1
|
Hashemi M, Fard AA, Pakshad B, Asheghabadi PS, Hosseinkhani A, Hosseini AS, Moradi P, Mohammadbeygi Niye M, Najafi G, Farahzadi M, Khoushab S, Taheriazam A, Farahani N, Mohammadi M, Daneshi S, Nabavi N, Entezari M. Non-coding RNAs and regulation of the PI3K signaling pathway in lung cancer: Recent insights and potential clinical applications. Noncoding RNA Res 2025; 11:1-21. [PMID: 39720352 PMCID: PMC11665378 DOI: 10.1016/j.ncrna.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Lung cancer (LC) is one of the most common causes of cancer-related death worldwide. It has been demonstrated that the prognosis of current drug treatments is affected by a variety of factors, including late stage, tumor recurrence, inaccessibility to appropriate treatments, and, most importantly, chemotherapy resistance. Non-coding RNAs (ncRNAs) contribute to tumor development, with some acting as tumor suppressors and others as oncogenes. The phosphoinositide 3-kinase (PI3Ks)/AKT serine/threonine kinase pathway is one of the most important common targets of ncRNAs in cancer, which is widely applied to modulate the cell cycle and a variety of biological processes, including cell growth, mobility survival, metabolic activity, and protein production. Discovering the biology of ncRNA-PI3K/AKT signaling may lead to advances in cancer diagnosis and treatment. As a result, we investigated the expression and role of PI3K/AKT-related ncRNAs in clinical characteristics of lung cancer, as well as their functions as potential biomarkers in lung cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Asal Abolghasemi Fard
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Bita Pakshad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pezhman Shafiei Asheghabadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amineh Hosseinkhani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Atena Sadat Hosseini
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parham Moradi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammadreza Mohammadbeygi Niye
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ghazal Najafi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohadeseh Farahzadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahya Mohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Bousbaa H. Cutting-Edge Advances in Anticancer Therapies: Insights from the Third Edition of the Special Issue "Novel Anticancer Strategies". Pharmaceutics 2025; 17:54. [PMID: 39861702 PMCID: PMC11769241 DOI: 10.3390/pharmaceutics17010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
Cancer incidence and mortality continue to rise at an alarming rate worldwide, underscoring the urgent need for more effective therapeutic interventions [...].
Collapse
Affiliation(s)
- Hassan Bousbaa
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| |
Collapse
|
3
|
Fayyaz A, Haqqi A, Khan R, Irfan M, Khan K, Reiner Ž, Sharifi-Rad J, Calina D. Revolutionizing cancer treatment: the rise of personalized immunotherapies. Discov Oncol 2024; 15:756. [PMID: 39692978 DOI: 10.1007/s12672-024-01638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Interest in biological therapy for cancer has surged due to its precise targeting of cancer cells and minimized impact on surrounding healthy tissues. This review discusses various biological cancer therapies, highlighting advanced alternatives over conventional chemotherapy alone. It explores DNA and RNA-based vaccines, T-cell modifications, adoptive cell transfer, CAR T cell therapy, angiogenesis inhibitors, and the combination of immunotherapy with chemotherapy, offering a holistic view of the potential in cancer treatment. Additionally, it discusses the role of nanotechnology in increasing the efficacy of cancer-targeting drugs, as well as cytokine and immunoconjugate therapies for bolstering immune system effectiveness against neoplastic cells. The potential of gene potential for precise targeting of cancer-linked genes and the application of oncolytic viruses against virus-associated cancers are also discussed. The review identifies significant advancements in the targeted treatment of cancer by biological methods. It acknowledges the challenges, including drug resistance and the need for high specificity in certain therapies, while also highlighting the effectiveness of cancer vaccines, modified T-cells, and oncolytic viruses. Biological therapies are a promising frontier in cancer treatment, offering the potential for more personalized and effective therapeutic strategies. Despite existing challenges, ongoing research and clinical trials are fundamental for overcoming current limitations and enhancing the efficacy of biological therapies in cancer care.
Collapse
Affiliation(s)
- Amna Fayyaz
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Aleena Haqqi
- School of Medical Laboratory Technology, Faculty of Allied Health Sciences, Minhaj University Lahore (MUL), Lahore, 54000, Pakistan
| | - Rashid Khan
- Department of Pharmacy, Punjab University College of Pharmacy University of Punjab Lahore, Lahore, 54000, Pakistan
| | - Muhammad Irfan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Khushbukhat Khan
- Cancer Clinical Research Unit, Trials360, Lahore, 54000, Pakistan.
| | - Željko Reiner
- Department for Metabolic Diseases, University Hospital Center Zagreb, Zagreb, Croatia
- Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
- Centro de Estudios Tecnológicos, Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
4
|
Lombardo C, Fazio R, Sinagra M, Gattuso G, Longo F, Lombardo C, Salmeri M, Zanghì GN, Loreto CAE. Intratumoral Microbiota: Insights from Anatomical, Molecular, and Clinical Perspectives. J Pers Med 2024; 14:1083. [PMID: 39590575 PMCID: PMC11595780 DOI: 10.3390/jpm14111083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
The human microbiota represents a heterogeneous microbial community composed of several commensal, symbiotic, and even pathogenic microorganisms colonizing both the external and internal body surfaces. Despite the term "microbiota" being commonly used to identify microorganisms inhabiting the gut, several pieces of evidence suggest the presence of different microbiota physiologically colonizing other organs. In this context, several studies have also confirmed that microbes are integral components of tumor tissue in different types of cancer, constituting the so-called "intratumoral microbiota". The intratumoral microbiota is closely related to the occurrence and development of cancer as well as to the efficacy of anticancer treatments. Indeed, intratumoral microbiota can contribute to carcinogenesis and metastasis formation as some microbes can directly cause DNA damage, while others can induce the activation of proinflammatory responses or oncogenic pathways and alter the tumor microenvironment (TME). All these characteristics make the intratumoral microbiota an interesting topic to investigate for both diagnostic and prognostic purposes in order to improve the management of cancer patients. This review aims to gather the most recent data on the role of the intratumoral microbiota in cancer development, progression, and response to treatment, as well as its potential diagnostic and prognostic value.
Collapse
Affiliation(s)
- Claudia Lombardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Rosanna Fazio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Marta Sinagra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Federica Longo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Cinzia Lombardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Guido Nicola Zanghì
- Department of General Surgery and Medical-Surgical Specialties, Policlinico-Vittorio Emanuele Hospital, University of Catania, 95123 Catania, Italy;
| | - Carla Agata Erika Loreto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| |
Collapse
|
5
|
Ufimtseva EG, Gileva MS, Kostenko RV, Kozlov VV, Gulyaeva LF. Development of Ex Vivo Analysis for Examining Cell Composition, Immunological Landscape, Tumor and Immune Related Markers in Non-Small-Cell Lung Cancer. Cancers (Basel) 2024; 16:2886. [PMID: 39199657 PMCID: PMC11352364 DOI: 10.3390/cancers16162886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/11/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
NSCLC is a very aggressive solid tumor, with a poor prognosis due to post-surgical recurrence. Analysis of the specific tumor and immune signatures of NSCLC samples is a critical step in prognostic evaluation and management decisions for patients after surgery. Routine histological assays have some limitations. Therefore, new diagnostic tools with the capability to quickly recognize NSCLC subtypes and correctly identify various markers are needed. We developed a technique for ex vivo isolation of cancer and immune cells from surgical tumor and lung tissue samples of patients with NSCLC (adenocarcinomas and squamous cell carcinomas) and their examination on ex vivo cell preparations and, parallelly, on histological sections after Romanovsky-Giemsa and immunofluorescent/immunochemical staining for cancer-specific and immune-related markers. As a result, PD-L1 expression was detected for some patients only by ex vivo analysis. Immune cell profiling in the tumor microenvironment revealed significant differences in the immunological landscapes between the patients' tumors, with smokers' macrophages with simultaneous expression of pro- and anti-inflammatory cytokines, neutrophils, and eosinophils being the dominant populations. The proposed ex vivo analysis may be used as an additional diagnostic tool for quick examination of cancer and immune cells in whole tumor samples and to avoid false negatives in histological assays.
Collapse
Affiliation(s)
- Elena G. Ufimtseva
- Federal Research Center of Fundamental and Translational Medicine, 2 Timakova Street, 630060 Novosibirsk, Russia;
| | - Margarita S. Gileva
- V. Zelman Institute for the Medicine and Psychology, Novosibirsk State University, 1 Pirogova Street, 630090 Novosibirsk, Russia;
| | - Ruslan V. Kostenko
- Novosibirsk Regional Clinical Oncology Dispensary, 2 Plakhotny Street, 630108 Novosibirsk, Russia; (R.V.K.); (V.V.K.)
| | - Vadim V. Kozlov
- Novosibirsk Regional Clinical Oncology Dispensary, 2 Plakhotny Street, 630108 Novosibirsk, Russia; (R.V.K.); (V.V.K.)
- Faculty of General Medicine, Novosibirsk State Medical University, 52 Krasny Prospect, 630091 Novosibirsk, Russia
| | - Lyudmila F. Gulyaeva
- Federal Research Center of Fundamental and Translational Medicine, 2 Timakova Street, 630060 Novosibirsk, Russia;
- V. Zelman Institute for the Medicine and Psychology, Novosibirsk State University, 1 Pirogova Street, 630090 Novosibirsk, Russia;
| |
Collapse
|
6
|
Chaudhry GES, Zeenia, Sharifi-Rad J, Calina D. Hispidulin: a promising anticancer agent and mechanistic breakthrough for targeted cancer therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1919-1934. [PMID: 37594522 DOI: 10.1007/s00210-023-02645-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023]
Abstract
Cancer is a complex disease characterized by dysregulated cell growth and division, posing significant challenges for effective treatment. Hispidulin, a flavonoid compound, has shown promising biological effects, particularly in the field of anticancer research. The main objective of this study is to investigate the anticancer properties of hispidulin and gain insight into its mechanistic targets in cancer cells. A comprehensive literature review was conducted to collect data on the anticancer effects of hispidulin. In vitro and in vivo studies were analyzed to identify the molecular targets and underlying mechanisms through which hispidulin exerts its anticancer activities. Hispidulin has shown significant effects on various aspects of cancer, including cell growth, proliferation, cell cycle regulation, angiogenesis, metastasis, and apoptosis. It has been observed to target both extrinsic and intrinsic apoptotic pathways, regulate cell cycle arrest, and modulate cancer progression pathways. The existing literature highlights the potential of hispidulin as a potent anticancer agent. Hispidulin exhibits promising potential as a therapeutic agent for cancer treatment. Its ability to induce apoptosis and modulate key molecular targets involved in cancer progression makes it a valuable candidate for further investigation. Additional pharmacological studies are needed to fully understand the specific targets and signaling pathways influenced by hispidulin in different types of cancer. Further research will contribute to the successful translation of hispidulin into clinical settings, allowing its utilization in conventional and advanced cancer therapies with improved therapeutic outcomes and reduced side effects.
Collapse
Affiliation(s)
- Gul-E-Saba Chaudhry
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia.
| | - Zeenia
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
7
|
Nandi S, Nag A, Khatua S, Sen S, Chakraborty N, Naskar A, Acharya K, Calina D, Sharifi-Rad J. Anticancer activity and other biomedical properties of β-sitosterol: Bridging phytochemistry and current pharmacological evidence for future translational approaches. Phytother Res 2024; 38:592-619. [PMID: 37929761 DOI: 10.1002/ptr.8061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023]
Abstract
Sterols, including β-sitosterol, are essential components of cellular membranes in both plant and animal cells. Despite being a major phytosterol in various plant materials, comprehensive scientific knowledge regarding the properties of β-sitosterol and its potential applications is essential for scholarly pursuits and utilization purposes. β-sitosterol shares similar chemical characteristics with cholesterol and exhibits several pharmacological activities without major toxicity. This study aims to bridge the gap between phytochemistry and current pharmacological evidence of β-sitosterol, focusing on its anticancer activity and other biomedical properties. The goal is to provide a comprehensive understanding of β-sitosterol's potential for future translational approaches. A thorough examination of the literature was conducted to gather relevant information on the biological properties of β-sitosterol, particularly its anticancer therapeutic potential. Various databases were searched, including PubMed/MedLine, Scopus, Google Scholar, and Web of Science using appropriate keywords. Studies investigating the effects of β-sitosterol on different types of cancer were analyzed, focusing on mechanisms of action, pharmacological screening, and chemosensitizing properties. Modern pharmacological screening studies have revealed the potential anticancer therapeutic properties of β-sitosterol against various types of cancer, including leukemia, lung, stomach, breast, colon, ovarian, and prostate cancer. β-sitosterol has demonstrated chemosensitizing effects on cancer cells, interfering with multiple cell signaling pathways involved in proliferation, cell cycle arrest, apoptosis, survival, metastasis invasion, angiogenesis, and inflammation. Structural derivatives of β-sitosterol have also shown anti-cancer effects. However, research in the field of drug delivery and the detailed mode of action of β-sitosterol-mediated anticancer activities remains limited. β-sitosterol, as a non-toxic compound with significant pharmacological potential, exhibits promising anticancer effects against various cancer types. Despite being relatively less potent than conventional cancer chemotherapeutics, β-sitosterol holds potential as a safe and effective nutraceutical against cancer. Further comprehensive studies are recommended to explore the biological properties of β-sitosterol, including its mode of action, and develop novel formulations for its potential use in cancer treatment. This review provides a foundation for future investigations and highlights the need for further research on β-sitosterol as a potent superfood in combating cancer.
Collapse
Affiliation(s)
- Sudeshna Nandi
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Anish Nag
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, India
| | - Somanjana Khatua
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, India
| | - Surjit Sen
- Department of Botany, Fakir Chand College, Kolkata, India
| | | | - Arghya Naskar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | |
Collapse
|
8
|
Kim HH, Lee JC, Oh IJ, Kim EY, Yoon SH, Lee SY, Lee MK, Lee JE, Park CK, Lee KY, Lee SY, Kim SJ, Lim JH, Choi CM. Real-World Outcomes of Crizotinib in ROS1-Rearranged Advanced Non-Small-Cell Lung Cancer. Cancers (Basel) 2024; 16:528. [PMID: 38339278 PMCID: PMC10854608 DOI: 10.3390/cancers16030528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Real-world data on the use and outcomes of crizotinib in ROS1-rearranged non-small-cell lung cancer (NSCLC) are limited. This study aims to analyze the real-world efficacy of crizotinib in South Korea and explore the utilization of liquid biopsies that implement next-generation sequencing (NGS) using cell-free total nucleic acids. In this prospective multicenter cohort study, 40 patients with ROS1-rearranged NSCLC, either starting or already on crizotinib, were enrolled. Patients had a median age of 61 years, with 32.5% presenting brain/central nervous system (CNS) metastases at treatment initiation. At the data cutoff, 48.0% were still in treatment; four continued with it even after disease progression due to the clinical benefits. The objective response rate was 70.0%, with a median duration of response of 27.8 months. The median progression-free survival was 24.1 months, while the median overall survival was not reached. Adverse events occurred in 90.0% of patients, primarily with elevated transaminases, yet these were mostly manageable. The NGS assay detected a CD74-ROS1 fusion in 2 of the 14 patients at treatment initiation and identified emerging mutations, such as ROS1 G2032R, ROS1 D2033N, and KRAS G12D, during disease progression. These findings confirm crizotinib's sustained clinical efficacy and safety in a real-world context, which was characterized by a higher elderly population and higher rates of brain/CNS metastases. The study highlights the clinical relevance of liquid biopsy for detecting resistance mechanisms, suggesting its value in personalized treatment strategies.
Collapse
Affiliation(s)
- Hyeon Hwa Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea;
| | - Jae Cheol Lee
- Department of Oncology, Asan Medical Centre, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Gwangju 58128, Republic of Korea;
| | - Eun Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seong Hoon Yoon
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea;
| | - Shin Yup Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 41404, Republic of Korea
| | - Min Ki Lee
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Pusan National University Hospital, Busan 49241, Republic of Korea;
| | - Jeong Eun Lee
- Division of Pulmonology, Department of Internal Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chan Kwon Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea;
| | - Kye Young Lee
- Departments of Internal Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Republic of Korea;
| | - Sung Yong Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
| | - Seung Joon Kim
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea;
| | - Jun Hyeok Lim
- Department of Internal Medicine, Inha University Hospital, Incheon 22332, Republic of Korea
| | - Chang-min Choi
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea;
- Department of Oncology, Asan Medical Centre, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| |
Collapse
|
9
|
Guo T, Zhu W, Zhao S, Qiu W, Wu Y, Li X, Ke F, Cheng H. Long‑term survival of a patient with advanced lung cancer treated with targeted therapy and anti‑PD‑1 immunotherapy as multi‑line therapy: A case report. Oncol Lett 2024; 27:32. [PMID: 38108071 PMCID: PMC10722554 DOI: 10.3892/ol.2023.14166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/14/2023] [Indexed: 12/19/2023] Open
Abstract
Lung cancer is the most common type of cancer worldwide. Lung adenocarcinoma, a type of non-small cell lung cancer (NSCLC), is a common type of lung cancer. In recent years, immunotherapy has become the primary method of treatment for several solid cancers, including NSCLC. In the present study, the case of a patient with NSCLC following left superior lobectomy is reported. Different systemic therapies failed, such as a pemetrexed + carboplatin regimen, paclitaxel liposome + cisplatin and pembrolizumab, and albumin-bound paclitaxel + toripalimab, but long-term survival was achieved following targeted therapy and anti-programmed cell death protein-1 (PD-1) immunotherapy. The patient survived for >4 years following lung cancer progression, which is notably longer than expected for patients with advanced lung cancer. In conclusion, the present case demonstrated the efficacy of targeted therapy and anti-PD-1 immunotherapy for the treatment of advanced lung cancer following the occurrence of drug resistance and progressive disease.
Collapse
Affiliation(s)
- Tianhao Guo
- Institute of Health and Regimen, Jiangsu Open University, Nanjing, Jiangsu 210036, P.R. China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, Jiangsu 210023, P.R. China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Wenjian Zhu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, Jiangsu 210023, P.R. China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Shuoqi Zhao
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, Jiangsu 210023, P.R. China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Wenli Qiu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Yan Wu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Xuan Li
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Fei Ke
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Haibo Cheng
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, Jiangsu 210023, P.R. China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
10
|
Long J, Zhai M, Jiang Q, Li J, Xu C, Chen D. The incidence and mortality of lung cancer in China: a trend analysis and comparison with G20 based on the Global Burden of Disease Study 2019. Front Oncol 2023; 13:1177482. [PMID: 37621689 PMCID: PMC10446846 DOI: 10.3389/fonc.2023.1177482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/26/2023] [Indexed: 08/26/2023] Open
Abstract
Background Lung cancer is a significant health concern in China. There is limited available data of its burden and trends. This study aims to evaluate the trends of lung cancer across different age groups and genders in China and the Group of Twenty (G20) countries, explore the risk factors, and predict the future trends over a 20-year period. Methods The data were obtained from the GBD study 2019. The number of cases, age standardized rate (ASR), and average annual percentage changes (AAPC) were used to estimate the trend in lung cancer by age, gender, region and risk factor. The trend of lung cancer was predicted by autoregressive integrated moving average (ARIMA) model by the "xtarimau" command. The joinpoint regression analysis was conducted to identify periods with the highest changes in incidence and mortality. Additionally, the relationship between AAPCs and socio-demographic index (SDI) was explored. Results From 1990 to 2019, both the incidence and mortality of lung cancer in China and G20 significantly increased, with China experiencing a higher rate of increase. The years with the highest increase in incidence of lung cancer in China were 1998-2004 and 2007-2010. Among the G20 countries, the AAPC in incidence and mortality of lung cancer in the Republic of Korea was the highest, followed closely by China. Although India exhibited similarities, its AAPC in lung cancer incidence and mortality rates was lower than that of China. The prediction showed that the incidence in China will continue to increase. In terms of risk factors, smoking was the leading attributable cause of mortality in all countries, followed by occupational risk and ambient particulate matter pollution. Notably, smoking in China exhibited the largest increase among the G20 countries, with ambient particulate matter pollution ranking second. Conclusion Lung cancer is a serious public health concern in China, with smoking and environmental particulate pollution identified as the most important risk factors. The incidence and mortality rates are expected to continue to increase, which places higher demands on China's lung cancer prevention and control strategies. It is urgent to tailor intervention measures targeting smoking and environmental pollution to contain the burden of lung cancer.
Collapse
Affiliation(s)
- Jianhai Long
- Department of Pulmonary and Critical Care Medicine, Beijing Tiantan Hospital, Capital Medicine University, Beijing, China
| | - Mimi Zhai
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Qin Jiang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiyang Li
- Department of Pulmonary and Critical Care Medicine, Beijing Tiantan Hospital, Capital Medicine University, Beijing, China
| | - Cixian Xu
- Public Health Emergency Center, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Duo Chen
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Lu T, Huang Y, Cai Z, Lin W, Chen X, Chen R, Hu Y. The cost-effectiveness of cemiplimab plus chemotherapy as the first-line treatment for advanced non-small cell lung cancer. Front Pharmacol 2023; 14:1171302. [PMID: 37564176 PMCID: PMC10409993 DOI: 10.3389/fphar.2023.1171302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Background: The EMPOWER-LUNG 3 clinical trial has shown that cemiplimab plus chemotherapy (CCT) significantly extended overall survival (OS) and progression-free survival (PFS) for patients with advanced non-small cell cancer (NSCLC) compared to placebo plus chemotherapy (PCT). However, the cost-effectiveness of this new treatment option remains unknown. Thus, we evaluated the cost-effectiveness of CCT versus (vs.) PCT as the first-line treatment for patients with advanced NSCLC from the perspective of the Chinese healthcare system. Methods: We constructed a Markov model to evaluate the cost-effectiveness of CCT as the first-line treatment for patients with advanced NSCLC. The transition probabilities were extracted from the survival data of the EMPOWER-LUNG 3 trial. The drugs' costs were referred from national tender prices, while other model input parameters were derived from the EMPOWER-LUNG 3 trial and published literature. The outcome parameters mainly included quality-adjusted life years (QALYs) and incremental cost-effectiveness ratios (ICERs). One-way sensitivity analysis and probabilistic sensitivity analysis were performed to evaluate the robustness of the model outcomes. Results: Compared to PCT, in the CCT regimen, an additional $79,667 was spent in terms of the total cost and with an additional 0.31 QALYs, resulting in an ICER value of $253,148/QALY. Sensitivity analysis indicated that the hazard ratio (HR) of OS, the cost of cemiplimab (100 mg), and the HR of PFS, all significantly impacted the model's results. The probability of CCT (vs. PCT) being cost-effective was 0% at a willingness-to-pay threshold of $38,201/QALYs in China. The scenario analysis showed that when the price of cemiplimab was reduced to less than $184.09/100 mg, the CCT regimen could be considered cost-effective as the first-line treatment for patients with advanced NSCLC compared to the PCT. Conclusion: In China, the CCT was not cost-effective as the first-line treatment for patients with advanced NSCLC.
Collapse
Affiliation(s)
- Tingting Lu
- Department of Pharmacy, Mindong Hospital Affiliated to Fujian Medical University, Ningde, Fujian, China
| | - Yufan Huang
- Department of Pharmacy, Mindong Hospital Affiliated to Fujian Medical University, Ningde, Fujian, China
| | - Zhongjie Cai
- Department of Pharmacy, Mindong Hospital Affiliated to Fujian Medical University, Ningde, Fujian, China
| | - Wangchun Lin
- Department of Pharmacy, Mindong Hospital Affiliated to Fujian Medical University, Ningde, Fujian, China
| | - Xiaoxiao Chen
- Department of Pharmacy, Mindong Hospital Affiliated to Fujian Medical University, Ningde, Fujian, China
| | - Ruijia Chen
- Department of Pharmacy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yingying Hu
- Department of Pharmacy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
12
|
Ali ES, Chakrabarty B, Ramproshad S, Mondal B, Kundu N, Sarkar C, Sharifi-Rad J, Calina D, Cho WC. TRPM2-mediated Ca 2+ signaling as a potential therapeutic target in cancer treatment: an updated review of its role in survival and proliferation of cancer cells. Cell Commun Signal 2023; 21:145. [PMID: 37337283 DOI: 10.1186/s12964-023-01149-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/28/2023] [Indexed: 06/21/2023] Open
Abstract
The transient receptor potential melastatin subfamily member 2 (TRPM2), a thermo and reactive oxygen species (ROS) sensitive Ca2+-permeable cation channel has a vital role in surviving the cell as well as defending the adaptability of various cell groups during and after oxidative stress. It shows higher expression in several cancers involving breast, pancreatic, prostate, melanoma, leukemia, and neuroblastoma, indicating it raises the survivability of cancerous cells. In various cancers including gastric cancers, and neuroblastoma, TRPM2 is known to conserve viability, and several underlying mechanisms of action have been proposed. Transcription factors are thought to activate TRPM2 channels, which is essential for cell proliferation and survival. In normal physiological conditions with an optimal expression of TRPM2, mitochondrial ROS is produced in optimal amounts while regulation of antioxidant expression is carried on. Depletion of TRPM2 overexpression or activity has been shown to improve ischemia-reperfusion injury in organ levels, reduce tumor growth and/or viability of various malignant cancers like breast, gastric, pancreatic, prostate, head and neck cancers, melanoma, neuroblastoma, T-cell and acute myelogenous leukemia. This updated and comprehensive review also analyzes the mechanisms by which TRPM2-mediated Ca2+ signaling can regulate the growth and survival of different types of cancer cells. Based on the discussion of the available data, it can be concluded that TRPM2 may be a unique therapeutic target in the treatment of several types of cancer. Video Abstract.
Collapse
Affiliation(s)
- Eunus S Ali
- College of Medicine and Public Health, Flinders University, Bedford Park, 5042, Australia
- Gaco Pharmaceuticals, Dhaka, 1000, Bangladesh
- Present Address: Department of Biochemistry and Molecular Genetics, and Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, 303 E Superior St, Chicago, IL, 60611, USA
| | | | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, 1400, Bangladesh
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, 1400, Bangladesh
| | - Neloy Kundu
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, 200349, Romania.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China.
| |
Collapse
|