1
|
Pareja Tello R, Lamparelli EP, Ciardulli MC, Hirvonen J, Barreto G, Mafulli N, Della Porta G, Santos HA. Hybrid lipid nanoparticles derived from human mesenchymal stem cell extracellular vesicles by microfluidic sonication for collagen I mRNA delivery to human tendon progenitor stem cells. Biomater Sci 2025; 13:2066-2081. [PMID: 40033856 DOI: 10.1039/d4bm01405g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Tendon degeneration remains an intricate pathological process characterized by the coexistence of multiple dysregulated homeostasis processes, including the increase in collagen III production in comparison with collagen I. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) remain a promising therapeutic tool thanks to their pro-regenerative properties and applicability as drug delivery systems, despite their drug loading limitations. Herein, we developed MSC-EV-derived hybrid lipid nanoparticles (MSC-Hyb NPs) using a microfluidic-sonication technique as an alternative platform for the delivery of collagen type I (COL 1A1) mRNA into pathological TSPCs. The MSC-Hyb NPs produced had LNP-like physicochemical characteristics and were 178.6 nm in size with a PDI value of 0.245. Moreover, MSC-Hyb NPs encapsulated mRNA and included EV-derived surface proteins such as CD63, CD81 and CD144. MSC-Hyb NPs remained highly biocompatible with TSPCs and proved to be functional mRNA delivery agents with certain limitations in comparison with lipid nanoparticles (LNPs). In vitro efficacy studies on TSPCs showed a 2-fold increase in procollagen type I carboxy-terminal peptide production comparable with the effect caused by LNPs. Therefore, our work provides an alternative production method for MSC-EV-derived hybrid NPs and supports their potential use as drug delivery systems for tendon regeneration.
Collapse
Affiliation(s)
- Rubén Pareja Tello
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy.
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy.
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy.
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Goncalo Barreto
- Clinicum, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland
- Orton Orthopedic Hospital, Tenholantie 10, 00280 Helsinki, Finland
| | - Nicola Mafulli
- Department of Trauma and Orthopaedics, Faculty of Medicine and Psychology, Sant' Andrea Hospital, Sapienza University, 00189 Rome, Italy
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy.
- Interdepartment Centre BIONAM, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, SA, Italy
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
2
|
Eltaib L. Polymeric Nanoparticles in Targeted Drug Delivery: Unveiling the Impact of Polymer Characterization and Fabrication. Polymers (Basel) 2025; 17:833. [PMID: 40219222 PMCID: PMC11991310 DOI: 10.3390/polym17070833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
Polymeric nanoparticles (PNPs) represent a groundbreaking advancement in targeted drug delivery, offering significant benefits over conventional systems. This includes their versatility, biocompatibility, and ability to encapsulate diverse therapeutic agents and provide controlled release, improving efficacy while minimizing side effects. The polymers used in PNP formulations are critical, as they influence the nanoparticles' physicochemical properties such as size, shape, surface charge, and drug-loading capacity. Recent developments in polymer chemistry and nanotechnology have led to the creation of smart PNPs that can respond to specific stimuli, enabling precise drug release in targeted environments. This review explores the mechanisms of drug delivery, innovations in polymeric formulations, and the fabrication and characterization techniques that enhance drug delivery systems. Additionally, it discusses challenges and future directions in the field, highlighting the potential for personalized medicine and the role of artificial intelligence in optimizing nanoparticle design. By examining the relationship between polymer characteristics and PNP performance, the review aims to promote innovative therapeutic strategies in modern medicine. Despite the promise of polymer-based drug delivery systems, challenges such as toxicity, stability, scalability, and regulatory compliance must be addressed. Future research should focus on rigorous testing, clear risk communication, and sustainable practices to support clinical translation and commercial viability. Overall, the integration of these elements is crucial for advancing PNPs in therapeutic applications.
Collapse
Affiliation(s)
- Lina Eltaib
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| |
Collapse
|
3
|
Della Pelle G, Markelc B, Bozic T, Šribar J, Krizaj I, Zagar Soderznik K, Hudoklin S, Kreft ME, Urbančič I, Kisovec M, Podobnik M, Kostevšek N. Red Blood Cell Membrane Vesicles for siRNA Delivery: A Biocompatible Carrier With Passive Tumor Targeting and Prolonged Plasma Residency. Int J Nanomedicine 2025; 20:3269-3301. [PMID: 40109366 PMCID: PMC11921803 DOI: 10.2147/ijn.s504644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/04/2025] [Indexed: 03/22/2025] Open
Abstract
Background Despite many advances in gene therapy, the delivery of small interfering RNAs is still challenging. Erythrocytes are the most abundant cells in the human body, and their membrane possesses unique features. From them, erythrocytes membrane vesicles can be generated, employable as nano drug delivery system with prolonged blood residence and high biocompatibility. Methods Human erythrocyte ghosts were extruded in the presence of siRNA, and the objects were termed EMVs (erythrocyte membrane vesicles). An ultracentrifugation-based method was applied to select only the densest EMVs, ie, those containing siRNA. We evaluated their activity in vitro in B16F10 cells expressing fluorescent tdTomato and in vivo in B16F10 tumor-bearing mice after a single injection. Results The EMVs had a negative zeta potential, a particle size of 170 nm and excellent colloidal stability after one month of storage. With 0.3 nM siRNA, more than 75% gene knockdown was achieved in vitro, and 80% was achieved in vivo, at 2 days PI at 2.5 mg/kg. EMVs mostly accumulate around blood vessels in the lungs, brain and tumor. tdTomato fluorescence steadily decreased in tumor areas with higher EMVs concentration, which indicates efficient gene knockdown. Approximately 2% of the initial dose of EMVs was still present in the plasma after 2 days. Conclusion The entire production process of the purified siRNA-EMVs took approximately 4 hours. The erythrocyte marker CD47 offered protection against macrophage recognition in the spleen and in the blood. The excellent biocompatibility and pharmacokinetic properties of these materials make them promising platforms for future improvements, ie, active targeting and codelivery with conventional chemotherapeutics.
Collapse
Affiliation(s)
- Giulia Della Pelle
- Department for Nanostructured Materials, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, 1000, Slovenia
| | - Bostjan Markelc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, 1000, Slovenia
| | - Tim Bozic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, 1000, Slovenia
| | - Jernej Šribar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
| | - Igor Krizaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
| | | | - Samo Hudoklin
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Iztok Urbančič
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
| | - Matic Kisovec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, 1000, Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, 1000, Slovenia
| | - Nina Kostevšek
- Department for Nanostructured Materials, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
| |
Collapse
|
4
|
Lopalco A, Iacobazzi RM, Lopedota AA, Denora N. Recent Advances in Nanodrug Delivery Systems Production, Efficacy, Safety, and Toxicity. Methods Mol Biol 2025; 2834:303-332. [PMID: 39312172 DOI: 10.1007/978-1-0716-4003-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
In the last three decades, the development of nanoparticles or nano-formulations as drug delivery systems has emerged as a promising tool to overcome the limitations of conventional delivery, potentially to improve the stability and solubility of active molecules, promote their transport across the biological membranes, and prolong circulation times to increase efficacy of a therapy. Despite several nano-formulations having applications in drug delivery, some issues concerning their safety and toxicity are still debated. This chapter describes the recent available information regarding safety, toxicity, and efficacy of nano-formulations for drug delivery. Several key factors can influence the behavior of nanoparticles in a biological environment, and their evaluation is crucial to design non-toxic and effective nano-formulations. Among them, we have focused our attention on materials and methods for their preparation (including the innovative microfluidic technique), mechanisms of interactions with biological systems, purification of nanoparticles, manufacture impurities, and nano-stability. This chapter places emphasis on the utilization of in silico, in vitro, and in vivo models for the assessment and prediction of toxicity associated with these nano-formulations. Furthermore, the chapter includes specific examples of in vitro and in vivo studies conducted on nanoparticles, illustrating their application in this field.
Collapse
Affiliation(s)
- Antonio Lopalco
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy.
| | - Rosa Maria Iacobazzi
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Angela Assunta Lopedota
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Nunzio Denora
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy
| |
Collapse
|
5
|
Arduino I, Di Fonte R, Sommonte F, Lopedota AA, Porcelli L, Li J, Serrati S, Bártolo R, Santos HA, Iacobazzi RM, Azzariti A, Denora N. Fabrication of Biomimetic Hybrid Liposomes via Microfluidic Technology: Homotypic Targeting and Antitumor Efficacy Studies in Glioma Cells. Int J Nanomedicine 2024; 19:13217-13233. [PMID: 39679250 PMCID: PMC11638480 DOI: 10.2147/ijn.s489872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Introduction The treatment of glioblastoma is hindered by the blood-brain barrier (BBB) and rapid drug clearance by the immune system. To address these challenges, we propose a novel drug delivery system using liposomes modified with cell membrane fragments. These modified liposomes can evade the immune system, cross the BBB, and accumulate in tumor tissue through homotypic targeting, thereby delivering drugs like paclitaxel and carboplatin more effectively. Methods In this work, the hybrid liposomes were synthesized using microfluidics and integrating 3D printing to produce the microfluidic devices. In vitro, we explored the homotypic targeting capability, BBB passing ability, and therapeutic efficacy of paclitaxel and carboplatin. Results The production of hybrid liposomes by microfluidics has been key to creating high-quality biomimetic nanoparticles, and the integration of 3D printing has simplified the production of microfluidic devices, making the process more efficient and economical. In vitro experiments have shown that these drug-loaded biomimetic hybrid liposomes are able to reach the homotypic target, cross the BBB, and maintain the efficacy of paclitaxel and carboplatin. Conclusions The development of biomimetic hybrid liposomes represents a promising approach for the treatment of glioblastoma. By combining the advantages of liposomal drug delivery with the stealth properties and targeting capabilities of cell membrane fragments, these nanoparticles can potentially overcome the challenges associated with traditional therapies.
Collapse
Affiliation(s)
- Ilaria Arduino
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari, Bari, 70125, Italy
| | | | | | | | | | - Jiachen Li
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), The Personalized Medicine Research Institute (PRECISION), University of Groningen, Groningen, AV, 9713, Netherlands
| | - Simona Serrati
- IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, 70124, Italy
| | - Raquel Bártolo
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), The Personalized Medicine Research Institute (PRECISION), University of Groningen, Groningen, AV, 9713, Netherlands
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), The Personalized Medicine Research Institute (PRECISION), University of Groningen, Groningen, AV, 9713, Netherlands
| | - Rosa Maria Iacobazzi
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari, Bari, 70125, Italy
| | - Amalia Azzariti
- IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, 70124, Italy
| | - Nunzio Denora
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari, Bari, 70125, Italy
| |
Collapse
|
6
|
Tong S, Niu J, Wang Z, Jiao Y, Fu Y, Li D, Pan X, Sheng N, Yan L, Min P, Chen D, Cui S, Liu Y, Lin S. The Evolution of Microfluidic-Based Drug-Loading Techniques for Cells and Their Derivatives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403422. [PMID: 39152940 DOI: 10.1002/smll.202403422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/03/2024] [Indexed: 08/19/2024]
Abstract
Conventional drug delivery techniques face challenges related to targeting and adverse reactions. Recent years have witnessed significant advancements in nanoparticle-based drug carriers. Nevertheless, concerns persist regarding their safety and insufficient metabolism. Employing cells and their derivatives, such as cell membranes and extracellular vesicles (EVs), as drug carriers effectively addresses the challenges associated with nanoparticle carriers. However, an essential hurdle remains in efficiently loading drugs into these carriers. With the advancement of microfluidic technology and its advantages in precise manipulation at the micro- and nanoscales, as well as minimal sample loss, it has found extensive application in the loading of drugs using cells and their derivatives, thereby fostering the development of drug-loading techniques. This paper outlines the characteristics and benefits of utilizing cells and their derivatives as drug carriers and provides an overview of current drug-loading techniques, particularly those rooted in microfluidic technology. The significant potential for microfluidic technology in targeted disease therapy through drug delivery systems employing cells and their derivatives, is foreseen.
Collapse
Affiliation(s)
- Siyu Tong
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiaqi Niu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhitao Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yingao Jiao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanfei Fu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongxia Li
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinni Pan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Nengquan Sheng
- Department of General Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Li Yan
- Department of Geriatric Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Peiru Min
- Shanghai 9th People's Hospital, Shanghai Jiao Tong University College of Medicine, Shanghai, 200240, China
| | - Di Chen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shengsheng Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yanlei Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
7
|
López-Espinosa J, Park P, Holcomb M, Godin B, Villapol S. Nanotechnology-driven therapies for neurodegenerative diseases: a comprehensive review. Ther Deliv 2024; 15:997-1024. [PMID: 39297726 PMCID: PMC11583628 DOI: 10.1080/20415990.2024.2401307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 11/22/2024] Open
Abstract
Neurological diseases, characterized by neuroinflammation and neurodegeneration, impose a significant global burden, contributing to substantial morbidity, disability and mortality. A common feature of these disorders, including stroke, traumatic brain injury and Alzheimer's disease, is the impairment of the blood-brain barrier (BBB), a critical structure for maintaining brain homeostasis. The compromised BBB in neurodegenerative conditions poses a significant challenge for effective treatment, as it allows harmful substances to accumulate in the brain. Nanomedicine offers a promising approach to overcoming this barrier, with nanoparticles (NPs) engineered to deliver therapeutic agents directly to affected brain regions. This review explores the classification and design of NPs, divided into organic and inorganic categories and further categorized based on their chemical and physical properties. These characteristics influence the ability of NPs to carry and release therapeutic agents, target specific tissues and ensure appropriate clearance from the body. The review emphasizes the potential of NPs to enhance the diagnosis and treatment of neurodegenerative diseases through targeted delivery, improved drug bioavailability and real-time therapeutic efficacy monitoring. By addressing the challenges of the compromised BBB and targeting inflammatory biomarkers, NPs represent a cutting-edge strategy in managing neurological disorders, promising better patient outcomes.
Collapse
Affiliation(s)
- Jessica López-Espinosa
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
- School of Medicine and Health Sciences of Tecnológico de Monterrey, Guadalajara, México
| | - Peter Park
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
| | - Morgan Holcomb
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TXUSA
- Department of Obstetrics & Gynecology, Houston Methodist Hospital, Houston, TXUSA
- Department of Obstetrics & Gynecology, Weill Cornell Medicine College, New York, NYUSA
- Department of Biomedical Engineering, Texas A&M University, College Station, TXUSA
| | - Sonia Villapol
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
- Department of Neuroscience in Neurological Surgery, Weill Cornell Medical College, New York, NY USA
| |
Collapse
|
8
|
Racaniello GF, Silvestri T, Pistone M, D'Amico V, Arduino I, Denora N, Lopedota AA. Innovative Pharmaceutical Techniques for Paediatric Dosage Forms: A Systematic Review on 3D Printing, Prilling/Vibration and Microfluidic Platform. J Pharm Sci 2024; 113:1726-1748. [PMID: 38582283 DOI: 10.1016/j.xphs.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
The production of paediatric pharmaceutical forms represents a unique challenge within the pharmaceutical industry. The primary goal of these formulations is to ensure therapeutic efficacy, safety, and tolerability in paediatric patients, who have specific physiological needs and characteristics. In recent years, there has been a significant increase in attention towards this area, driven by the need to improve drug administration to children and ensure optimal and specific treatments. Technological innovation has played a crucial role in meeting these requirements, opening new frontiers in the design and production of paediatric pharmaceutical forms. In particular, three emerging technologies have garnered considerable interest and attention within the scientific and industrial community: 3D printing, prilling/vibration, and microfluidics. These technologies offer advanced approaches for the design, production, and customization of paediatric pharmaceutical forms, allowing for more precise dosage modulation, improved solubility, and greater drug acceptability. In this review, we delve into these cutting-edge technologies and their impact on the production of paediatric pharmaceutical forms. We analyse their potential, associated challenges, and recent developments, providing a comprehensive overview of the opportunities that these innovative methodologies offer to the pharmaceutical sector. We examine different pharmaceutical forms generated using these techniques, evaluating their advantages and disadvantages.
Collapse
Affiliation(s)
| | - Teresa Silvestri
- Department of Pharmacy, University of Naples Federico II, D. Montesano St. 49, 80131 Naples, Italy
| | - Monica Pistone
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Vita D'Amico
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Ilaria Arduino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy.
| | - Angela Assunta Lopedota
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| |
Collapse
|
9
|
Dhege CT, Kumar P, Choonara YE. Pulmonary drug delivery devices and nanosystems as potential treatment strategies for acute respiratory distress syndrome (ARDS). Int J Pharm 2024; 657:124182. [PMID: 38697584 DOI: 10.1016/j.ijpharm.2024.124182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/10/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Despite advances in drug delivery technologies, treating acute respiratory distress syndrome (ARDS) is challenging due to pathophysiological barriers such as lung injury, oedema fluid build-up, and lung inflammation. Active pharmaceutical ingredients (API) can be delivered directly to the lung site of action with the use of aerosol-based drug delivery devices, and this circumvents the hepatic first-pass effect and improves the bioavailability of drugs. This review discusses the various challenges and barriers for pulmonary drug delivery, current interventions for delivery, considerations for effective drug delivery, and the use of nanoparticle drug delivery carriers as potential strategies for delivering therapeutics in ARDS. Nanosystems have the added benefit of entrapping drugs, increase pulmonary drug bioavailability, and using biocompatible and biodegradable excipients that can facilitate targeted and/or controlled delivery. These systems provide an alternative to existing conventional systems. An effective way to deliver drugs for the treatment of ARDS can be by using colloidal systems that are aerosolized or inhaled. Drug distribution to the deeper pulmonary tissues is necessary due to the significant endothelial cell destruction that is prevalent in ARDS. The particle size of nanoparticles (<0.5 μm) makes them ideal candidates for treating ARDS as they can reach the alveoli. A look into the various potential benefits and limitations of nanosystems used for other lung disorders is also considered to indicate how they may be useful for the potential treatment of ARDS.
Collapse
Affiliation(s)
- Clarence T Dhege
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
10
|
Yuan S, Hu Q. Convergence of nanomedicine and neutrophils for drug delivery. Bioact Mater 2024; 35:150-166. [PMID: 38318228 PMCID: PMC10839777 DOI: 10.1016/j.bioactmat.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024] Open
Abstract
Neutrophils have recently emerged as promising carriers for drug delivery due to their unique properties including rapid response toward inflammation, chemotaxis, and transmigration. When integrated with nanotechnology that has enormous advantages in improving treatment efficacy and reducing side effects, neutrophil-based nano-drug delivery systems have expanded the repertoire of nanoparticles employed in precise therapeutic interventions by either coating nanoparticles with their membranes, loading nanoparticles inside living cells, or engineering chimeric antigen receptor (CAR)-neutrophils. These neutrophil-inspired therapies have shown superior biocompatibility, targeting ability, and therapeutic robustness. In this review, we summarized the benefits of combining neutrophils and nanotechnologies, the design principles and underlying mechanisms, and various applications in disease treatments. The challenges and prospects for neutrophil-based drug delivery systems were also discussed.
Collapse
Affiliation(s)
- Sichen Yuan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| |
Collapse
|
11
|
Gomes Souza F, Bhansali S, Pal K, da Silveira Maranhão F, Santos Oliveira M, Valladão VS, Brandão e Silva DS, Silva GB. A 30-Year Review on Nanocomposites: Comprehensive Bibliometric Insights into Microstructural, Electrical, and Mechanical Properties Assisted by Artificial Intelligence. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1088. [PMID: 38473560 PMCID: PMC10934506 DOI: 10.3390/ma17051088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
From 1990 to 2024, this study presents a groundbreaking bibliometric and sentiment analysis of nanocomposite literature, distinguishing itself from existing reviews through its unique computational methodology. Developed by our research group, this novel approach systematically investigates the evolution of nanocomposites, focusing on microstructural characterization, electrical properties, and mechanical behaviors. By deploying advanced Boolean search strategies within the Scopus database, we achieve a meticulous extraction and in-depth exploration of thematic content, a methodological advancement in the field. Our analysis uniquely identifies critical trends and insights concerning nanocomposite microstructure, electrical attributes, and mechanical performance. The paper goes beyond traditional textual analytics and bibliometric evaluation, offering new interpretations of data and highlighting significant collaborative efforts and influential studies within the nanocomposite domain. Our findings uncover the evolution of research language, thematic shifts, and global contributions, providing a distinct and comprehensive view of the dynamic evolution of nanocomposite research. A critical component of this study is the "State-of-the-Art and Gaps Extracted from Results and Discussions" section, which delves into the latest advancements in nanocomposite research. This section details various nanocomposite types and their properties and introduces novel interpretations of their applications, especially in nanocomposite films. By tracing historical progress and identifying emerging trends, this analysis emphasizes the significance of collaboration and influential studies in molding the field. Moreover, the "Literature Review Guided by Artificial Intelligence" section showcases an innovative AI-guided approach to nanocomposite research, a first in this domain. Focusing on articles from 2023, selected based on citation frequency, this method offers a new perspective on the interplay between nanocomposites and their electrical properties. It highlights the composition, structure, and functionality of various systems, integrating recent findings for a comprehensive overview of current knowledge. The sentiment analysis, with an average score of 0.638771, reflects a positive trend in academic discourse and an increasing recognition of the potential of nanocomposites. Our bibliometric analysis, another methodological novelty, maps the intellectual domain, emphasizing pivotal research themes and the influence of crosslinking time on nanocomposite attributes. While acknowledging its limitations, this study exemplifies the indispensable role of our innovative computational tools in synthesizing and understanding the extensive body of nanocomposite literature. This work not only elucidates prevailing trends but also contributes a unique perspective and novel insights, enhancing our understanding of the nanocomposite research field.
Collapse
Affiliation(s)
- Fernando Gomes Souza
- Biopolymers & Sensors Lab., Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, Centro de Tecnologia-Cidade Universitária, Rio de Janeiro 21941-853, Brazil; (F.d.S.M.); (M.S.O.); (V.S.V.); (G.B.S.)
- Programa de Engenharia da Nanotecnologia, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE), Universidade Federal do Rio de Janeiro, Centro de Tecnologia-Cidade Universitária, Rio de Janeiro 21941-914, Brazil;
| | - Shekhar Bhansali
- Biomolecular Sciences Institute, College of Engineering & Computing, Center for Aquatic Chemistry and Environment, Florida International University, 10555 West Flagler St EC3900, Miami, FL 33174, USA
| | - Kaushik Pal
- Department of Physics, University Center for Research and Development (UCRD), Chandigarh University, Mohali 140413, Punjab, India;
| | - Fabíola da Silveira Maranhão
- Biopolymers & Sensors Lab., Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, Centro de Tecnologia-Cidade Universitária, Rio de Janeiro 21941-853, Brazil; (F.d.S.M.); (M.S.O.); (V.S.V.); (G.B.S.)
| | - Marcella Santos Oliveira
- Biopolymers & Sensors Lab., Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, Centro de Tecnologia-Cidade Universitária, Rio de Janeiro 21941-853, Brazil; (F.d.S.M.); (M.S.O.); (V.S.V.); (G.B.S.)
| | - Viviane Silva Valladão
- Biopolymers & Sensors Lab., Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, Centro de Tecnologia-Cidade Universitária, Rio de Janeiro 21941-853, Brazil; (F.d.S.M.); (M.S.O.); (V.S.V.); (G.B.S.)
| | - Daniele Silvéria Brandão e Silva
- Programa de Engenharia da Nanotecnologia, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE), Universidade Federal do Rio de Janeiro, Centro de Tecnologia-Cidade Universitária, Rio de Janeiro 21941-914, Brazil;
| | - Gabriel Bezerra Silva
- Biopolymers & Sensors Lab., Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, Centro de Tecnologia-Cidade Universitária, Rio de Janeiro 21941-853, Brazil; (F.d.S.M.); (M.S.O.); (V.S.V.); (G.B.S.)
| |
Collapse
|
12
|
Arduino I, Di Fonte R, Tiboni M, Porcelli L, Serratì S, Fondaj D, Rafaschieri T, Cutrignelli A, Guida G, Casettari L, Azzariti A, Lopedota AA, Denora N, Iacobazzi RM. Microfluidic development and biological evaluation of targeted therapy-loaded biomimetic nano system to improve the metastatic melanoma treatment. Int J Pharm 2024; 650:123697. [PMID: 38081557 DOI: 10.1016/j.ijpharm.2023.123697] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Optimizing current therapies is among next steps in metastatic melanoma (MM) treatment landscape. The innovation of this study is the design of production process by microfluidics of cell membrane (CM)-modified nanoparticles (NPs), as an emerging biomimetic platform that allows for reduced immune clearance, long blood circulation time and improved specific tumor targeting. To achieve melanoma selectivity, direct membrane fusion between synthetic liposomes and CMs extracted from MM cell line was performed by microfluidic sonication approach, then the hybrid liposomes were loaded with cobimetinib (Cob) or lenvatinib (Lenva) targeting agents and challenged against MM cell lines and liver cancer cell line to evaluate homotypic targeting and antitumor efficacy. Characterization studies demonstrated the effective fusion of CM with liposome and the high encapsulation efficiency of both drugs, showing the proficiency of microfluidic-based production. By studying the targeting of melanoma cells by hybrid liposomes versus liposomes, we found that both NPs entered cells through endocytosis, whereas the former showed higher selectivity for MM cells from which CM was extracted, with 8-fold higher cellular uptake than liposomes. Hybrid liposome formulation of Cob and Lenva reduced melanoma cells viability to a greater extent than liposomes and free drug and, notably, showed negligible toxicity as demonstrated by bona fide haemolysis test. The CM-modified NPs presented here have the potential to broaden the choice of therapeutic options in MM treatment.
Collapse
Affiliation(s)
- Ilaria Arduino
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy
| | | | - Mattia Tiboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, Italy
| | | | - Simona Serratì
- IRCCS Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy
| | - Dafina Fondaj
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy
| | | | - Annalisa Cutrignelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy
| | - Gabriella Guida
- Department of Traslational Biomedicine and Neuroscience (DiBraiN), School of Medicine, University of Bari "A. Moro", 70124 Bari, Italy
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, Italy
| | - Amalia Azzariti
- IRCCS Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy.
| | | | - Nunzio Denora
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy
| | - Rosa Maria Iacobazzi
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy.
| |
Collapse
|