent loss of lipids from the bilayer following purification with direct dialysis. If the amount of residual ethanol was reduced to 5% (dilution & dialysis method), the lipids and drug leakage was prevented. Such effect was correlated with the drug aggregation propensity in different ethanol/water mixtures measured by molecular dynamics simulations. Overall, these results highlight the need to tailor the purification method basing on the molecular properties of the loaded drug to ensure high encapsulation and limit the waste of material.
Collapse
Affiliation(s)
- Alessio Pittiu
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, CA 09042, Italy
| | - Martina Pannuzzo
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, Mölndal, Sweden
| | - Luca Casula
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, CA 09042, Italy
| | - Rosa Pireddu
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, CA 09042, Italy
| | - Donatella Valenti
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, CA 09042, Italy
| | - Maria Cristina Cardia
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, CA 09042, Italy
| | - Francesco Lai
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, CA 09042, Italy
| | - Antonella Rosa
- Department of Biomedical Sciences, University of Cagliari, Monserrato 09042, CA, Italy
| | - Chiara Sinico
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, CA 09042, Italy
| | - Michele Schlich
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, CA 09042, Italy.
| |
Collapse
|
8
|
Cortesi R, Sguizzato M, Ferrara F. Lipid-based nanosystems for wound healing. Expert Opin Drug Deliv 2024; 21:1191-1211. [PMID: 39172249 DOI: 10.1080/17425247.2024.2391473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
INTRODUCTION Wounds, resulting from traumas, surgery, burns or diabetes, are important medical problems due to the complexity of wound healing process regarding healing times and healthcare costs. Nanosystems have emerged as promising candidates in this field thank to their properties and versatile applications in drugs delivery. AREAS COVERED Lipid-based nanosystems (LBN) are described for wound treatment, highlighting their different behaviors when interacting with the cutaneous tissue. The role of nanosystems in delivering mostly natural compounds on skin as well as the technological and engineering strategies to increase their efficiency in wound healing effect are reviewed. Finally, in vitro, ex-vivo and in vivo studies are reported. EXPERT OPINION LBN have shown promise in addressing the challenges of wound healing as they can improve the stability of drugs used in wound therapy, leading to higher efficacy and fewer adverse effects as compared to traditional formulations. LBNs being involved in the inflammatory and proliferation stages of the wound healing process, enable the modification of wound healing through multiple ways. In addition, the use of new technologies, including 3D bioprinting and photobiomodulation, may lead to potential breakthroughs in wound healing. This would provide clinicians with more potent forms of therapy for wound healing.
Collapse
Affiliation(s)
- Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (Docpas), University of Ferrara, University of Ferrara, Ferrara, Italy
- Biotechnology InterUniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, Ferrara, Italy
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences (Docpas), University of Ferrara, University of Ferrara, Ferrara, Italy
- Biotechnology InterUniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, Ferrara, Italy
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences (Docpas), University of Ferrara, University of Ferrara, Ferrara, Italy
| |
Collapse
|
9
|
Dragar Č, Roškar R, Kocbek P. The Incorporated Drug Affects the Properties of Hydrophilic Nanofibers. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:949. [PMID: 38869574 PMCID: PMC11173976 DOI: 10.3390/nano14110949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024]
Abstract
Hydrophilic nanofibers offer promising potential for the delivery of drugs with diverse characteristics. Yet, the effects of different drugs incorporated into these nanofibers on their properties remain poorly understood. In this study, we systematically explored how model drugs, namely ibuprofen, carvedilol, paracetamol, and metformin (hydrochloride), affect hydrophilic nanofibers composed of polyethylene oxide and poloxamer 188 in a 1:1 weight ratio. Our findings reveal that the drug affects the conductivity and viscosity of the polymer solution for electrospinning, leading to distinct changes in the morphology of electrospun products. Specifically, drugs with low solubility in ethanol, the chosen solvent for polymer solution preparation, led to the formation of continuous nanofibers with uniform diameters. Additionally, the lower solubility of metformin in ethanol resulted in particle appearance on the nanofiber surface. Furthermore, the incorporation of more hydrophilic drugs increased the surface hydrophilicity of nanofiber mats. However, variations in the physicochemical properties of the drugs did not affect the drug loading and drug entrapment efficiency. Our research also shows that drug properties do not notably affect the immediate release of drugs from nanofibers, highlighting the dominant role of the hydrophilic polymers used. This study emphasizes the importance of considering specific drug properties, such as solubility, hydrophilicity, and compatibility with the solvent used for electrospinning, when designing hydrophilic nanofibers for drug delivery. Such considerations are crucial for optimizing the properties of the drug delivery system, which is essential for achieving therapeutic efficacy and safety.
Collapse
Affiliation(s)
- Črt Dragar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Robert Roškar
- Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Petra Kocbek
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
10
|
Rahamathulla M, Pokale R, Al-ebini Y, Osmani RAM, Thajudeen KY, Gundawar R, Ahmed MM, Farhana SA, Shivanandappa TB. Simvastatin-Encapsulated Topical Liposomal Gel for Augmented Wound Healing: Optimization Using the Box-Behnken Model, Evaluations, and In Vivo Studies. Pharmaceuticals (Basel) 2024; 17:697. [PMID: 38931364 PMCID: PMC11206487 DOI: 10.3390/ph17060697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Statins function beyond regulating cholesterol and, when administered systemically, can promote wound healing. However, studies have yet to explore the topical use of statins for wound healing. The present study demonstrated the topical administration of SIM and aimed to formulate, evaluate, and optimize Simvastatin (SIM)-encapsulated liposome gel carrier systems to facilitate successful topical wound healing. Liposomes containing SIM were formulated and optimized via a response surface methodology (RSM) using the thin-film hydration method. The effects of formulation variables, including the 1,2-dioleoyloxy-3-trimethylammoniumpropan (DOTAP) concentration, Span 80 concentration, and cholesterol concentration, on zeta potential (mV), entrapment efficacy (%), and particle size (nm) were studied. The optimized liposome formulation (F-07) exhibited a zeta potential value of 16.56 ± 2.51 mV, revealing robust stability and a high SIM encapsulation efficiency of 95.6 ± 4.2%, whereas its particle size of 190.3 ± 3.3 nm confirmed its stability and structural integrity. The optimized liposome gel demonstrated pseudoplastic flow behavior. This property is advantageous in topical drug delivery systems because of its ease of application, improved spreadability, and enhanced penetration, demonstrating prolonged SIM release. The assessment of the wound healing efficacy of the optimized liposomal gel formulation demonstrated a substantial decrease in wound size in mice on the sixteenth day post-wounding. These findings suggest that the use of liposomal gels is a potential drug delivery strategy for incorporating SIM, thereby augmenting its effectiveness in promoting wound healing.
Collapse
Affiliation(s)
- Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Rahul Pokale
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India;
| | - Yousef Al-ebini
- Department of Cosmetic Science, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan;
- Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India;
| | - Kamal Y. Thajudeen
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia;
| | - Ravi Gundawar
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Syeda Ayesha Farhana
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia;
| | | |
Collapse
|
11
|
Victoria Schulte-Werning L, Singh B, Johannessen M, Einar Engstad R, Mari Holsæter A. Antimicrobial liposomes-in-nanofiber wound dressings prepared by a green and sustainable wire-electrospinning set-up. Int J Pharm 2024; 657:124136. [PMID: 38642621 DOI: 10.1016/j.ijpharm.2024.124136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Increasing prevalence of infected and chronic wounds demands improved therapy options. In this work an electrospun nanofiber dressing with liposomes is suggested, focusing on the dressing's ability to support tissue regeneration and infection control. Chloramphenicol (CAM) was the chosen antibiotic, added to the nanofibers after first embedded in liposomes to maintain a sustained drug release. Nanofibers spun from five different polymer blends were tested, where pectin and polyethylene oxide (PEO) was identified as the most promising polymer blend, showing superior fiber formation and tensile strength. The wire-electrospinning setup (WES) was selected for its pilot-scale features, and water was applied as the only solvent for green electrospinning and to allow direct liposome incorporation. CAM-liposomes were added to Pectin-PEO nanofibers in the next step. Confocal imaging of rhodamine-labelled liposomes indicated intact liposomes in the fibers after electrospinning. This was supported by the observed in vitroCAM-release, showing that Pectin-PEO-nanofibers with CAM-liposomes had a delayed drug release compared to controls. Biological testing confirmed the antimicrobial efficacy of CAM and good biocompatibility of all CAM-nanofibers. The successful fiber formation and green production process with WES gives a promising outlook for industrial upscaling.
Collapse
Affiliation(s)
- Laura Victoria Schulte-Werning
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Bhupender Singh
- Research Group for Host-Microbe Interaction, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Mona Johannessen
- Research Group for Host-Microbe Interaction, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | | | - Ann Mari Holsæter
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway.
| |
Collapse
|
12
|
Geyik F, Kaya S, Yılmaz DE, Demirci H, Akmayan İ, Özbek T, Acar S. Propolis-Loaded Poly(lactic- co-glycolic Acid) Nanofibers: An In Vitro Study. ACS OMEGA 2024; 9:14054-14062. [PMID: 38560001 PMCID: PMC10975591 DOI: 10.1021/acsomega.3c09492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024]
Abstract
Nanofibers have high potential through their high porosity, small pore sizes, lightweight materials, and their ability to mimic the extracellular matrix structure for use in the manufacture of wound dressings for wound treatment. In this study, poly(lactic-co-glycolic acid) (PLGA) nanofibers were produced by electrospinning. Propolis was loaded into the PLGA nanofibers by the dropping method. The average diameters and effects of propolis loading on the morphology of 37.5, 50, and 100% propolis-loaded PLGA nanofibers (PLGA-P37.5, PLGA-P50, and PLGA-P100) were evaluated by scanning electron microscopy (SEM). The successful loading of propolis into PLGA nanofibers was confirmed with Fourier transform infrared spectroscopy (FTIR) analysis. In vitro propolis release was examined at physiological pH. The antioxidant activity of propolis-loaded nanofibers was studied with 2,2-diphenyl-1-picrylhydrazyl (DPPH). Antimicrobial activities of the nanofibers against Escherichia coli, Staphylococcus aureus and Candida albicans strains were determined by the disk diffusion method. Consequently, PLGA-P50 and PLGA-P100 showed high antimicrobial activity on S. aureus and C. albicans. Cell viability was tested by 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, and propolis-loaded PLGA nanofibers were found to be biocompatible with human fibroblast cells. In the wound scratch assay, propolis-loaded nanofibers supported wound closure with cell migration and proliferation. Thus, in vitro wound closure properties of propolis-loaded PLGA nanofibers were evaluated for the first time in the literature.
Collapse
Affiliation(s)
- Fulya Geyik
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Istanbul 34220, Turkey
| | - Seçil Kaya
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Istanbul 34220, Turkey
| | - Duygu Elif Yılmaz
- Department
of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Hasan Demirci
- Institute
of Functional Anatomy, Charité-Universitätsmedizin
Berlin, Berlin 10115, Germany
| | - İlkgül Akmayan
- Faculty
of Arts and Sciences, Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul 34220, Turkey
| | - Tülin Özbek
- Faculty
of Arts and Sciences, Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul 34220, Turkey
| | - Serap Acar
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Istanbul 34220, Turkey
| |
Collapse
|
13
|
Zidar A, Zupančič Š, Kristl J, Jeras M. Development of a novel in vitro cell model for evaluation of nanofiber mats immunogenicity. Int J Pharm 2024; 650:123696. [PMID: 38086494 DOI: 10.1016/j.ijpharm.2023.123696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Immunological safety of nanofibers remains poorly reported within the scientific literature and lacks specific in vitro testing models distinct from those used to test nanoparticles. To address the challenges of currently used conventional setups being described in the literature, we developed a novel in vitro model for nanofiber mats immunogenicity testing, which enables standardization of tested surface area, excludes nanofiber mat edges, and ensures stable contacts of cells with nanofibers during the experiment. The effect of nanofibers was assessed on peripheral blood mononuclear cells (PBMCs) by measuring their metabolic activity using MTS cell proliferation assay, where key performance parameters, i.e. cell number, phytohemagglutinin-L (PHA-L) concentration, incubation time and cell lysis were optimized. Repeatability of results obtained with non-activated and PHA-L-activated PBMCs in contact with differently thick polycaprolactone nanofiber mats was compared using both models. Our model provided more reproducible results with lower variability, exhibiting its higher reliability and accuracy than the conventional one. Furthermore, results showed the presence of thicker mats resulted in reduced metabolic activity and PBMC proliferation without any observed cytotoxicity, providing additional insights into their non-immunogenic characteristics. The developed model enables more accurate biological assessment that can support new guidelines for in vitro nanofiber testing and formulation.
Collapse
Affiliation(s)
- Anže Zidar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Špela Zupančič
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Julijana Kristl
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Matjaž Jeras
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
14
|
Zhang S, Dong J, Pan R, Xu Z, Li M, Zang R. Structures, Properties, and Bioengineering Applications of Alginates and Hyaluronic Acid. Polymers (Basel) 2023; 15:2149. [PMID: 37177293 PMCID: PMC10181120 DOI: 10.3390/polym15092149] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
In recent years, polymeric materials have been used in a wide range of applications in a variety of fields. In particular, in the field of bioengineering, the use of natural biomaterials offers a possible new avenue for the development of products with better biocompatibility, biodegradability, and non-toxicity. This paper reviews the structural and physicochemical properties of alginate and hyaluronic acid, as well as the applications of the modified cross-linked derivatives in tissue engineering and drug delivery. This paper summarizes the application of alginate and hyaluronic acid in bone tissue engineering, wound dressings, and drug carriers. We provide some ideas on how to replace or combine alginate-based composites with hyaluronic-acid-based composites in tissue engineering and drug delivery to achieve better eco-economic value.
Collapse
Affiliation(s)
- Shuping Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.D.)
| | | | | | | | | | | |
Collapse
|