1
|
Gao J, Su X, Zhang Y, Ma X, Ren B, Lei P, Jin J, Ma W. Mast cell activation induced by tamoxifen citrate via MRGPRX2 plays a potential adverse role in breast cancer treatment. Biochem Pharmacol 2025; 233:116760. [PMID: 39832668 DOI: 10.1016/j.bcp.2025.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Breast cancer is the most common malignant tumor endangering women's life and health. Tamoxifen citrate (TAM) is the first-line drug of adjuvant endocrine therapy for estrogen receptor-positive (ER+) breast cancer patients. Some sporadic cases have described rare adverse reactions of TAM with potentially life-threatening dermatological manifestations, which were associated with skin allergy. Mas related G protein-coupled receptor X2 (MRGPRX2) on human mast cells is the key target for skin allergy. We aimed to investigate the mechanism of TAM-induced allergic reactions and their potential effects on TAM treatment for breast cancer. In our study, TAM can specifically bind with MRGPRX2, which was mainly driven by hydrophobic force. TAM formed hydrogen bonds with TRP243, TRP248, and GLU164 residues in MRGPRX2. TAM induced calcium mobilization and degranulation of mast cells via MRGPRX2. Besides, TAM induced passive cutaneous anaphylaxis and active systemic anaphylaxis in C57BL/6 mice. The release of β-hexosaminidase, histamine, tumor necrosis factor-α, monocyte chemoattractant protein 1, and interleukin-8 were increased by TAM in vitro and in vivo. Furthermore, we found that MCF-7 and T-47D breast cancer cells can recruit mast cells to adjacent cancerous tissues. Besides, mast cell activation induced by TAM via MRGPRX2 significantly promoted the proliferation and migration of MCF-7 and T-47D cells, which can be effectively reversed by mast cell membrane stabilizer clarithromycin and MRGPRX2 silencing. This study proposed an anti-allergic therapeutic strategy for breast cancer treatment with TAM, while also the potential of MRGPRX2 as an adjunctive target.
Collapse
Affiliation(s)
- Jiapan Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, PR China
| | - Xinyue Su
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, PR China
| | - Yuxiu Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, PR China
| | - Xiaoyu Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, PR China
| | - Bingxi Ren
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, PR China
| | - Panpan Lei
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, PR China
| | - Jiming Jin
- First School of Clinical Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China
| | - Weina Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, PR China.
| |
Collapse
|
2
|
Liu Y, Wang H, Zhao S, Wang Z, Yang L, Zhang J, Hou Q, Xiao Z, Wang P, Liu Y. Prognostic value and clinical significance of IL-33 expression in patients with uterine corpus endometrial carcinoma. Cytokine 2025; 185:156828. [PMID: 39657332 DOI: 10.1016/j.cyto.2024.156828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/15/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
Uterine corpus endometrial carcinoma (UCEC) is one of the most common malignant tumours of the female genital tract. In the occurrence, progression and prognosis of UCEC, chronic inflammation plays an important role, making it pivotal to identify inflammatory response-related endometrial diseases. The cytokine interleukin-33 (IL-33) plays significant roles in immune responses, and has been associated with inappropriate allergic reactions, autoimmune diseases, and cancer pathology. In the past decade, studies have begun to uncover the pivotal roles of IL-33 in shaping tumour microenvironment (TME), where it may promote or inhibit tumorigenesis and development depending on the specific tumour types. However, the association between IL-33 expression and UCEC remains unclear. Here we investigated the expression profiles of IL-33 in pan-cancer based on TCGA database. Then, differential gene expression analysis and correlation analysis of IL-33 was investigated in UCEC. In addition, functional enrichment analysis and Kaplan-Meier survival analysis were performed to predict the potential function of IL-33 and its role in the prognosis of UCEC patients. Also, a nomogram model was constructed to predict the prognosis of UCEC. The expression of the inflammatory factor NF-κB p65 and the IL-33, along with its receptor ST2, was analyzed in UCEC tumour tissues and normal tissues of clinical specimens through immunohistochemical staining. Meanwhile, we used toluidine blue staining and methanol Congo red staining to observe the infiltration of mast cells and eosinophils in the endometrial tissue. The results of Kaplan-Meier plotter data indicated that patients with lower IL-33 expression had poorer progression-free interval than those with higher expression. Based on the results of multifactor Cox regression, a nomogram was generated to predict UCEC occurrence risk and prognosis. Clinical specimen characteristics also confirmed a negative correlation between IL-33 expression and UCEC staging and grading. This comprehensive analysis of IL-33, based on bioinformatics and immunohistochemistry, revealed that IL-33 has the function of inhibiting UCEC occurrence and progression and can be served as a beneficial prognostic marker in the clinic.
Collapse
Affiliation(s)
- Yuqi Liu
- School of Basic Medical College, Beihua University, Jilin 132013, China
| | - Han Wang
- School of Basic Medical College, Beihua University, Jilin 132013, China
| | - Shihan Zhao
- School of Basic Medical College, Beihua University, Jilin 132013, China
| | - Zhenjiang Wang
- School of Basic Medical College, Beihua University, Jilin 132013, China
| | - Lijuan Yang
- School of Basic Medical College, Beihua University, Jilin 132013, China
| | - Jihong Zhang
- The Pathology Department of Affiliated Hospital, Beihua University, Jilin 132013, China
| | - Qinlong Hou
- School of Basic Medical College, Beihua University, Jilin 132013, China
| | - ZiShen Xiao
- School of Basic Medical College, Beihua University, Jilin 132013, China
| | - Pengmin Wang
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, Québec, Canada.
| | - Yanbo Liu
- School of Basic Medical College, Beihua University, Jilin 132013, China.
| |
Collapse
|
3
|
Lin S, Zhang H, Zhao R, Wu Z, Zhang W, Yu M, Zhang B, Ma L, Li D, Peng L, Luo W. Single-cell multiomics reveals simvastatin inhibits pan-cancer epithelial-mesenchymal transition via the MEK/ERK pathway in XBP1+ mast cells. Sci Rep 2024; 14:29545. [PMID: 39604504 PMCID: PMC11603196 DOI: 10.1038/s41598-024-80858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
Distant metastasis is the leading cause of cancer-related mortality, and achieving survival benefits through advancements in systemic therapy remains challenging. Mast cells play a dual role in shaping the tumor microenvironment (TME) and influencing distant metastasis, underscoring the significant research value of targeting mast cells for systemic therapy in advanced cancer. We investigated variations in mast cell infiltration levels in primary and metastatic malignancies using immunocyte infiltration analysis. Mast cell subsets were identified from pan-cancer distant metastasis single-cell sequencing data through dimensionality reduction clustering and cell type annotation, combined with cell trajectory and communication network analyses. A prognostic model was established using WGCNA and 12 machine learning algorithms to identify potential mast cell targets. Drug sensitivity and Mendelian randomization analyses were conducted to select potential drugs targeting mast cells, and their effects on epithelial-mesenchymal transition (EMT) were validated through in vitro experiments, including wound healing, transwell, and western blot assays. Results revealed that activated mast cells show increased infiltration in metastatic tumors, correlating with poor survival duration. XBP1+ mast cells were identified as key components of the inhibitory TME, potentially involved in EMT activation. Simvastatin was identified as a potential drug, reversing EMT induced by XBP1+ mast cells in pan-cancer. Aberrant activation of MEK/ERK signaling in XBP1+ mast cells can stimulate cancer cell EMT by modulating degranulation, while Simvastatin can inhibit EMT by suppressing degranulation.
Collapse
Affiliation(s)
- Sen Lin
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huimin Zhang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruiqi Zhao
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhulin Wu
- Department of Traditional Chinese Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Weiqing Zhang
- Department of Traditional Chinese Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Mengjiao Yu
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bei Zhang
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lanyue Ma
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danfei Li
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lisheng Peng
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China.
| | - Weijun Luo
- Department of Traditional Chinese Medicine, People's Hospital of Longhua, Shenzhen, China.
| |
Collapse
|
4
|
Hu L, Sun C, Yuan K, Yang P. Expression, regulation, and function of PD-L1 on non-tumor cells in the tumor microenvironment. Drug Discov Today 2024; 29:104181. [PMID: 39278561 DOI: 10.1016/j.drudis.2024.104181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Antiprogrammed death ligand 1 (PD-L1) therapy is a leading immunotherapy, but only some patients with solid cancers benefit. Overwhelming evidence has revealed that PD-L1 is expressed on various immune cells in the tumor microenvironment (TME), including macrophages, dendritic cells, and regulatory T cells, modulating tumor immunity and influencing tumor progression. PD-L1 can also be located on tumor cell membranes as well as in exosomes and cytoplasm. Accordingly, the dynamic expression and various forms of PD-L1 might explain the therapy's limited efficacy and resistance. Herein a systematic summary of the expression of PD-L1 on different immune cells and their regulatory mechanisms is provided to offer a solid foundation for future studies.
Collapse
Affiliation(s)
- Lingrong Hu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Chengliang Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China.
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
5
|
Sulsenti R, Scialpi GB, Frossi B, Botti L, Ferri R, Tripodi I, Piva A, Sangaletti S, Pernici D, Cancila V, Romeo F, Chiodoni C, Lecis D, Bianchi F, Fischetti I, Enriquez C, Crivelli F, Bregni M, Renne G, Pece S, Tripodo C, Pucillo CE, Colombo MP, Jachetti E. Intracellular Osteopontin Promotes the Release of TNFα by Mast Cells to Restrain Neuroendocrine Prostate Cancer. Cancer Immunol Res 2024; 12:1147-1169. [PMID: 38869181 PMCID: PMC11369624 DOI: 10.1158/2326-6066.cir-23-0792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/28/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
Neuroendocrine prostate cancer (NEPC) is an aggressive form of prostate cancer that emerges as tumors become resistant to hormone therapies or, rarely, arises de novo in treatment-naïve patients. The urgent need for effective therapies against NEPC is hampered by the limited knowledge of the biology governing this lethal disease. Based on our prior observations in the transgenic adenocarcinoma of the mouse prostate (TRAMP) spontaneous prostate cancer model, in which the genetic depletion of either mast cells (MC) or the matricellular protein osteopontin (OPN) increases NEPC frequency, we tested the hypothesis that MCs can restrain NEPC through OPN production, using in vitro co-cultures between murine or human tumor cell lines and MCs, and in vivo experiments. We unveiled a role for the intracellular isoform of OPN, so far neglected compared with the secreted isoform. Mechanistically, we unraveled that the intracellular isoform of OPN promotes TNFα production in MCs via the TLR2/TLR4-MyD88 axis, specifically triggered by the encounter with NEPC cells. We found that MC-derived TNFα, in turn, hampered the growth of NEPC. We then identified the protein syndecan-1 (SDC1) as the NEPC-specific TLR2/TLR4 ligand that triggered this pathway. Interrogating published single-cell RNA-sequencing data, we validated this mechanism in a different mouse model. Translational relevance of the results was provided by in silico analyses of available human NEPC datasets and by immunofluorescence on patient-derived adenocarcinoma and NEPC lesions. Overall, our results show that MCs actively inhibit NEPC, paving the way for innovative MC-based therapies for this fatal tumor. We also highlight SDC1 as a potential biomarker for incipient NEPC.
Collapse
Affiliation(s)
- Roberta Sulsenti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Giuseppina B. Scialpi
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Barbara Frossi
- Immunology Section, Department of Medicine, University of Udine, Udine, Italy.
| | - Laura Botti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Renata Ferri
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Irene Tripodi
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Annamaria Piva
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Sabina Sangaletti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Davide Pernici
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy.
| | - Francesco Romeo
- Dipartimento di Onologia Sperimentale, European Institute of Oncology IRCCS, Milan, Italy.
| | - Claudia Chiodoni
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Daniele Lecis
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Francesca Bianchi
- Microenvironment and Biomarkers in Solid tumors Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Irene Fischetti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Claudia Enriquez
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Filippo Crivelli
- Oncology-Hematology Unit, ASST Valle Olona, Busto Arsizio, Italy.
| | - Marco Bregni
- Oncology-Hematology Unit, ASST Valle Olona, Busto Arsizio, Italy.
| | - Giuseppe Renne
- Uropathology and Intraoperative Diagnostic Division, European Institute of Oncology IRCCS, Milan, Italy.
| | - Salvatore Pece
- Dipartimento di Onologia Sperimentale, European Institute of Oncology IRCCS, Milan, Italy.
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy.
| | - Carlo E. Pucillo
- Immunology Section, Department of Medicine, University of Udine, Udine, Italy.
| | - Mario P. Colombo
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Elena Jachetti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| |
Collapse
|
6
|
Zeng W, Liu H, Mao Y, Jiang S, Yi H, Zhang Z, Wang M, Zong Z. Myeloid‑derived suppressor cells: Key immunosuppressive regulators and therapeutic targets in colorectal cancer (Review). Int J Oncol 2024; 65:85. [PMID: 39054950 PMCID: PMC11299769 DOI: 10.3892/ijo.2024.5673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/03/2024] [Indexed: 07/27/2024] Open
Abstract
Globally, colorectal cancer (CRC) is the third most common type of cancer. CRC has no apparent symptoms in the early stages of disease, and most patients receive a confirmed diagnosis in the middle or late disease stages. The incidence of CRC continues to increase, and the affected population tends to be younger. Therefore, determining how to achieve an early CRC diagnosis and treatment has become a top priority for prolonging patient survival. Myeloid‑derived suppressor cells (MDSCs) are a group of bone marrow‑derived immuno‑negative regulatory cells that are divided into two subpopulations, polymorphonuclear‑MDSCs and monocytic‑MDSCs, based on their phenotypic similarities to neutrophils and monocytes, respectively. These cells can inhibit the immune response and promote cancer cell metastasis in the tumour microenvironment (TME). A large aggregation of MDSCs in the TME is often a marker of cancer and a poor prognosis in inflammatory diseases of the intestine (such as colonic adenoma and ulcerative colitis). In the present review, the phenotypic classification of MDSCs in the CRC microenvironment are first discussed. Then, the amplification, role and metastatic mechanism of MDSCs in the CRC TME are described, focusing on genes, gene modifications, proteins and the intestinal microenvironment. Finally, the progress in CRC‑targeted therapies that aim to modulate the quantity, function and structure of MDSCs are summarized in the hope of identifying potential screening markers for CRC and improving CRC prognosis and therapeutic options.
Collapse
Affiliation(s)
- Wenjuan Zeng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Haohan Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yuanhao Mao
- Fuzhou Medical College, Nanchang University, Fuzhou, Jiangxi 330006, P.R. China
| | - Shihao Jiang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hao Yi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zitong Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Menghui Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
7
|
Hou Y, Chen Y, Zhang Y, Li M, Chen J. Prognostic role of chemokine-related genes in acute myeloid leukemia. PeerJ 2024; 12:e17862. [PMID: 39135956 PMCID: PMC11318587 DOI: 10.7717/peerj.17862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/14/2024] [Indexed: 08/15/2024] Open
Abstract
Background Chemotactic cytokines play a crucial role in the development of acute myeloid leukemia (AML). Thus, investigating the mechanisms of chemotactic cytokine-related genes (CCRGs) in AML is of paramount importance. Methods Using the TCGA-AML, GSE114868, and GSE12417 datasets, differential expression analysis identified differentially expressed CCRGs (DE-CCRGs). These genes were screened by overlapping differentially expressed genes (DEGs) between AML and control groups with CCRGs. Subsequently, functional enrichment analysis and the construction of a protein-protein interaction (PPI) network were conducted to explore the functions of the DE-CCRGs. Univariate Cox regression, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses identified relevant prognostic genes and developed a prognostic model. Survival analysis of the prognostic gene was performed, followed by functional similarity analysis, immune analysis, enrichment analysis, and drug prediction analysis. Results Differential expression analysis revealed 6,743 DEGs, of which 29 DE-CCRGs were selected for this study. Functional enrichment analysis indicated that DE-CCRGs were primarily involved in chemotactic cytokine-related functions and pathways. Six prognostic genes (CXCR3, CXCR2, CXCR6, CCL20, CCL4, and CCR2) were identified and incorporated into the risk model. The model's performance was validated using the GSE12417 dataset. Survival analysis showed significant differences in AML overall survival (OS) between prognostic gene high and low expression groups, indicating that prognostic gene might be significantly associated with patient survival. Additionally, nine different immune cells were identified between the two risk groups. Correlation analysis revealed that CCR2 had the most significant positive correlation with monocytes and the most significant negative correlation with resting mast cells. The tumor immune dysfunction and exclusion score was lower in the high-risk group. Conclusion CXCR3, CXCR2, CXCR6, CCL20, CCL4, and CCR2 were identified as prognostic genes correlated to AML and the tumor immune microenvironment. These findings offerred novel insights into the prevention and treatment of AML.
Collapse
Affiliation(s)
- Yanfei Hou
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yu Chen
- Department of Hematology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Yaofang Zhang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Mengyao Li
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jianfang Chen
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
8
|
Kalkusova K, Taborska P, Stakheev D, Rataj M, Smite S, Darras E, Albo J, Bartunkova J, Vannucci L, Smrz D. Impaired Proliferation of CD8 + T Cells Stimulated with Monocyte-Derived Dendritic Cells Previously Matured with Thapsigargin-Stimulated LAD2 Human Mast Cells. J Immunol Res 2024; 2024:5537948. [PMID: 39056014 PMCID: PMC11272405 DOI: 10.1155/2024/5537948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/30/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
CD8+ T cells are essential for adaptive immunity against infection and tumors. Their ability to proliferate after stimulation is crucial to their functionality. Dendritic cells (DCs) are professional antigen-presenting cells that induce their proliferation. Here, we show that thapsigargin-induced LAD2 mast cell (MC) line-released products can impair the ability of monocyte-derived DCs to induce CD8+ T-cell proliferation and the generation of Th1 cytokine-producing T cells. We found that culture medium conditioned with LAD2 MCs previously stimulated with thapsigargin (thapsLAD2) induces maturation of DCs as determined by the maturation markers CD80, CD83, CD86, and HLA-DR. However, thapsLAD2-matured DCs produced no detectable TNFα or IL-12 during the maturation. In addition, although their surface expression of PD-L1 was comparable with the immature or TLR7/8-agonist (R848)-matured DCs, their TIM-3 expression was significantly higher than in immature DCs and even much higher than in R848-matured DCs. In addition, contrary to R848-matured DCs, the thapsLAD2-matured DCs only tended to induce enhanced proliferation of CD4+ T cells than immature DCs. For CD8+ T cells, this tendency was not even detected because thapsLAD2-matured and immature DCs comparably induced their proliferation, which contrasted with the significantly enhanced proliferation induced by R848-matured DCs. Furthermore, these differences were comparably recapitulated in the ability of the tested DCs to induce IFNγ- and IFNγ/TNFα-producing T cells. These findings show a novel mechanism of MC-mediated regulation of adaptive immune responses.
Collapse
Affiliation(s)
- Katerina Kalkusova
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Pavla Taborska
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Dmitry Stakheev
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Michal Rataj
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Sindija Smite
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Elea Darras
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Julia Albo
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Jirina Bartunkova
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Luca Vannucci
- Laboratory of ImmunotherapyInstitute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Smrz
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
- Laboratory of ImmunotherapyInstitute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
9
|
Cheng X, Luo J, Cao J. Identification of HOXC Gene Family as Prognostic and Immune-Related Biomarkers in Breast Cancer Through mRNA Transcriptional Profile and Experimental Validation. Biochem Genet 2024:10.1007/s10528-024-10884-5. [PMID: 38995528 DOI: 10.1007/s10528-024-10884-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Breast cancer (BC) is the most common malignancy in women worldwide, and more effective biomarkers are urgently needed for the prevention and treatment of BC. Our study aimed to investigate the role of the HOXC gene family (HOXCs) and its relationship with the immune response in BC. The differential expression of HOXCs and its clinical prognostic significance in BC were explored using bioinformatics analysis, and the cBioPortal database was used to evaluate the genetic mutation profile of the HOXCs in BC. The results indicated that the expression levels of HOXC4, 10, 11, 12, and 13 were significantly increased in BC tissues compared with the normal tissues, and expressions of these genes were closely associated with BC stage, among them, high expression levels of HOXC10 and HOXC13 predicted poor outcome in BC patients. In addition, to elucidate the essential role of HOXCs in the tumor microenvironment and immunotherapeutic response of BC, the impact of HOXCs on the regulation of immune infiltration in BC was comprehensively assessed. The result showed that HOXC10 and HOXC13 expressions were significantly positively linked with the infiltration levels of CD8+T cell and M1 macrophage, while they were negatively related to Mast and Natural killer cells, suggesting the important influence of HOXCs on regulating tumor immunity in BC patients. Lastly, the RT-qPCR assay was employed to validate HOXCs expression in samples of BC patients. In conclusion, HOXCs may be a promising prognostic indicator and could regulate the immune infiltration in BC patients, thus being a promising targeted immunotherapy for BC.
Collapse
Affiliation(s)
- Xiongtao Cheng
- Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jie Luo
- Department of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Jianxiong Cao
- Department of Oncology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
10
|
Ligan C, Ma XH, Zhao SL, Zhao W. The regulatory role and mechanism of mast cells in tumor microenvironment. Am J Cancer Res 2024; 14:1-15. [PMID: 38323271 PMCID: PMC10839313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/25/2023] [Indexed: 02/08/2024] Open
Abstract
Mast cells (MCs) have emerged as pivotal contributors to both the defensive immune response and immunomodulation. They also exhibit regulatory functions in modulating pathological processes across various allergic diseases. The impact of MC presence within tumor tissues has garnered considerable attention, yielding conflicting findings. While some studies propose that MCs within tumor tissues promote tumor initiation and progression, others advocate an opposing perspective. Notably, evidence emphasizes the dual role of MCs in cancer, both as promoters and suppressors, is crucial for optimizing cancer treatment strategies. These conflicting viewpoints have generated substantial controversy, underscoring the need for a comprehensive understanding of MC's role in tumor immune responses.
Collapse
Affiliation(s)
- Caryl Ligan
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical UniversityNanjing, Jiangsu, China
| | - Xin-Hua Ma
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical UniversityNanjing, Jiangsu, China
| | - Shu-Li Zhao
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical UniversityNanjing, Jiangsu, China
| | - Wei Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical UniversityNanjing, Jiangsu, China
| |
Collapse
|
11
|
Guo X, Sun M, Yang P, Meng X, Liu R. Role of mast cells activation in the tumor immune microenvironment and immunotherapy of cancers. Eur J Pharmacol 2023; 960:176103. [PMID: 37852570 DOI: 10.1016/j.ejphar.2023.176103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
The mast cell is an important cellular component that plays a crucial role in the crosstalk between innate and adaptive immune responses within the tumor microenvironment (TME). Recently, numerous studies have indicated that mast cells related to tumors play a dual role in regulating cancers, with conflicting results seemingly determined by the degranulation medium. As such, mast cells are an ignored but very promising potential target for cancer immunotherapy based on their immunomodulatory function. In this review, we present a comprehensive overview of the roles and mechanisms of mast cells in diverse cancer types. Firstly, we evaluated the infiltration density and location of mast cells on tumor progression. Secondly, mast cells are activated by the TME and subsequently release a range of inflammatory mediators, cytokines, chemokines, and lipid products that modulate their pro-or anti-tumor functions. Thirdly, activated mast cells engage in intercellular communication with other immune or stromal cells to modulate the immune status or promote tumor development. Finally, we deliberated on the clinical significance of targeting mast cells as a therapeutic approach to restrict tumor initiation and progression. Overall, our review aims to provide insights for future research on the role of mast cells in tumors and their potential as therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Xinxin Guo
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China; Xiangnan University, Chenzhou, China
| | - Mingjun Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Peiyan Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xingchen Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|