1
|
Sheikhi K, Ghaderi S, Firouzi H, Rahimibarghani S, Shabani E, Afkhami H, Yarahmadi A. Recent advances in mesenchymal stem cell therapy for multiple sclerosis: clinical applications and challenges. Front Cell Dev Biol 2025; 13:1517369. [PMID: 39963155 PMCID: PMC11830822 DOI: 10.3389/fcell.2025.1517369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Multiple sclerosis (MS), a chronic autoimmune disorder of the central nervous system (CNS), is characterized by inflammation, demyelination, and neurodegeneration, leading to diverse clinical manifestations such as fatigue, sensory impairment, and cognitive dysfunction. Current pharmacological treatments primarily target immune modulation but fail to arrest disease progression or entirely reverse CNS damage. Mesenchymal stem cell (MSC) therapy offers a promising alternative, leveraging its immunomodulatory, neuroprotective, and regenerative capabilities. This review provides an in-depth analysis of MSC mechanisms of action, including immune system regulation, promotion of remyelination, and neuroregeneration. It examines preclinical studies and clinical trials evaluating the efficacy, safety, and limitations of MSC therapy in various MS phenotypes. Special attention is given to challenges such as delivery routes, dosing regimens, and integrating MSCs with conventional therapies. By highlighting advancements and ongoing challenges, this review underscores the potential of MSCs to revolutionize MS treatment, paving the way for personalized and combinatory therapeutic approaches.
Collapse
Affiliation(s)
- Kamran Sheikhi
- Kurdistan University of Medical Sciences, Kurdistan, Iran
| | | | - Hassan Firouzi
- Department of Medical Laboratory, Faculty of Medicine, Sari Branch, Islamic Azad University, Sari, Iran
| | - Sarvenaz Rahimibarghani
- Department of Physical Medicine and Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Shabani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| |
Collapse
|
2
|
Youssef E, Fletcher B, Palmer D. Enhancing precision in cancer treatment: the role of gene therapy and immune modulation in oncology. Front Med (Lausanne) 2025; 11:1527600. [PMID: 39871848 PMCID: PMC11769984 DOI: 10.3389/fmed.2024.1527600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/09/2024] [Indexed: 01/29/2025] Open
Abstract
Gene therapy has long been a cornerstone in the treatment of rare diseases and genetic disorders, offering targeted solutions to conditions once considered untreatable. As the field advances, its transformative potential is now expanding into oncology, where personalized therapies address the genetic and immune-related complexities of cancer. This review highlights innovative therapeutic strategies, including gene replacement, gene silencing, oncolytic virotherapy, CAR-T cell therapy, and CRISPR-Cas9 gene editing, with a focus on their application in both hematologic malignancies and solid tumors. CRISPR-Cas9, a revolutionary tool in precision medicine, enables precise editing of cancer-driving mutations, enhancing immune responses and disrupting tumor growth mechanisms. Additionally, emerging approaches target ferroptosis-a regulated, iron-dependent form of cell death-offering new possibilities for selectively inducing tumor cell death in resistant cancers. Despite significant breakthroughs, challenges such as tumor heterogeneity, immune evasion, and the immunosuppressive tumor microenvironment (TME) remain. To overcome these barriers, novel approaches like dual-targeting, armored CAR-T cells, and combination therapies with immune checkpoint inhibitors and ferroptosis inducers are being explored. Additionally, the rise of allogeneic "off-the-shelf" CAR-T therapies offers scalable and more accessible treatment options. The regulatory landscape is evolving to accommodate these advancements, with frameworks like RMAT (Regenerative Medicine Advanced Therapy) in the U.S. and ATMP (Advanced Therapy Medicinal Products) in Europe fast-tracking the approval of gene therapies. However, ethical considerations surrounding CRISPR-based gene editing-such as off-target effects, germline editing, and ensuring equitable access-remain at the forefront, requiring ongoing ethical oversight. Advances in non-viral delivery systems, such as lipid nanoparticles (LNPs) and exosomes, are improving the safety and efficacy of gene therapies. By integrating these innovations with combination therapies and addressing regulatory and ethical concerns, gene therapy is poised to revolutionize cancer treatment, providing durable, effective, and personalized solutions for both hematologic and solid tumors.
Collapse
|
3
|
Liu Y, Wang Z, Ma T, Gao Y, Chen W, Ye Z, Li Z. Differentiation of mesenchymal stem cells towards lens epithelial stem cells based on three-dimensional bio-printed matrix. Front Cell Dev Biol 2025; 12:1526943. [PMID: 39834393 PMCID: PMC11743933 DOI: 10.3389/fcell.2024.1526943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
The high risks of traumatic cataract treatments promoted the development of the concept of autologous lens regeneration. Biochemical cues can influence the cellular behavior of stem cells, and in this case, biophysical cues may be the important factors in producing rapid activation of cellular behavior. Here we bio-printed mesenchymal stem cells (MSCs) using a commonly used bioink sodium alginate-gelatin blends, and investigated the induction effect of MSC differentiation towards lens epithelial stem cells (LESCs) under a combination of biochemical cues and biophysical cues. It was found that biochemical cues in the porous three-dimensional (3D) matrix constructed using bioink sodium alginate-gelatin blends for bio-printing did not reduce the cell viability of loaded MSCs in the matrix by scanning electron microscope (SEM) observation and cell viability detection. Loaded MSCs in the matrix were consistently upregulated in the expression of proteins and genes involved in phenotypes and development signaling pathways of LESCs, as detected by polymerase chain reaction (PCR) with the support of biochemical cues. These results indicated that biophysical cues could rapidly activate the cellular behavior of MSCs differentiation, and biochemical cues could continuously induce MSCs differentiation towards LESCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Zi Ye
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, PLA General Hospital and PLA Medical College, Beijing, China
| | - Zhaohui Li
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, PLA General Hospital and PLA Medical College, Beijing, China
| |
Collapse
|
4
|
Saberian E, Jenča A, Jenča A, Zare-Zardini H, Araghi M, Petrášová A, Jenčová J. Applications of artificial intelligence in regenerative dentistry: promoting stem cell therapy and the scaffold development. Front Cell Dev Biol 2024; 12:1497457. [PMID: 39712572 PMCID: PMC11659669 DOI: 10.3389/fcell.2024.1497457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Tissue repair represents a critical concern within the domain of dentistry. On a daily basis, countless individuals seek dental clinic services due to inadequate dental care. Many of the treatments that patients receive have unfavorable side effects. The employment of innovative methodologies, including gene therapy, tissue engineering, and stem cell (SCs) applications for regenerative purposes, has garnered significant interest over the past years. In recent times, artificial intelligence, particularly neural networks, has emerged as a topic of considerable attention among many medical professionals. Artificial intelligence possesses the capability to analyze data patterns through learning algorithms. Research opportunities in the rapidly expanding field of health sciences have been made possible by the use of artificial intelligence (AI) technologies. Though its uses are not restricted to these situations, artificial intelligence (AI) has the potential to improve and accelerate many aspects of regenerative medicine research and development, especially when working with complicated patterns. This review article is to investigate how artificial intelligence might be used to enhance regenerative processes in dentistry by using scaffolds and stem cells, in light of the continuous advances in artificial intelligence in the fields of medicine and tissue regeneration. It highlights the difficulties that still exist in this developing sector and explores the possible uses of AI with a particular emphasis on dentistry practices.
Collapse
Affiliation(s)
- Elham Saberian
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, Pavol Jozef Šafárik University, Kosice, Slovakia
| | - Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, Kosice, Slovakia
| | - Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, Kosice, Slovakia
| | - Hadi Zare-Zardini
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Mohammad Araghi
- Department of Computer Engineering, The University of Tehran, Tehran, Iran
| | - Adriána Petrášová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Janka Jenčová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, Kosice, Slovakia
| |
Collapse
|
5
|
PETRELLA FRANCESCO, CASSINA ENRICOMARIO, LIBRETTI LIDIA, PIRONDINI EMANUELE, RAVEGLIA FEDERICO, TUORO ANTONIO. Stem cell technology for antitumor drug loading and delivery in oncology. Oncol Res 2024; 32:433-437. [PMID: 38361752 PMCID: PMC10865768 DOI: 10.32604/or.2023.046497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/24/2023] [Indexed: 02/17/2024] Open
Abstract
The main aim of antineoplastic treatment is to maximize patient benefit by augmenting the drug accumulation within affected organs and tissues, thus incrementing drug effects and, at the same time, reducing the damage of non-involved tissues to cytotoxic agents. Mesenchymal stromal cells (MSC) represent a group of undifferentiated multipotent cells presenting wide self-renewal features and the capacity to differentiate into an assortment of mesenchymal family cells. During the last year, they have been proposed as natural carriers for the selective release of antitumor drugs to malignant cells, thus optimizing cytotoxic action on cancer cells, while significantly reducing adverse side effects on healthy cells. MSC chemotherapeutic drug loading and delivery is an encouraging new area of cell therapy for several tumors, especially for those with unsatisfactory prognosis and limited treatment options available. Although some experimental models have been successfully developed, phase I clinical studies are needed to confirm this potential application of cell therapy, in particular in the case of primary and secondary lung cancers.
Collapse
Affiliation(s)
- FRANCESCO PETRELLA
- Department of Thoracic Surgery, Fondazione IRCCS San Gerardo dei Tintori, Monza, 20900, Italy
| | - ENRICO MARIO CASSINA
- Department of Thoracic Surgery, Fondazione IRCCS San Gerardo dei Tintori, Monza, 20900, Italy
| | - LIDIA LIBRETTI
- Department of Thoracic Surgery, Fondazione IRCCS San Gerardo dei Tintori, Monza, 20900, Italy
| | - EMANUELE PIRONDINI
- Department of Thoracic Surgery, Fondazione IRCCS San Gerardo dei Tintori, Monza, 20900, Italy
| | - FEDERICO RAVEGLIA
- Department of Thoracic Surgery, Fondazione IRCCS San Gerardo dei Tintori, Monza, 20900, Italy
| | - ANTONIO TUORO
- Department of Thoracic Surgery, Fondazione IRCCS San Gerardo dei Tintori, Monza, 20900, Italy
| |
Collapse
|
6
|
Jia L, Zhang Y, Sun S, Hao X, Wen Y. Dasatinib regulates the proliferation and osteogenic differentiation of PDLSCs through Erk and EID3 signals. Int J Med Sci 2023; 20:1460-1468. [PMID: 37790842 PMCID: PMC10542188 DOI: 10.7150/ijms.87089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Periodontal ligament stem cells (PDLSCs) are important candidate seed cells for alveolar bone tissue engineering. Dasatinib is a tyrosine kinase inhibitor, and its influence on the osteogenic differentiation of mesenchymal stem cells is a controversial topic. The present study explored the effects of different concentrations of dasatinib on the proliferation and osteogenic differentiation of PDLSCs and tentatively revealed the related mechanism. The results of CCK8 showed that low concentrations of dasatinib (1 nM) did not affect proliferation, while high concentrations of dasatinib significantly inhibited the proliferative activity of PDLSCs. This could be related to the inhibiting effects of dasatinib on Erk signals. ALP staining, alizarin red staining, and western blot proved that low concentrations of dasatinib (1 nM) promoted the osteogenic differentiation of PDLSCs, while high concentrations of dasatinib inhibited it. The negative effects of dasatinib on osteogenic differentiation were reversed when EID3 was knocked down, suggesting that EID3 mediates the regulation of dasatinib on the osteo-differentiation of PDLSCs. Taken together, high concentrations of dasatinib inhibited the proliferation and osteogenic differentiation of PDLSCs through Erk and EID3 signals, while low concentrations of dasatinib could be a potential method to enhance the bone regeneration ability of PDLSCs.
Collapse
Affiliation(s)
- Linglu Jia
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong, China
- Shandong Provincial Clinical Research Center for Oral Diseases, Shandong, China
| | - Yafei Zhang
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China & Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Shaoqing Sun
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong, China
- Shandong Provincial Clinical Research Center for Oral Diseases, Shandong, China
| | - Xingyao Hao
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong, China
- Shandong Provincial Clinical Research Center for Oral Diseases, Shandong, China
| | - Yong Wen
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong, China
- Shandong Provincial Clinical Research Center for Oral Diseases, Shandong, China
| |
Collapse
|