1
|
Wei Y, Li Z, Yu T, Chen Y, Yang Q, Wen K, Liao J, Li L. Ultrasound-activated piezoelectric biomaterials for cartilage regeneration. ULTRASONICS SONOCHEMISTRY 2025; 117:107353. [PMID: 40250302 DOI: 10.1016/j.ultsonch.2025.107353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025]
Abstract
Due to the low density of chondrocytes and limited ability to repair damaged extracellular matrix (ECM) in cartilage, many patients with congenital or acquired craniofacial trauma require filler graft materials to support facial structure, restore function, improve self-confidence, and regain socialization. Ultrasound has the capacity to stimulate piezoelectric materials, converting mechanical energy into electrical signals that can regulate the metabolism, proliferation, and differentiation of chondrocytes. This unique property has sparked growing interest in using piezoelectric biomaterials in regenerative medicine. In this review, we first explain the principle behind ultrasound-activated piezoelectric materials and how they generate piezopotential. We then review studies demonstrating how this bioelectricity promotes chondrocyte regeneration, stimulates the secretion of key extracellular components and supports cartilage regeneration by activating relevant signaling pathways. Next, we discuss the properties, synthesis, and modification strategies of various piezoelectric biomaterials. We further discuss recent progresses in the development of ultrasound-activated piezoelectric biomaterials specifically designed for cartilage regeneration. Lastly, we discuss future research challenges facing this technology, ultrasound-activated piezoelectric materials for cartilage regeneration engineering. While the technology holds great promise, certain obstacles remain, including issues related to material stability, precise control over ultrasound parameters, and the integration of these systems into clinical settings. The combination of ultrasound-activated piezoelectric technology with other emerging fields, such as Artificial Intelligence (AI) and cartilage organoid chips, may open new frontiers in regenerative medicine. We hope this review encourages further exploration of ultrasound-activated strategies for piezoelectric materials and their future applications in regenerative medicines.
Collapse
Affiliation(s)
- Yangchen Wei
- The First Affiliated Hospital, Center of Burn & Plastic and Wound Repair, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, PR China
| | - Zhengyang Li
- The First Affiliated Hospital, Center of Burn & Plastic and Wound Repair, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, PR China
| | - Tianjing Yu
- The First Affiliated Hospital, Center of Burn & Plastic and Wound Repair, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Yan Chen
- The First Affiliated Hospital, Center of Burn & Plastic and Wound Repair, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Qinglai Yang
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Kaikai Wen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, PR China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Junlin Liao
- The First Affiliated Hospital, Center of Burn & Plastic and Wound Repair, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, PR China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
2
|
Qu S, Zheng S, Muhammad S, Huang L, Guo B. An exploration of the ocular mysteries linking nanoparticles to the patho-therapeutic effects against keratitis. J Nanobiotechnology 2025; 23:184. [PMID: 40050881 PMCID: PMC11887204 DOI: 10.1186/s12951-025-03230-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025] Open
Abstract
Microbial keratitis, a sight-threatening corneal infection, remains a significant global health concern. Conventional therapies using antimicrobial agents often suffers from limitations such as poor drug penetration, side effects, and occurrence of drug resistance, with poor prognosis. Novel treatment techniques, with their unique properties and targeted delivery capabilities, offers a promising solution to overcome these challenges. This review delves into timely update of the state-of-the-art advance therapeutics for keratitis treatment. The diverse microbial origins of keratitis, including viral, bacterial, and fungal infections, exploring their complex pathogenic mechanisms, followed by the drug resistance mechanisms in keratitis pathogens are reviewed briefly. Importantly, the emerging therapeutic techniques for keratitis treatment including piezodynamic therapy, photothermal therapy, photodynamic therapy, nanoenzyme therapy, and metal ion therapy are summarized in this review showcasing their potential to overcome the limitations of traditional treatments. The challenges and future directions for advance therapies and nanotechnology-based approaches are discussed, focusing on safety, targeting strategies, drug resistance, and combination therapies. This review aims to inspire researchers to revolutionize and accelerate the development of functional materials using different therapies for keratitis treatment.
Collapse
Affiliation(s)
- Siying Qu
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai City, Guangdong Province, 519000, China
| | - Shuihua Zheng
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai City, Guangdong Province, 519000, China
| | - Sibtain Muhammad
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Liang Huang
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai City, Guangdong Province, 519000, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Jones C, Carvalho MS, Jain A, Rodriguez-Lejarraga P, Pires F, Morgado J, Lanceros-Mendez S, Ferreira FC, Esteves T, Sanjuan-Alberte P. Wireless Stimulation of Barium Titanate@PEDOT Nanoparticles Toward Bioelectrical Modulation in Cancer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8836-8848. [PMID: 39880384 PMCID: PMC11827599 DOI: 10.1021/acsami.4c12387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/31/2025]
Abstract
Cancer cells possess distinct bioelectrical properties, yet therapies leveraging these characteristics remain underexplored. Herein, we introduce an innovative nanobioelectronic system combining a piezoelectric barium titanate nanoparticle core with a conducting poly(3,4-ethylenedioxythiophene) shell (BTO@PEDOT NPs), designed to modulate cancer cell bioelectricity through noninvasive, wireless stimulation. Our hypothesis is that acting as nanoantennas, BTO@PEDOT NPs convert mechanical inputs provided by ultrasound (US) into electrical signals, capable of interfering with the bioelectronic circuitry of two human breast cancer cell lines, MCF-7 and MDA-MB-231. Upon US stimulation, the viability of MCF-7 and MDA-MB-231 cells treated with 200 μg mL-1 BTO@PEDOT NPs and US reduced significantly to 31% and 24%, respectively, while healthy human mammary fibroblasts (HMF) were unaffected by the treatment. Subsequent assays shed light on how this approach could interact with cell's bioelectrical mechanisms, namely, by increasing intracellular reactive oxygen species (ROS) and calcium concentrations. Furthermore, this system was able to polarize cancer cell membranes, halting their cell cycle and potentially harnessing their tumorigenic characteristics. These findings underscore the crucial role of bioelectricity in cancer progression and highlight the potential of nanobioelectronic systems as an emerging and promising strategy for cancer intervention.
Collapse
Affiliation(s)
- Catarina
Franco Jones
- Department
of Bioengineering and iBB - Institute of Bioengineering and Biosciences,
Instituto Superior Técnico, Universidade
de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
- Associate
Laboratory i4HB−Institute for Health and Bioeconomy, Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| | - Marta S. Carvalho
- Department
of Bioengineering and iBB - Institute of Bioengineering and Biosciences,
Instituto Superior Técnico, Universidade
de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
- Associate
Laboratory i4HB−Institute for Health and Bioeconomy, Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| | - Akhil Jain
- Division
of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.
| | - Paula Rodriguez-Lejarraga
- Basque
Center for Materials, Applications and Nanostructures, UPV/EHU Science
Park, BCMaterials, Leioa 48940, Spain
| | - Filipa Pires
- Department
of Bioengineering and Instituto de Telecomunicações
(IT), Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Jorge Morgado
- Department
of Bioengineering and Instituto de Telecomunicações
(IT), Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Senentxu Lanceros-Mendez
- Basque
Center for Materials, Applications and Nanostructures, UPV/EHU Science
Park, BCMaterials, Leioa 48940, Spain
- Centre
of
Physics Universities of Minho and Porto (CFUM-UP), University of Minho and Laboratory of Physics for Materials and Emergent
Technologies, LapMET, Campus de Gualtar, Braga 4710-057, Portugal
- Ikerbasque,
Basque Foundation for Science, Bilbao 48009, Spain
| | - Frederico Castelo Ferreira
- Department
of Bioengineering and iBB - Institute of Bioengineering and Biosciences,
Instituto Superior Técnico, Universidade
de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
- Associate
Laboratory i4HB−Institute for Health and Bioeconomy, Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| | - Teresa Esteves
- Department
of Bioengineering and iBB - Institute of Bioengineering and Biosciences,
Instituto Superior Técnico, Universidade
de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
- Associate
Laboratory i4HB−Institute for Health and Bioeconomy, Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| | - Paola Sanjuan-Alberte
- Department
of Bioengineering and iBB - Institute of Bioengineering and Biosciences,
Instituto Superior Técnico, Universidade
de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
- Associate
Laboratory i4HB−Institute for Health and Bioeconomy, Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| |
Collapse
|
4
|
Chakraborty S, Debnath S, Mahipal Malappuram K, Parasuram S, Chang HT, Chatterjee K, Nain A. Flexible and Robust Piezoelectric Chitosan Films with Enhanced Bioactivity. Biomacromolecules 2025; 26:1128-1140. [PMID: 39804579 DOI: 10.1021/acs.biomac.4c01464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Chitosan (CHT) is a known piezoelectric biomacromolecule; however, its usage is limited due to rapid degradation in an aqueous system. Herein, we prepared CHT film via a solvent casting method and cross-linked in an alkaline solution. Sodium hydroxide facilitated deprotonation, leading to increased intramolecular hydrogen bonding and mechanical properties. The CHT film remained intact for 30 days in aqueous environments. A systematic study revealed a gradual increase in the output voltage from 0.9 to 1.8 V under external force (1-16 N). In addition, the CHT film showed remarkable antibacterial and anti-inflammatory activities under ultrasound stimulation and inhibition of inflammatory cytokines. The CHT films also displayed enhanced cellular proliferation and ∼5-fold faster migration of NIH3T3 cells under US stimulation. Overall, this work presents a robust, biocompatible, and wearable CHT device that can transform biomechanical energy into electrical pulses for the modulation of cell fate processes and other bioactivities.
Collapse
Affiliation(s)
- Srishti Chakraborty
- Department of Material Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Souvik Debnath
- Department of Material Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | | | - Sampath Parasuram
- Department of Material Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Huan-Tsung Chang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Center for Advanced Biomaterials and Technology Innovation, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Breast Surgery, Department of General Surgery, Chang-Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Kaushik Chatterjee
- Department of Material Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Amit Nain
- Department of Material Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
5
|
Zheng Y, Ju Y, Liu Y, Yang F. Piezoelectric Nanoparticle-Based Ultrasound Wireless Piezoelectric Neuromodulation Inhibits Epileptiform Activity of Primary Neurons. ACS APPLIED BIO MATERIALS 2024; 7:8543-8551. [PMID: 39556669 DOI: 10.1021/acsabm.4c01343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Piezoelectric materials, renowned for their ability to convert mechanical energy into electrical energy, have gained attention for their potential in biomedical applications. In particular, piezoelectric nanoparticles, such as barium titanate nanoparticles, hold great promise for treating neurologically related diseases. In this study, barium titanate piezoelectric nanoparticles are used as stimulators to directly treat epileptic neurons. After being modified by polyethylene glycol, barium titanate nanoparticles have shown excellent biocompatibility and dispersibility. Furthermore, such nanoparticles offer wireless piezoelectric stimulation to neurons in response to low-intensity pulsed ultrasound. More importantly, our experiments reveal that piezoelectric stimulation immediately reduces neuronal intracellular calcium concentration and restores cell viability. These effects are attributed to the opening of voltage-gated calcium channels and the release of active substances. These findings offer insights into the potential of piezoelectric stimulation as an approach for epilepsy treatment and enhance our understanding of the mechanisms underlying electrical stimulation in epileptic neurons.
Collapse
Affiliation(s)
- Yuxiang Zheng
- State Key Laboratory of Digital Medical Engineering, Jiangsu Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Yongxu Ju
- State Key Laboratory of Digital Medical Engineering, Jiangsu Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Yang Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Fang Yang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| |
Collapse
|
6
|
Li S, He N, Wu X, Chen F, Xue Q, Li S, Zhao C. Characteristics of Ultrasound-Driven Barium Titanate Nanoparticles and the Mechanism of Action on Solid Tumors. Int J Nanomedicine 2024; 19:12769-12791. [PMID: 39624116 PMCID: PMC11610387 DOI: 10.2147/ijn.s491816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/04/2024] [Indexed: 01/03/2025] Open
Abstract
Sonodynamic therapy (SDT) utilizes specific sound waves to activate sonosensitizers, generating localized biological effects to eliminate tumor cells. With advancements in nanomedicine, the application of nano-acoustic sensitizers has significantly advanced the development of SDT. BaTiO3 (BTO), an inorganic nano-acoustic sensitizer, possesses light refraction characteristics and a high dielectric constant, and can generate an electric field under ultrasound (US) stimulation. With continuous progress in multidisciplinary fields of US research, scientists have developed various types of barium titanate nanoparticles (BTNPs) to further advance SDT research and applications in tumor therapy. In this review, we present recently proposed and representative BTNPs, including their pathways of action, such as the induction of tumor cell senescence, ferroptosis, and glutathione depletion to reshape the tumor microenvironment, as well as their surface modifications. Research indicates that the mechanisms of action of ultrasound-driven BTNPs in tumor therapy are multifaceted. These mechanisms, whether utilized individually or synergistically, offer a potent and targeted strategy for cancer treatment. Furthermore, we discuss the application of BTNPs in various tumor types. Finally, we summarize the current challenges and future prospects for the clinical translation of BTNPs.
Collapse
Affiliation(s)
- Shuao Li
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Ningning He
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Xiaoyu Wu
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Fang Chen
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Qingwen Xue
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Shangyong Li
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Cheng Zhao
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
7
|
Guo Z, Liu H, Wang W, Hu Z, Li X, Chen H, Wang K, Li Z, Yuan C, Ge X. Recent Advances in Antibacterial Strategies Based on TiO 2 Biomimetic Micro/Nano-Structured Surfaces Fabricated Using the Hydrothermal Method. Biomimetics (Basel) 2024; 9:656. [PMID: 39590228 PMCID: PMC11591971 DOI: 10.3390/biomimetics9110656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Ti and its alloys, widely utilized in orthopedic and dental implants, inherently lack antibacterial properties, posing significant infection risks, especially in the context of growing antibiotic resistance. This review critically evaluates non-antibiotic antibacterial strategies, with a particular focus on surface modifications and micro/nano-structured surfaces. Micro/nano-structured surfaces, inspired by natural topographies, utilize physical mechanisms to eradicate bacteria. Despite their potential, the antibacterial efficacy of these surfaces remains insufficient for clinical application. Titanium dioxide (TiO2), known for its excellent photocatalytic antibacterial activity and biocompatibility, is emerging as an ideal candidate for enhancing micro/nano-structured surfaces. By combining the photocatalytic antibacterial effects of TiO2 with the mechanical bactericidal properties of micro/nano-structured surfaces, superior antibacterial performance can be achieved. The hydrothermal method is frequently employed to fabricate TiO2 micro/nano-structured surfaces, and this area of research continues to thrive, particularly in the development of antibacterial strategies. With demonstrated efficacy, combined antibacterial strategies based on TiO2 micro/nano-structured surfaces have become a prominent focus in current research. Consequently, the integration of physical stimulation and chemical release mechanisms may represent the future direction for TiO2 micro/nano-structured surfaces. This review aims to advance the study of TiO2 micro/nano-structured surfaces in antibacterial applications and to inspire more effective non-antibiotic antibacterial solutions.
Collapse
Affiliation(s)
- Zilin Guo
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Hanpeng Liu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wuzhi Wang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Zijun Hu
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Xiaofang Li
- College of Foreign Languages, Taiyuan University of Technology, Taiyuan 030024, China
| | - Hao Chen
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Zhaoyang Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Caideng Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiang Ge
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| |
Collapse
|
8
|
Tripathi P, Dubey AK. Role of Piezoelectricity in Disease Diagnosis and Treatment: A Review. ACS Biomater Sci Eng 2024; 10:6061-6077. [PMID: 39353103 DOI: 10.1021/acsbiomaterials.4c01346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Because of their unique electromechanical coupling response, piezoelectric smart biomaterials demonstrated distinctive capability toward effective, efficient, and quick diagnosis and treatment of a wide range of diseases. Such materials have potentiality to be utilized as wireless therapeutic methods with ultrasonic stimulation, which can be used as self-powered biomedical devices. An emerging advancement in the realm of personalized healthcare involves the utilization of piezoelectric biosensors for a range of therapeutic diagnosis such as diverse physiological signals in the human body, viruses, pathogens, and diseases like neurodegenerative ones, cancer, etc. The combination of piezoelectric nanoparticles with ultrasound has been established as a promising approach in sonodynamic therapy and piezocatalytic therapeutics and provides appealing alternatives for noninvasive treatments for cancer, chronic wounds, neurological diseases, etc. Innovations in implantable medical devices (IMDs), such as implantable piezoelectric energy generator (iPEG), offer significant advantages in improving physiological functioning and ability to power a cardiac pacemaker and restore the heart function. This comprehensive review critically evaluates the role of piezoelectricity in disease diagnosis and treatment, highlighting the implication of piezoelectric smart biomaterials for biomedical devices. It also discusses the potential of piezoelectric materials in healthcare monitoring, tissue engineering, and other medical applications while emphasizing future trends and challenges in the field.
Collapse
Affiliation(s)
- Pratishtha Tripathi
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ashutosh Kumar Dubey
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
9
|
James EC, Tomaskovic‐Crook E, Crook JM. Engineering 3D Scaffold-Free Nanoparticle-Laden Stem Cell Constructs for Piezoelectric Enhancement of Human Neural Tissue Formation and Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310010. [PMID: 39049737 PMCID: PMC11516115 DOI: 10.1002/advs.202310010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/04/2024] [Indexed: 07/27/2024]
Abstract
Electrical stimulation (ES) of cellular systems can be utilized for biotechnological applications and electroceuticals (bioelectric medicine). Neural cell stimulation especially has a long history in neuroscience research and is increasingly applied for clinical therapies. Application of ES via conventional electrodes requires external connectors and power sources, hindering scientific and therapeutic applications. Here engineering novel 3D scaffold-free human neural stem cell constructs with integrated piezoelectric nanoparticles for enhanced neural tissue induction and function is described. Tetragonal barium titanate (BaTi03) nanoparticles are employed as piezoelectric stimulators prepared as cytocompatible dispersions, incorporated into 3D self-organizing neural spheroids, and activated wirelessly by ultrasound. Ultrasound delivery (low frequency; 40 kHz) is optimized for cell survival, and nanoparticle activation enabled ES throughout the spheroids during differentiation, tissue formation, and maturation. The resultant human neural tissues represent the first example of direct tissue loading with piezoelectric particles for ensuing 3D ultrasound-mediated piezoelectric enhancement of human neuronal induction from stem cells, including augmented neuritogenesis and synaptogenesis. It is anticipated that the platform described will facilitate advanced tissue engineering and in vitro modeling of human neural (and potentially non-neural) tissues, with modeling including tissue development and pathology, and applicable to preclinical testing and prototyping of both electroceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Emma Claire James
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteAIIM FacilityUniversity of WollongongFairy MeadowNSW2519Australia
- Arto Hardy Family Biomedical Innovation HubChris O'Brien LifehouseCamperdownNSW2050Australia
| | - Eva Tomaskovic‐Crook
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteAIIM FacilityUniversity of WollongongFairy MeadowNSW2519Australia
- Arto Hardy Family Biomedical Innovation HubChris O'Brien LifehouseCamperdownNSW2050Australia
- School of Medical SciencesFaculty of Medicine and HealthThe University of SydneyCamperdownNSW2006Australia
| | - Jeremy Micah Crook
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteAIIM FacilityUniversity of WollongongFairy MeadowNSW2519Australia
- Arto Hardy Family Biomedical Innovation HubChris O'Brien LifehouseCamperdownNSW2050Australia
- School of Medical SciencesFaculty of Medicine and HealthThe University of SydneyCamperdownNSW2006Australia
- Institute of Innovative MaterialsAIIM FacilityInnovation CampusFaculty of Engineering and Information SystemsUniversity of WollongongFairy MeadowNSW2519Australia
| |
Collapse
|
10
|
Imani IM, Kim HS, Shin J, Lee D, Park J, Vaidya A, Kim C, Baik JM, Zhang YS, Kang H, Hur S, Song H. Advanced Ultrasound Energy Transfer Technologies using Metamaterial Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401494. [PMID: 38889336 PMCID: PMC11336982 DOI: 10.1002/advs.202401494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/05/2024] [Indexed: 06/20/2024]
Abstract
Wireless energy transfer (WET) based on ultrasound-driven generators with enormous beneficial functions, is technologically in progress by the valuation of ultrasonic metamaterials (UMMs) in science and engineering domains. Indeed, novel metamaterial structures can develop the efficiency of mechanical and physical features of ultrasound energy receivers (US-ETs), including ultrasound-driven piezoelectric and triboelectric nanogenerators (US-PENGs and US-TENGs) for advantageous applications. This review article first summarizes the fundamentals, classification, and design engineering of UMMs after introducing ultrasound energy for WET technology. In addition to addressing using UMMs, the topical progress of innovative UMMs in US-ETs is conceptually presented. Moreover, the advanced approaches of metamaterials are reported in the categorized applications of US-PENGs and US-TENGs. Finally, some current perspectives and encounters of UMMs in US-ETs are offered. With this objective in mind, this review explores the potential revolution of reliable integrated energy transfer systems through the transformation of metamaterials into ultrasound-driven active mediums for generators.
Collapse
Affiliation(s)
- Iman M. Imani
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Hyun Soo Kim
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Joonchul Shin
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Dong‐Gyu Lee
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Jiwon Park
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Anish Vaidya
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Chowon Kim
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Jeong Min Baik
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- School of Advanced Materials Science and EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
- KIST‐SKKU Carbon‐Neutral Research CenterSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Yu Shrike Zhang
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's Hospital Harvard Medical SchoolCambridgeMA02139USA
| | - Heemin Kang
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Sunghoon Hur
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- KHU‐KIST Department of Converging Science and TechnologyKyung Hee UniversitySeoul02447Republic of Korea
| | - Hyun‐Cheol Song
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- School of Advanced Materials Science and EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
- KIST‐SKKU Carbon‐Neutral Research CenterSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| |
Collapse
|
11
|
Qin W, Yang Q, Zhu C, Jiao R, Lin X, Fang C, Guo J, Zhang K. A Distinctive Insight into Inorganic Sonosensitizers: Design Principles and Application Domains. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311228. [PMID: 38225708 DOI: 10.1002/smll.202311228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Sonodynamic therapy (SDT) as a promising non-invasive anti-tumor means features the preferable penetration depth, which nevertheless, usually can't work without sonosensitizers. Sonosensitizers produce reactive oxygen species (ROS) in the presence of ultrasound to directly kill tumor cells, and concurrently activate anti-tumor immunity especially after integration with tumor microenvironment (TME)-engineered nanobiotechnologies and combined therapy. Current sonosensitizers are classified into organic and inorganic ones, and current most reviews only cover organic sonosensitizers and highlighted their anti-tumor applications. However, there have few specific reviews that focus on inorganic sonosensitizers including their design principles, microenvironment regulation, etc. In this review, inorganic sonosensitizers are first classified according to their design rationales rather than composition, and the action rationales and underlying chemistry features are highlighted. Afterward, what and how TME is regulated based on the inorganic sonosensitizers-based SDT nanoplatform with an emphasis on the TME targets-engineered nanobiotechnologies are elucidated. Additionally, the combined therapy and their applications in non-cancer diseases are also outlined. Finally, the setbacks and challenges, and proposed the potential solutions and future directions is pointed out. This review provides a comprehensive and detailed horizon on inorganic sonosensitizers, and will arouse more attentions on SDT.
Collapse
Affiliation(s)
- Wen Qin
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Qiaoling Yang
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Chunyan Zhu
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchangzhong Road, Shanghai, 200072, P. R. China
| | - Rong Jiao
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Xia Lin
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Chao Fang
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchangzhong Road, Shanghai, 200072, P. R. China
| | - Jiaming Guo
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai, 200433, P. R. China
| | - Kun Zhang
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| |
Collapse
|
12
|
Xie X, Zhang J, Wang Y, Shi W, Tang R, Tang Q, Sun S, Wu R, Xu S, Wang M, Liang X, Cui L. Nanomaterials augmented bioeffects of ultrasound in cancer immunotherapy. Mater Today Bio 2024; 24:100926. [PMID: 38179429 PMCID: PMC10765306 DOI: 10.1016/j.mtbio.2023.100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024] Open
Abstract
Immunotherapy as a milestone in cancer treatment has made great strides in the past decade, but it is still limited by low immune response rates and immune-related adverse events. Utilizing bioeffects of ultrasound to enhance tumor immunotherapy has attracted more and more attention, including sonothermal, sonomechanical, sonodynamic and sonopiezoelectric immunotherapy. Moreover, the emergence of nanomaterials has further improved the efficacy of ultrasound mediated immunotherapy. However, most of the summaries in this field are about a single aspect of the biological effects of ultrasound, which is not comprehensive and complete currently. This review proposes the recent progress of nanomaterials augmented bioeffects of ultrasound in cancer immunotherapy. The concept of immunotherapy and the application of bioeffects of ultrasound in cancer immunotherapy are initially introduced. Then, according to different bioeffects of ultrasound, the representative paradigms of nanomaterial augmented sono-immunotherapy are described, and their mechanisms are discussed. Finally, the challenges and application prospects of nanomaterial augmented ultrasound mediated cancer immunotherapy are discussed in depth, hoping to pave the way for cancer immunotherapy and promote the clinical translation of ultrasound mediated cancer immunotherapy through the reasonable combination of nanomaterials augmented ultrasonic bioeffects.
Collapse
Affiliation(s)
- Xinxin Xie
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Jinxia Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Yuan Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Wanrui Shi
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Rui Tang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Qingshuang Tang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Ruiqi Wu
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Shuyu Xu
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Mengxin Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Ligang Cui
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| |
Collapse
|
13
|
Casal D, Casimiro MH, Ferreira LM, Leal JP, Rodrigues G, Lopes R, Moura DL, Gonçalves L, Lago JB, Pais D, Santos PMP. Review of Piezoelectrical Materials Potentially Useful for Peripheral Nerve Repair. Biomedicines 2023; 11:3195. [PMID: 38137416 PMCID: PMC10740581 DOI: 10.3390/biomedicines11123195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
It has increasingly been recognized that electrical currents play a pivotal role in cell migration and tissue repair, in a process named "galvanotaxis". In this review, we summarize the current evidence supporting the potential benefits of electric stimulation (ES) in the physiology of peripheral nerve repair (PNR). Moreover, we discuss the potential of piezoelectric materials in this context. The use of these materials has deserved great attention, as the movement of the body or of the external environment can be used to power internally the electrical properties of devices used for providing ES or acting as sensory receptors in artificial skin (e-skin). The fact that organic materials sustain spontaneous degradation inside the body means their piezoelectric effect is limited in duration. In the case of PNR, this is not necessarily problematic, as ES is only required during the regeneration period. Arguably, piezoelectric materials have the potential to revolutionize PNR with new biomedical devices that range from scaffolds and nerve-guiding conduits to sensory or efferent components of e-skin. However, much remains to be learned regarding piezoelectric materials, their use in manufacturing of biomedical devices, and their sterilization process, to fine-tune their safe, effective, and predictable in vivo application.
Collapse
Affiliation(s)
- Diogo Casal
- Departamento de Anatomia, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (L.G.); (D.P.)
- Plastic and Reconstructive Surgery Department and Burn Unit, Centro Hospitalar Universitário de Lisboa Central, Rua José António Serrano, 1169-045 Lisbon, Portugal
| | - Maria Helena Casimiro
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico (IST), Universidade de Lisboa, 2695-066 Bobadela, Portugal; (M.H.C.); (P.M.P.S.)
| | - Luís M. Ferreira
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico (IST), Universidade de Lisboa, 2695-066 Bobadela, Portugal;
| | - João Paulo Leal
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences (IMS), Instituto Superior Técnico (IST), Universidade de Lisboa, 2695-066 Bobadela, Portugal;
| | - Gabriela Rodrigues
- Centro de Ecologia, Evolução e Alterações Ambientais (cE3c) & CHANGE—Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa (FCUL), 1749-016 Lisboa, Portugal;
| | - Raquel Lopes
- Gynaecology and Obstetrics Department, Maternidade Alfredo da Costa, Centro Hospitalar Universitário de Lisboa Central, R. Viriato 1, 2890-495 Lisboa, Portugal;
| | - Diogo Lino Moura
- Anatomy Institute and Orthopedics Department, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal;
- Spine Unit, Orthopedics Department, Coimbra University Hospital, 3000-602 Coimbra, Portugal
| | - Luís Gonçalves
- Departamento de Anatomia, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (L.G.); (D.P.)
| | - João B. Lago
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa (FCUL), 1749-016 Lisboa, Portugal;
| | - Diogo Pais
- Departamento de Anatomia, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (L.G.); (D.P.)
| | - Pedro M. P. Santos
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico (IST), Universidade de Lisboa, 2695-066 Bobadela, Portugal; (M.H.C.); (P.M.P.S.)
| |
Collapse
|