1
|
Gao Z, Mansor MH, Howard F, MacInnes J, Zhao X, Muthana M. Microfluidic-Assisted Silk Nanoparticles Co-Loaded with Epirubicin and Copper Sulphide: A Synergistic Photothermal-Photodynamic Chemotherapy Against Breast Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:221. [PMID: 39940197 PMCID: PMC11820260 DOI: 10.3390/nano15030221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/14/2025]
Abstract
Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has emerged as a promising non-invasive cancer treatment, addressing issues like drug resistance and systemic toxicity common in conventional breast cancer therapies. Recent research has shown that copper sulphide (CuS) nanoparticles and polydopamine (PDA) exhibit exceptional photothermal conversion efficiency under 808 nm near-infrared (NIR) laser irradiation, making them valuable for cancer phototherapy. However, the effectiveness of PDT is limited in hypoxic tumour environments, which are common in many breast cancer types, due to its reliance on local oxygen levels. Moreover, single-modality approaches, including phototherapy, often prove insufficient for complete tumour elimination, despite their therapeutic strength. In this paper, a microfluidic-assisted approach was used to create multifunctional silk-based nanoparticles (SFNPs) encapsulating the chemotherapeutic drug Epirubicin (EPI), the PTT/PDT agent CuS, and the heat-activated, oxygen-independent alkyl radical generator AIPH for combined chemotherapy, PTT, and PDT, with a polydopamine (PDA) coating for enhanced photothermal effects and surface-bound folic acid (FA) for targeted delivery in breast cancer treatment. The synthesised CuS-EPI-AIPH@SF-PDA-FA nanoparticles achieved a controlled size of 378 nm, strong NIR absorption, and high photothermal conversion efficiency. Under 808 nm NIR irradiation, these nanoparticles selectively triggered the release of alkyl radicals and EPI, improving intracellular drug levels and effectively killing various breast cancer cell lines while demonstrating low toxicity to non-cancerous cells. We demonstrate that novel core-shell CuS-EPI-AIPH@SF-PDA-FA NPs have been successfully designed as a multifunctional nanoplatform integrating PTT, PDT, and chemotherapy for targeted, synergistic breast cancer treatment.
Collapse
Affiliation(s)
- Zijian Gao
- Division of Clinical Medicine, University of Sheffield, Beech Hill Road, Sheffield S1 2RX, UK; (Z.G.); (M.H.M.); (F.H.)
| | - Muhamad Hawari Mansor
- Division of Clinical Medicine, University of Sheffield, Beech Hill Road, Sheffield S1 2RX, UK; (Z.G.); (M.H.M.); (F.H.)
- Department of Chemical and Biological Engineering, University of Sheffield, Beech Hill Road, Sheffield S1 2RX, UK;
| | - Faith Howard
- Division of Clinical Medicine, University of Sheffield, Beech Hill Road, Sheffield S1 2RX, UK; (Z.G.); (M.H.M.); (F.H.)
| | - Jordan MacInnes
- Department of Chemical and Biological Engineering, University of Sheffield, Beech Hill Road, Sheffield S1 2RX, UK;
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Munitta Muthana
- Division of Clinical Medicine, University of Sheffield, Beech Hill Road, Sheffield S1 2RX, UK; (Z.G.); (M.H.M.); (F.H.)
| |
Collapse
|
2
|
Mansor MH, Gao Z, Howard F, MacInnes J, Zhao X, Muthana M. Efficient and Rapid Microfluidics Production of Bio-Inspired Nanoparticles Derived from Bombyx mori Silkworm for Enhanced Breast Cancer Treatment. Pharmaceutics 2025; 17:95. [PMID: 39861742 PMCID: PMC11768208 DOI: 10.3390/pharmaceutics17010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: In the quest for sustainable and biocompatible materials, silk fibroin (SF), derived from natural silk, has emerged as a promising candidate for nanoparticle production. This study aimed to fabricate silk fibroin particles (SFPs) using a novel swirl mixer previously presented by our group, evaluating their characteristics and suitability for drug delivery applications, including magnetic nanoparticles and dual-drug encapsulation with curcumin (CUR) and 5-fluorouracil (5-FU). Methods: SFPs were fabricated via microfluidics-assisted desolvation using a swirl mixer, ensuring precise mixing kinetics. Comprehensive physicochemical characterisation, including size, polydispersity index (PDI), zeta potential, and secondary structure analysis, was conducted. Further, CUR/5-FU-loaded magnetic core SFPs were assessed for cytotoxicity in vitro using breast cancer cell lines and for biodistribution and targeting efficiency in a murine breast cancer model. Results: The swirl mixer produced SFPs with sizes below 200 nm and uniform distributions (PDI < 0.20) with size stability for up to 30 days. Encapsulation efficiencies were 37% for CUR and 82% for 5-FU, with sustained drug release profiles showing 50% of CUR and 70% of 5-FU released over 72 h. In vitro studies demonstrated sustained cytotoxic effects, and cell cycle arrest at the G2/M phase in breast cancer cell lines, with minimal toxicity in non-cancerous cells. Cellular uptake assays confirmed efficient drug delivery to the cytoplasm. In vivo biodistribution studies revealed increased tumour-specific drug accumulation with magnetic guidance. Haematoxylin & Eosin (H&E) staining indicated enhanced tumour necrosis in treated groups compared to controls. Conclusions: This study underscores the utility of the swirl mixer for efficient and scalable fabrication of bio-inspired SFPs, supporting their application in targeted cancer drug delivery. These findings align with and advance previous insights into the use of microfluidics and desolvation methods, paving the way for improved therapeutic strategies in breast cancer treatment.
Collapse
Affiliation(s)
- Muhamad Hawari Mansor
- School of Medicine and Population Health, The University of Sheffield, Barber House, Sheffield S10 2HQ, UK; (M.H.M.); (Z.G.); (F.H.)
- School of Chemical, Materials and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK;
| | - Zijian Gao
- School of Medicine and Population Health, The University of Sheffield, Barber House, Sheffield S10 2HQ, UK; (M.H.M.); (Z.G.); (F.H.)
| | - Faith Howard
- School of Medicine and Population Health, The University of Sheffield, Barber House, Sheffield S10 2HQ, UK; (M.H.M.); (Z.G.); (F.H.)
| | - Jordan MacInnes
- School of Chemical, Materials and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK;
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Munitta Muthana
- School of Medicine and Population Health, The University of Sheffield, Barber House, Sheffield S10 2HQ, UK; (M.H.M.); (Z.G.); (F.H.)
| |
Collapse
|
3
|
Dashti N, Akbari V, Varshosaz J, Soleimanbeigi M, Rostami M. Co-delivery of carboplatin and doxorubicin using ZIF-8 coated chitosan-poly(N-isopropyl acrylamide) nanoparticles through a dual pH/thermo responsive strategy to breast cancer cells. Int J Biol Macromol 2024; 269:131971. [PMID: 38705336 DOI: 10.1016/j.ijbiomac.2024.131971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
A dual pH/temperature sensitive core-shell nanoformulation has been developed based on ZIF-8 coated with chitosan-poly(N-isopropyl acrylamide) (CS-PNIPAAm) for co-delivery of doxorubicin (DOX) and carboplatin (CBP) in breast cancer cells. The resulting nanoparticles (NPs) had particle sizes around 200 nm and a zeta potential of about +30 mV. The CBP and DOX loading contents in the final NPs were 11.6 % and 55.54 %, respectively. NPs showed a pH and thermoresponsive drug release profile with a sustained prolonged release under physiological conditions. The in vitro cytotoxicity experiments showed a significant synergism of CBP and DOX to induce the IC50 of 1.96 μg/mL in MCF-7 cells and 4.54 μg/mL in MDA-MB-231 cells. Also, the final NPs were safer than free DOX and CBP on normal cells. The in vitro study confirmed the higher potency of the designed NPs in combination therapy against breast cancer cells with lower side effects than free drugs.
Collapse
Affiliation(s)
- Narges Dashti
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Akbari
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Monireh Soleimanbeigi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahboubeh Rostami
- Novel Drug Delivery Systems Research Center and Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Mu X, Fan J, Shuai W, Tomeh MA, Zeng L, Sun X, Zhao X. Microfluidic formulation of food additives-loaded nanoparticles for antioxidation. Colloids Surf B Biointerfaces 2024; 234:113739. [PMID: 38219640 DOI: 10.1016/j.colsurfb.2023.113739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
Browning has many important implications with nutrition and the shelf life of foods. Mitigating browning is of particular interest in food chemistry. The addition of antioxidants has been a common strategy to extend shelf life of drug and food products. In this work, we report a microfluidic technology for encapsulation of three common food additives (potassium metathionite (PMS), curcumin (CCM), and β-carotene (β-Car)) into nano-formulations using low-cost and readily available materials such as shellac. The food additives encapsulated nanoparticles provide a microenvironment that can prevent oxidation during daily storage. The results showed that the produced nanoparticles had a narrow size distribution with an average size of around 100 nm, were stable at conventional storage conditions (4 ºC) for 18 weeks, and had sustained release ability at 37 ºC, pH= 7.8, 160 rpm. In addition, further experiments showed that the formulation of hydrophobic additives, such as CCM and β-Car did not only improve their bioavailability but also allowed for the encapsulation of a combination of ingredients. In addition, the antioxidants loaded nanoparticles demonstrated good biocompatibility, low toxicity to human cells. The longer release time of encapsulated food additives increases shelf life of foods and enhances consumer purchase preferences, which not only saves costs but also reduces waste. In summary, this study shows that such antioxidant-loaded nanoparticles provide a promising strategy in extending the shelf life of food products.
Collapse
Affiliation(s)
- Xiaoyan Mu
- School of Pharmacy, Changzhou University, Changzhou 213164, China; School of Chemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiabao Fan
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Weiming Shuai
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Lingwen Zeng
- School of Chemical Engineering, Changzhou University, Changzhou 213164, China
| | - Xiaoqiang Sun
- School of Chemical Engineering, Changzhou University, Changzhou 213164, China
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
5
|
Zhu J, Li Q, Wu Z, Xu Y, Jiang R. Curcumin for Treating Breast Cancer: A Review of Molecular Mechanisms, Combinations with Anticancer Drugs, and Nanosystems. Pharmaceutics 2024; 16:79. [PMID: 38258090 PMCID: PMC10819793 DOI: 10.3390/pharmaceutics16010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer (BC) has become the fifth most prevalent cause of cancer-related morbidity, attracting significant attention from researchers due to its heightened malignancy and drug resistance. Conventional chemotherapy approaches have proven inadequate in addressing all BC subtypes, highlighting the urgent need for novel therapeutic approaches or drugs. Curcumin (CUR), a phytochemical derived from Curcuma longa (turmeric), has shown substantial potential in inhibiting BC cell migration, metastasis, and proliferation. However, the use of CUR in this context comes with challenges due to its dynamic and easily degradable nature, poor aqueous solubility, low bioavailability, rapid metabolism, and swift systemic elimination, collectively limiting its clinical applications. As such, we provide an overview of the properties, synthesis, and characterization of the hybridization of CUR and its analogue with chemo-drug building blocks. We reviewed research from the last five years on CUR's biogenesis with respect to the regulation of BC, revealing that CUR participates in arresting BC cells in the cell cycle and significantly induces apoptosis in BC cells. Information on the chemotherapeutic and antitumor mechanisms of CUR in BC, including regulation of the cell cycle, increased cell apoptosis, and inhibition of multidrug resistance (MDR), was compiled. Additionally, we provide an overview of CUR loaded into nanomaterials that are cotreated with other chemotherapeutic drugs, such as paclitaxel, thymoquinone, and tamoxifen. In this review, we discuss different types of nanoparticles that can be used for CUR delivery, such as polymeric nanoparticles, carbon nanotubes, and liposomes. By comparing the size, entrapment efficiency, drug-loading capacity, release time, biocompatibility, pharmaceutical scale, and reproducibility of various nanomaterials, we aimed to determine which formulations are better suited for loading CUR or its analogue. Ultimately, this review is expected to offer inspiring ideas, promising strategies, and potential pathways for developing advanced anti-BC strategy nanosystems in clinical practice.
Collapse
Affiliation(s)
- Jing Zhu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (Z.W.)
| | - Qian Li
- Medical Department, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China;
| | - Zhongping Wu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (Z.W.)
| | - Ying Xu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (Z.W.)
| | - Rilei Jiang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (Z.W.)
| |
Collapse
|
6
|
Goel KK, Thapliyal S, Kharb R, Joshi G, Negi A, Kumar B. Imidazoles as Serotonin Receptor Modulators for Treatment of Depression: Structural Insights and Structure-Activity Relationship Studies. Pharmaceutics 2023; 15:2208. [PMID: 37765177 PMCID: PMC10535231 DOI: 10.3390/pharmaceutics15092208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/13/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
Serotoninergic signaling is identified as a crucial player in psychiatric disorders (notably depression), presenting it as a significant therapeutic target for treating such conditions. Inhibitors of serotoninergic signaling (especially selective serotonin reuptake inhibitors (SSRI) or serotonin and norepinephrine reuptake inhibitors (SNRI)) are prominently selected as first-line therapy for the treatment of depression, which benefits via increasing low serotonin levels and norepinephrine by blocking serotonin/norepinephrine reuptake and thereby increasing activity. While developing newer heterocyclic scaffolds to target/modulate the serotonergic systems, imidazole-bearing pharmacophores have emerged. The imidazole-derived pharmacophore already demonstrated unique structural characteristics and an electron-rich environment, ultimately resulting in a diverse range of bioactivities. Therefore, the current manuscript discloses such a specific modification and structural activity relationship (SAR) of attempted derivatization in terms of the serotonergic efficacy of the resultant inhibitor. We also featured a landscape of imidazole-based development, focusing on SAR studies against the serotoninergic system to target depression. This study covers the recent advancements in synthetic methodologies for imidazole derivatives and the development of new molecules having antidepressant activity via modulating serotonergic systems, along with their SAR studies. The focus of the study is to provide structural insights into imidazole-based derivatives as serotonergic system modulators for the treatment of depression.
Collapse
Affiliation(s)
- Kapil Kumar Goel
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar 249404, Uttarakhand, India
| | - Somesh Thapliyal
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar Garhwal 246174, Uttarakhand, India (G.J.)
| | - Rajeev Kharb
- Amity Institute of Pharmacy, Amity University, Noida 201313, Uttar Pradesh, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar Garhwal 246174, Uttarakhand, India (G.J.)
| | - Arvind Negi
- Department of Bioproduct and Biosystems, Aalto University, 02150 Espoo, Finland
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar Garhwal 246174, Uttarakhand, India (G.J.)
- Department of Chemistry, Graphic Era (Deemed to Be University), Dehradun 248002, Uttarakhand, India
| |
Collapse
|