1
|
Gupta A, Jadhav SR, Colaco V, Saha M, Ghosh A, Sreedevi A, Datta D, Hebbar S, Moorkoth S, Ligade VS, Dhas N. Harnessing unique architecture and emerging strategies of solid lipid nanoparticles to combat colon cancer: A state-of-the-art review. Int J Pharm 2025; 675:125562. [PMID: 40194729 DOI: 10.1016/j.ijpharm.2025.125562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/30/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
Cancer is a serious worldwide public health problem, ranking as the second leading cause of death in the United States. The third most prevalent tumor kind in the world is a colon or rectal tumor. Colon Cancer (CC) is the third most common cancer worldwide and the second leading cause of cancer-related deaths globally. In the US, CC has become the 2nd most common cause of death after having different advancements like detection, surgery, and chemotherapy. The current strategies for treating colon cancer have several disadvantages, including higher toxicity, drug resistance, damage to healthy cells, solubility, specificity, a lower therapeutic index, and more. Solid lipid nanoparticles (SLNs) are a viable targeted treatment option for colon cancer to avoid this problem. This comprehensive review discussed the severity, pathophysiology, risk factors, and stages of colon cancer. The review covers the most effective colon cancer therapy and diagnostic procedures, including HSgFOBT, Fecal immunological test (FIT), Colonoscopy, FIT-DNA Test/mt-sDNA screening test, Colon capsule (CCE), Blood-based DNA Tests, and Flexible sigmoidoscopy. This reviewemphasizes the need for novel and specific approaches to colon cancer treatment to improve patient outcomes.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104 Karnataka, India
| | - Sandesh Ramchandra Jadhav
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104 Karnataka, India
| | - Viola Colaco
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104 Karnataka, India
| | - Moumita Saha
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104 Karnataka, India
| | - Amartya Ghosh
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104 Karnataka, India
| | - Amatha Sreedevi
- Department of Pharmaceutical Regulatory Affairs, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104 Karnataka, India
| | - Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104 Karnataka, India
| | - Srinivas Hebbar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104 Karnataka, India
| | - Sudheer Moorkoth
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104 Karnataka, India
| | - Virendra S Ligade
- Department of Pharmaceutical Regulatory Affairs, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104 Karnataka, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104 Karnataka, India.
| |
Collapse
|
2
|
Kordyl O, Styrna Z, Wojtyłko M, Dlugaszewska J, Kaminska D, Murias M, Mlynarczyk DT, Jadach B, Skotnicka A, Michniak-Kohn B, Osmałek T. Optimization of LCD-Based 3D Printing for the Development of Clotrimazole-Coated Microneedle Systems. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1580. [PMID: 40271758 DOI: 10.3390/ma18071580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/25/2025]
Abstract
Fungal infections pose a significant global health problem, affecting 20-25% of the population and contributing to over 3.75 million deaths annually. Clotrimazole (CLO) is a widely used topical antifungal drug, but its efficacy is limited by poor penetration through the stratum corneum. Microneedle (MN) systems, composed of micron-scale structures arranged on a patch, offer a promising strategy to overcome the outermost skin barrier and enhance drug penetration into deeper layers. However, optimizing MN design, particularly in terms of size, shape, and fabrication technology, is essential for efficient drug delivery. This study aimed to develop CLO-coated MN systems using an Liquid Crystal Display (LCD)-based 3D printing technique and a thin-film dip-coating method. A comprehensive optimization of printing parameters, including anti-aliasing, layer thickness, curing time, and printing angle, was conducted to ensure the desired mechanical properties. The optimized MNs were coated with either suspension or ethanol-based CLO-hydrogels, with ethanol hydrogel demonstrating superior characteristics. Additionally, the study investigated how microneedle geometry and coating formulation influenced drug release. Antifungal activity against reference and clinical origin Candida albicans strains varied significantly depending on the coating formulation. Finally, the acute toxicity test confirmed no significant toxic effects on Aliivibrio fischeri, indicating the potential biocompatibility and safety of the developed MN-based drug delivery system.
Collapse
Affiliation(s)
- Oliwia Kordyl
- Chair and Department of Pharmaceutical Technology, 3D Printing Division, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznań, Poland
| | - Zuzanna Styrna
- Chair and Department of Pharmaceutical Technology, 3D Printing Division, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznań, Poland
| | - Monika Wojtyłko
- Chair and Department of Pharmaceutical Technology, 3D Printing Division, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznań, Poland
| | - Jolanta Dlugaszewska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznań, Poland
| | - Dorota Kaminska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznań, Poland
| | - Marek Murias
- Chair and Department of Toxicology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznań, Poland
| | - Dariusz T Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznań, Poland
| | - Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Division of Industrial Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznań, Poland
| | - Agnieszka Skotnicka
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznań, Poland
| | - Bozena Michniak-Kohn
- Center for Dermal Research and Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, 3D Printing Division, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznań, Poland
| |
Collapse
|
3
|
Chang NF, Wu PS, Yang HJ, Zheng YM, Lin CC. Preparation and Evaluation of Nanoemulsion Formulation Containing Kojic Acid and Kojyl 3-aminopropylphosphonic Acid. Curr Pharm Biotechnol 2025; 26:608-616. [PMID: 38982699 DOI: 10.2174/0113892010310230240615112928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND The kojyl 3-aminopropylphosphonic acid (KAP) was synthesized by kojic acid (KA) with a 3-aminopropylphosphonic acid. Which is more stable than KA and showed better skin penetration and anti-pigmentation efficacy in melanocytes. However, up till now, there have been no studies aimed at incorporating KAP into an emulsion system and evaluating its effectiveness. OBJECTIVE We develop a novel skin-lightening agent using KAP as the active ingredient and a low-cytotoxic nanoemulsion as the delivery system in this study. METHOD The sorbitan monooleate and polysorbate surfactants with polyethylene glycol (PEG) co-surfactant were used to generate a nanoemulsion system. RESULT The transparency and particle size stability over various storage times indicate that the formulated nanoemulsions are suitable for long-term storage. Besides, results demonstrate that the anti-pigmentation function of KA and KAP-containing nanoemulsions (NE-KA and NEKAP) evidently outperformed that of the non-packed KA and KAP group. Despite having the lowest concentration among other treatments, NE-KAP was able to reduce melanin content to approximately 80% of the blank. CONCLUSION Our findings suggest that this newly developed nanoemulsion containing KAP could potentially serve as a sustainable alternative to hydroquinone for treating dermal hyperpigmentation disorders in future applications.
Collapse
Affiliation(s)
- Nai-Fang Chang
- Department of Cosmetic Science, Providence University, No. 200, Sec. 7, Taiwan Boulevard, Shalu Dist., Taichung City 43301, Taiwan
| | - Pey-Shiuan Wu
- Department of Cosmetic Science, Providence University, No. 200, Sec. 7, Taiwan Boulevard, Shalu Dist., Taichung City 43301, Taiwan
| | - Hsiang-Ju Yang
- Department of Cosmetic Science, Providence University, No. 200, Sec. 7, Taiwan Boulevard, Shalu Dist., Taichung City 43301, Taiwan
| | - Ya-Min Zheng
- Department of Cosmetic Science, Providence University, No. 200, Sec. 7, Taiwan Boulevard, Shalu Dist., Taichung City 43301, Taiwan
| | - Chih-Chien Lin
- Department of Cosmetic Science, Providence University, No. 200, Sec. 7, Taiwan Boulevard, Shalu Dist., Taichung City 43301, Taiwan
| |
Collapse
|
4
|
Zimina T, Sitkov N, Brusina K, Fedorov V, Mikhailova N, Testov D, Gareev K, Samochernykh K, Combs S, Shevtsov M. Magnetically Controlled Transport of Nanoparticles in Solid Tumor Tissues and Porous Media Using a Tumor-on-a-Chip Format. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:2030. [PMID: 39728566 DOI: 10.3390/nano14242030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
This study addresses issues in developing spatially controlled magnetic fields for particle guidance, synthesizing biocompatible and chemically stable MNPs and enhancing their specificity to pathological cells through chemical modifications, developing personalized adjustments, and highlighting the potential of tumor-on-a-chip systems, which can simulate tissue environments and assess drug efficacy and dosage in a controlled setting. The research focused on two MNP types, uncoated magnetite nanoparticles (mMNPs) and carboxymethyl dextran coated superparamagnetic nanoparticles (CD-SPIONs), and evaluated their transport properties in microfluidic systems and porous media. The original uncoated mMNPs of bimodal size distribution and the narrow size distribution of the fractions (23 nm and 106 nm by radii) were demonstrated to agglomerate in magnetically driven microfluidic flow, forming a stable stationary web consisting of magnetic fibers within 30 min. CD-SPIONs were demonstrated to migrate in agar gel with the mean pore size equal to or slightly higher than the particle size. The migration velocity was inversely proportional to the size of particles. No compression of the gel was observed under the magnetic field gradient of 40 T/m. In the brain tissue, particles of sizes 220, 350, 820 nm were not penetrating the tissue, while the compression of tissue was observed. The particles of 95 nm size penetrated the tissue at the edge of the sample, and no compression was observed. For all particles, movement through capillary vessels was observed.
Collapse
Affiliation(s)
- Tatiana Zimina
- Department of Micro and Nanoelectronics, St. Petersburg Electrotechnical University "LETI" (ETU "LETI"), Prof. Popova Str., 5, 197022 St. Petersburg, Russia
| | - Nikita Sitkov
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 St. Petersburg, Russia
| | - Ksenia Brusina
- Department of Micro and Nanoelectronics, St. Petersburg Electrotechnical University "LETI" (ETU "LETI"), Prof. Popova Str., 5, 197022 St. Petersburg, Russia
| | - Viacheslav Fedorov
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 St. Petersburg, Russia
| | - Natalia Mikhailova
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 St. Petersburg, Russia
| | - Dmitriy Testov
- Department of Micro and Nanoelectronics, St. Petersburg Electrotechnical University "LETI" (ETU "LETI"), Prof. Popova Str., 5, 197022 St. Petersburg, Russia
| | - Kamil Gareev
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 St. Petersburg, Russia
| | - Konstantin Samochernykh
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 St. Petersburg, Russia
| | - Stephanie Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany
| | - Maxim Shevtsov
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 St. Petersburg, Russia
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
5
|
Vasileva LA, Gaynanova GA, Romanova EA, Petrov KA, Feng C, Zakharova LY, Sinyashin OG. Supramolecular approach to the design of nanocarriers for antidiabetic drugs: targeted patient-friendly therapy. RUSSIAN CHEMICAL REVIEWS 2024; 93:RCR5150. [DOI: 10.59761/rcr5150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Diabetes and its complications derived are among serious global health concerns that critically deteriorate the quality of life of patients and, in some cases, result in lethal outcome. Herein, general information on the pathogenesis, factors aggravating the course of the disease and drugs used for the treatment of two types of diabetes are briefly discussed. The aim of the review is to introduce supramolecular strategies that are currently being developed for the treatment of diabetes mellitus and that present a very effective alternative to chemical synthesis, allowing the fabrication of nanocontainers with switchable characteristics that meet the criteria of green chemistry. Particular attention is paid to organic (amphiphilic and polymeric) formulations, including those of natural origin, due to their biocompatibility, low toxicity, and bioavailability. The advantages and limitations of different nanosystems are discussed, with emphasis on their adaptivity to noninvasive administration routes.<br>The bibliography includes 378 references.
Collapse
Affiliation(s)
- L. A. Vasileva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - G. A. Gaynanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - E. A. Romanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - K. A. Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Ch. Feng
- Shanghai Jiao Tong University, Shanghai, China
| | - L. Ya. Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - O. G. Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| |
Collapse
|
6
|
Shahzad A, Teng Z, Yameen M, Liu W, Cui K, Liu X, Sun Y, Duan Q, Xia J, Dong Y, Bai Z, Peng D, Zhang J, Xu Z, Pi J, Yang Z, Zhang Q. Innovative lipid nanoparticles: A cutting-edge approach for potential renal cell carcinoma therapeutics. Biomed Pharmacother 2024; 180:117465. [PMID: 39321512 DOI: 10.1016/j.biopha.2024.117465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024] Open
Abstract
The kidney plays a crucial role in regulating homeostasis within the human body. Renal cell carcinoma (RCC) is the most common form of kidney cancer, accounting for nearly 90 % of all renal malignancies. Despite the availability of various therapeutic strategies, RCC remains a challenging disease due to its resistance to conventional treatments. Nanotechnology has emerged as a promising field, offering new opportunities in cancer therapeutics. It presents several advantages over traditional methods, enabling diverse biomedical applications, including drug delivery, prevention, diagnosis, and treatment. Lipid nanoparticles (LNPs), approximately 100 nm in size, are derived from a range of lipids and other biochemical compounds. these particulates are designed to overcome biological barriers, allowing them to selectively accumulate at diseased target sites for effective therapeutic action. Many pharmaceutically important compounds face challenges such as poor solubility in aqueous solutions, chemical and physiological instability, or toxicity. LNP technology stands out as a promising drug delivery system for bioactive organic compounds. This article reviews the applications of LNPs in RCC treatment and explores their potential clinical translation, identifying the most viable LNPs for medical use. With ongoing advancement in LNP-based anticancer strategies, there is a growing potential to improve the management and treatment of renal cancer.
Collapse
Affiliation(s)
- Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhuoran Teng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Muhammad Yameen
- Department of Biochemistry, Government College University Faisalabad, Punjab 38000, Pakistan
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yijian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Qiuxin Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - JiaoJiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yurong Dong
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Ziyuan Bai
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Dongmei Peng
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Jinshan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhe Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China.
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China.
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China.
| |
Collapse
|
7
|
Chaudhary AA, Fareed M, Khan SUD, Alneghery LM, Aslam M, Alex A, Rizwanullah M. Exploring the therapeutic potential of lipid-based nanoparticles in the management of oral squamous cell carcinoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1223-1246. [PMID: 39465011 PMCID: PMC11502080 DOI: 10.37349/etat.2024.00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a highly malignant and invasive tumor with significant mortality and morbidity. Current treatment modalities such as surgery, radiotherapy, and chemotherapy encounter significant limitations, such as poor targeting, systemic toxicity, and drug resistance. There is an urgent need for novel therapeutic strategies that offer targeted delivery, enhanced efficacy, and reduced side effects. The advent of lipid-based nanoparticles (LNPs) offers a promising tool for OSCC therapy, potentially overcoming the limitations of current therapeutic approaches. LNPs are composed of biodegradable and biocompatible lipids, which minimize the risk of toxicity and adverse effects. LNPs can encapsulate hydrophobic drugs, improving their solubility and stability in the biological environment, thereby enhancing their bioavailability. LNPs demonstrate significantly higher ability to encapsulate lipophilic drugs than other nanoparticle types. LNPs offer excellent storage stability, minimal drug leakage, and controlled drug release, making them highly effective nanoplatforms for the delivery of chemotherapeutic agents. Additionally, LNPs can be modified by complexing them with specific target ligands on their surface. This surface modification allows the active targeting of LNPs to the tumors in addition to the passive targeting mechanism. Furthermore, the PEGylation of LNPs improves their hydrophilicity and enhances their biological half-life by reducing clearance by the reticuloendothelial system. This review aims to discuss current treatment approaches and their limitations, as well as recent advancements in LNPs for better management of OSCC.
Collapse
Affiliation(s)
- Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mohammad Fareed
- College of Medicine, AlMaarefa University, Diriyah, Riyadh 11597, Saudi Arabia
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Lina M Alneghery
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mohammed Aslam
- Pharmacy Department, Tishk International University, Erbil 44001, Kurdistan Region, Iraq
| | - Arockia Alex
- Molecular and Nanobiotechnology Laboratory (MNBL), Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India
| | - Md Rizwanullah
- Drug Delivery and Nanomedicine Unit, Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India
| |
Collapse
|
8
|
Dahl M, Gommes CJ, Haverkamp R, Wood K, Prévost S, Schröer P, Omasta T, Stank TJ, Hellweg T, Wellert S. Confinement induced change of microemulsion phase structure in controlled pore glass (CPG) monoliths. RSC Adv 2024; 14:28272-28284. [PMID: 39239284 PMCID: PMC11372560 DOI: 10.1039/d4ra04090b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
We use small-angle neutron scattering (SANS) to investigate the structure and phase behavior of a complex fluid within meso- and macroporous matrices. Specifically, bicontinuous microemulsions of the temperature-dependent ternary system C10E4-water-n-octane are investigated in controlled pore glass (CPG) membranes with nominal pore diameters of 10 nm, 20 nm, 50 nm, and 100 nm. The scattering data were analyzed using the Teubner-Strey model and a multiphase generalization of clipped Gaussian-field models. The analysis indicates changes in the phase structure of the bicontinuous microemulsion in the membranes with the smallest pores. This is attributed to a shift in the ternary phase diagram toward a three-phase structure at lower surfactant concentrations. This effect is likely related to a larger internal surface area in the membranes with smaller pores, which enhances surfactant adsorption onto the pore walls.
Collapse
Affiliation(s)
- Margarethe Dahl
- Department of Chemistry, Technische Universität Berlin Straße des 17. Juni 124 10623 Berlin Germany
| | - Cedric J Gommes
- Department of Chemical Engineering, University of Liège B6 A 3 Allée du 6 Août B-4000 Liège Belgium
| | - René Haverkamp
- Department of Physical and Biophysical Chemistry, University of Bielefeld, Universitätsstraße 25 33615 Bielefeld Germany
| | - Kathleen Wood
- Australian Nuclear and Technology Organisation New Illawarra Rd Lucas Heights NSW 2234 Australia
| | - Sylvain Prévost
- Institut Laue-Langevin 71 Avenue des Martyrs F-38042 Grenoble France
| | - Pierre Schröer
- Department of Chemistry, Technische Universität Berlin Straße des 17. Juni 124 10623 Berlin Germany
| | - Tomáš Omasta
- Department of Chemistry, Technische Universität Berlin Straße des 17. Juni 124 10623 Berlin Germany
| | - Tim Julian Stank
- Department of Physical and Biophysical Chemistry, University of Bielefeld, Universitätsstraße 25 33615 Bielefeld Germany
| | - Thomas Hellweg
- Department of Physical and Biophysical Chemistry, University of Bielefeld, Universitätsstraße 25 33615 Bielefeld Germany
| | - Stefan Wellert
- Department of Chemistry, Technische Universität Berlin Straße des 17. Juni 124 10623 Berlin Germany
| |
Collapse
|
9
|
Peng X, Ma Y, Yan C, Wei X, Zhang L, Jiang H, Ma Y, Zhang S, Xing M, Gao Y. Mechanism, Formulation, and Efficacy Evaluation of Natural Products for Skin Pigmentation Treatment. Pharmaceutics 2024; 16:1022. [PMID: 39204367 PMCID: PMC11359997 DOI: 10.3390/pharmaceutics16081022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Skin pigmentation typically arises from the excessive secretion and accumulation of melanin, resulting in a darker complexion compared to normal skin. Currently, the local application of chemical drugs is a first-line strategy for pigmentation disorders, but the safety and efficacy of drugs still cannot meet clinical treatment needs. For long-term and safe medication, researchers have paid attention to natural products with higher biocompatibility. This article begins by examining the pathogenesis and treatment approaches of skin pigmentation diseases and summarizes the research progress and mechanism of natural products with lightening or whitening effects that are clinically common or experimentally proven. Moreover, we outline the novel formulations of natural products in treating pigmentation disorders, including liposomes, nanoparticles, microemulsions, microneedles, and tocosomes. Finally, the pharmacodynamic evaluation methods in the study of pigmentation disorder were first systematically analyzed. In brief, this review aims to collect natural products for skin pigmentation treatment and investigate their formulation design and efficacy evaluation to provide insights for the development of new products for this complex skin disease.
Collapse
Affiliation(s)
- Xueli Peng
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China;
| | - Yuning Ma
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.M.); (X.W.); (L.Z.); (H.J.)
| | - Chenxin Yan
- Beijing CAS Microneedle Technology, Ltd., Beijing 102609, China;
| | - Xiaocen Wei
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.M.); (X.W.); (L.Z.); (H.J.)
| | - Linlin Zhang
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.M.); (X.W.); (L.Z.); (H.J.)
| | - Hehe Jiang
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.M.); (X.W.); (L.Z.); (H.J.)
| | - Yuxia Ma
- Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Suohui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China;
| | - Mengzhen Xing
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.M.); (X.W.); (L.Z.); (H.J.)
| | - Yunhua Gao
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China;
- Beijing CAS Microneedle Technology, Ltd., Beijing 102609, China;
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China;
| |
Collapse
|
10
|
Xiao X, Yang F, Huang Y, Liu S, Hu Z, Liao S, Li Y. Enhanced In Vitro Efficacy of Verbascoside in Suppressing Hepatic Stellate Cell Activation via ROS Scavenging with Reverse Microemulsion. Antioxidants (Basel) 2024; 13:907. [PMID: 39199153 PMCID: PMC11351154 DOI: 10.3390/antiox13080907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Numerous approaches targeting hepatic stellate cells (HSCs) have emerged as pivotal therapeutic strategies to mitigate liver fibrosis and are currently undergoing clinical trials. The investigation of herbal drugs or isolated natural active compounds is particularly valuable, due to their multifaceted functions and low risk of side effects. Recent studies have hinted at the potential efficacy of verbascoside (VB) in ameliorating renal and lung fibrosis, yet its impact on hepatic fibrosis remains to be elucidated. This study aims to evaluate the potential effects of VB on liver fibrosis by assessing its ability to inhibit HSC activation. VB demonstrated significant efficacy in suppressing the expression of fibrogenic genes in activated LX-2 cells. Additionally, VB inhibited the migration and proliferation of these activated HSCs by scavenging reactive oxygen species (ROS) and downregulating the AMPK pathway. Furthermore, a biosafe reverse microemulsion loaded with VB (VB-ME) was developed to improve VB's instability and low bioavailability. The optimal formulation of VB-ME was meticulously characterized, revealing substantial enhancements in cellular uptake, ROS-scavenging capacity, and the suppression of HSC activation.
Collapse
Affiliation(s)
- Xiao Xiao
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, China (S.L.)
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China;
| | - Feiyu Yang
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, China (S.L.)
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guiyang 550025, China
| | - Yuling Huang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shaohui Liu
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, China (S.L.)
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China;
| | - Zhenhua Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China;
- Department of Health and Nursing, Nanfang College of Sun Yat-sen University, Guangzhou 510970, China
| | - Shanggao Liao
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, China (S.L.)
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guiyang 550025, China
| | - Yuanyuan Li
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, China (S.L.)
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China;
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Jia Y, Yao D, Bi H, Duan J, Liang W, Jing Z, Liu M. Salvia miltiorrhiza Bunge (Danshen) based nano-delivery systems for anticancer therapeutics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155521. [PMID: 38489891 DOI: 10.1016/j.phymed.2024.155521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND The ancient Chinese herb Salvia miltiorrhiza Bunge (Danshen), plays the important role in cardiovascular and cerebrovascular disease. Furthermore, Danshen could also be used for curing carcinogenesis. Up to now, the anti-tumor effects of the main active constituents of Danshen have made great progress. However, the bioavailability of the active constituents of Danshen were restricted by their unique physical characteristics, like low oral bioavailability, rapid degradation in vivo and so on. PURPOSE With the leap development of nano-delivery systems, the shortcomings of the active constituents of Danshen have been greatly ameliorated. This review tried to summarize the recent progress of the active constituents of Danshen based delivery systems used for anti-tumor therapeutics. METHODS A systematic literature search was conducted using 5 databases (Embase, Google scholar, PubMed, Scopus and Web of Science databases) for the identification of relevant data published before September 2023. The words "Danshen", "Salvia miltiorrhiza", "Tanshinone", "Salvianolic acid", "Rosmarinic acid", "tumor", "delivery", "nanomedicine" and other active ingredients contained in Danshen were searched in the above databases to gather information about pharmaceutical decoration for the active constituents of Danshen used for anti-tumor therapeutics. RESULTS The main extracts of Danshen could inhibit the proliferation of tumor cells effectively and a great deal of studies were conducted to design drug delivery systems to ameliorate the anti-tumor effect of the active contents of Danshen through different ways, like improving bioavailability, increasing tumor targeting ability, enhancing biological barrier permeability and co-delivering with other active agents. CONCLUSION This review systematically represented recent progress of pharmaceutical decorations for the active constituents of Danshen used for anti-tumor therapeutics, revealing the diversity of nano-decoration skills and trying to inspire more designs of Danshen based nanodelivery systems, with the hope that bringing the nanomedicine of the active constituents of Danshen for anti-tumor therapeutics from bench to bedside in the near future.
Collapse
Affiliation(s)
- Yiyang Jia
- Department of Pharmacy, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Dandan Yao
- Department of Pharmacy, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Hui Bi
- Department of Pharmacy, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Jing Duan
- Department of Pharmacy, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Wei Liang
- Department of Traditional Chinese Medicine, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Ziwei Jing
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Mei Liu
- Department of Pharmacy, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China.
| |
Collapse
|
12
|
Park KH, Kim NC, Song SH. Fabrication of WO 3 Quantum Dots with Different Emitting Colors and Their Utilization in Luminescent Woods. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:936. [PMID: 38869561 PMCID: PMC11173498 DOI: 10.3390/nano14110936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024]
Abstract
With a rising interest in smart windows and optical displays, the utilization of metal oxides (MOs) has garnered significant attention owing to their high active sites, flexibility, and tunable electronic and optical properties. Despite these advantages, achieving precise tuning of optical properties in MOs-based quantum dots and their mass production remains a challenge. In this study, we present an easily scalable approach to generate WO3 quantum dots with diverse sizes through sequential insertion/exfoliation processes in solvents with suitable surface tension. Additionally, we utilized the prepared WO3 quantum dots in the fabrication of luminescent transparent wood via an impregnation process. These quantum dots manifested three distinct emitting colors: red, green, and blue. Through characterizations of the structural and optical properties of the WO3 quantum dots, we verified that quantum dots with sizes around 30 nm, 50 nm, and 70 nm showcase a monoclinic crystal structure with oxygen-related defect sites. Notably, as the size of the WO3 quantum dots decreased, the maximum emitting peak underwent a blue shift, with peaks observed at 407 nm (blue), 493 nm (green), and 676 nm (red) under excitation by a He-Cd laser (310 nm), respectively. Transparent woods infused with various WO3 quantum dots exhibited luminescence in blue/white emitting colors. These results suggest substantial potential in diverse applications, such as building materials and optoelectronics.
Collapse
Affiliation(s)
| | - Nam Chul Kim
- Division of Advanced Materials Engineering, Center for Advanced Materials and Parts of Powders, Kongju National University, Cheonan-si 31080, Republic of Korea;
| | - Sung Ho Song
- Division of Advanced Materials Engineering, Center for Advanced Materials and Parts of Powders, Kongju National University, Cheonan-si 31080, Republic of Korea;
| |
Collapse
|
13
|
Wasim M, Bergonzi MC. Unlocking the Potential of Oleanolic Acid: Integrating Pharmacological Insights and Advancements in Delivery Systems. Pharmaceutics 2024; 16:692. [PMID: 38931816 PMCID: PMC11206505 DOI: 10.3390/pharmaceutics16060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024] Open
Abstract
The growing interest in oleanolic acid (OA) as a triterpenoid with remarkable health benefits prompts an emphasis on its efficient use in pharmaceutical research. OA exhibits a range of pharmacological effects, including antidiabetic, anti-inflammatory, immune-enhancing, gastroprotective, hepatoprotective, antitumor, and antiviral properties. While OA demonstrates diverse pharmacological effects, optimizing its therapeutic potential requires overcoming significant challenges. In the field of pharmaceutical research, the exploration of efficient drug delivery systems is essential to maximizing the therapeutic potential of bioactive compounds. Efficiently delivering OA faces challenges, such as poor aqueous solubility and restricted bioavailability, and to unlock its full therapeutic efficacy, novel formulation strategies are imperative. This discussion thoroughly investigates different approaches and advancements in OA drug delivery systems with the aim of enhancing the biopharmaceutical features and overall efficacy in diverse therapeutic contexts.
Collapse
Affiliation(s)
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
14
|
Medeiros-Neves B, Heidrich D, Schuh RS, Brazil NT, Fachel FNS, Cassel E, Vargas RMF, Scroferneker ML, von Poser GL, Koester LS, Teixeira HF. Topical Nanoemulsions as Delivery Systems for Green Extracts of Pterocaulon balansae Aiming at the Treatment of Sporotrichosis. Pharmaceutics 2024; 16:492. [PMID: 38675153 PMCID: PMC11054391 DOI: 10.3390/pharmaceutics16040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Coumarins are benzopyrones found in several plant genera, including Pterocaulon (Asteraceae). These compounds represent an important source of new treatments, especially as antimicrobial and antifungal agents. In this study, two coumarin-rich extracts from Pterocaulon balansae using green technologies were obtained through aqueous maceration (AE) and supercritical fluid extraction (SFE). Such extracts were incorporated into nanoemulsions (NAE and NSFE) composed of a medium-chain triglyceride oil core stabilized by phospholipids. The nanoemulsions exhibited droplet sizes between 127 and 162 nm, pH above 5.0, and viscosity of approximately 1.0 cP, properties compatible with the topical route. The coumarins permeation/retention from formulations through ear porcine skin using Franz-type diffusion cells were evaluated. Whatever the extract, coumarins were distributed in skin layers, especially in the dermis in both intact and impaired (tape stripping) skin. In addition, a significant increase in coumarins that reached up to the receptor fluid was observed for impaired skin, with increases of approximately threefold for NAE and fourfold for NSFE. Finally, antifungal activity of nanoemulsions was evaluated according to minimum inhibitory concentrations, and the values were 250 µg/mL for all strains tested. The overall results demonstrated the feasibility of incorporating P. balansae extracts into nanoemulsions and showed a potential alternative for the treatment of sporotrichosis.
Collapse
Affiliation(s)
- Bruna Medeiros-Neves
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre 90610-000, RS, Brazil; (B.M.-N.); (R.S.S.); (N.T.B.); (F.N.S.F.); (G.L.v.P.); (L.S.K.)
| | - Daiane Heidrich
- Departamento de Microbiologia, ICBS, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, Porto Alegre 90050-170, RS, Brazil; (D.H.); (M.L.S.)
| | - Roselena Silvestri Schuh
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre 90610-000, RS, Brazil; (B.M.-N.); (R.S.S.); (N.T.B.); (F.N.S.F.); (G.L.v.P.); (L.S.K.)
| | - Nathalya Tesch Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre 90610-000, RS, Brazil; (B.M.-N.); (R.S.S.); (N.T.B.); (F.N.S.F.); (G.L.v.P.); (L.S.K.)
| | - Flávia Nathiely Silveira Fachel
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre 90610-000, RS, Brazil; (B.M.-N.); (R.S.S.); (N.T.B.); (F.N.S.F.); (G.L.v.P.); (L.S.K.)
| | - Eduardo Cassel
- Faculdade de Engenharia, Departamento de Engenharia Química, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681-Prédio 30-Sala 277, Porto Alegre 90619-900, RS, Brazil; (E.C.); (R.M.F.V.)
| | - Rubem Mário Figueiró Vargas
- Faculdade de Engenharia, Departamento de Engenharia Química, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681-Prédio 30-Sala 277, Porto Alegre 90619-900, RS, Brazil; (E.C.); (R.M.F.V.)
| | - Maria Lúcia Scroferneker
- Departamento de Microbiologia, ICBS, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, Porto Alegre 90050-170, RS, Brazil; (D.H.); (M.L.S.)
| | - Gilsane Lino von Poser
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre 90610-000, RS, Brazil; (B.M.-N.); (R.S.S.); (N.T.B.); (F.N.S.F.); (G.L.v.P.); (L.S.K.)
| | - Letícia Scherer Koester
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre 90610-000, RS, Brazil; (B.M.-N.); (R.S.S.); (N.T.B.); (F.N.S.F.); (G.L.v.P.); (L.S.K.)
| | - Helder Ferreira Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre 90610-000, RS, Brazil; (B.M.-N.); (R.S.S.); (N.T.B.); (F.N.S.F.); (G.L.v.P.); (L.S.K.)
| |
Collapse
|
15
|
El Nagy HA, Mohamed MAEA. Stable diesel microemulsion using diammonium ionic liquids and their effects on fuel properties, particle size characteristics and combustion calculations. Sci Rep 2024; 14:7728. [PMID: 38565584 PMCID: PMC10987596 DOI: 10.1038/s41598-024-57955-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
Ecofriendly and stable Fuel Microemulsions based on renewable components were prepared through solubilizing ethanol in diesel and waste cooking oil blend (4:1). New diquaternary ammonium ionic liquids (3a & 3b) were synthesized through a quaternization reaction of the synthesized dihaloester with diethyl ethanolamine tridecantrioate and triethyl amine tridecantrioate, respectively. The chemical structures were elucidated by NMR spectroscopy. It was observed from DLS analyses that the ethanol particles in all samples have sizes between 4.77 to 11.22 nm. The distribution becomes narrower with the decrease in the ionic liquid concentrations. The fuel properties fall within the ASTM D975 acceptable specifications and are close to the neat diesel properties. The Cetane index were 53 and 53.5, heating values were 38.5 and 38.5 MJ/kg, viscosities were 2.91 and 2.98 mm2/s, densities were 8.26 and 8.29 g/mL and flash points were 49 °C and 48 °C for 3a1 and 3b1 microemulsions, respectively. The particle sizes of samples were examined by DLS for 160 days and they were significantly stable. The amount of ethanol solubilized increases with the increase in the amount of the synthesized ionic liquids and cosurfactant. The combustion calculations pointed out that the microemulsions 3a1 and 3b1 need 13.07 kg air/kg fuel and 12.79 kg air/kg fuel, respectively, which are less than the air required to combust the pure diesel. According to theoretical combustion, using ionic liquids saves the air consumption required for combustion and reduces the quantities of combustion products. The prepared microemulsions were successfully used as a diesel substitute due to their improved combustion properties than pure diesel and low pollution levels.
Collapse
Affiliation(s)
- H A El Nagy
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt.
| | | |
Collapse
|
16
|
Acharya B, Behera A, Behera S, Moharana S. Recent Advances in Nanotechnology-Based Drug Delivery Systems for the Diagnosis and Treatment of Reproductive Disorders. ACS APPLIED BIO MATERIALS 2024; 7:1336-1361. [PMID: 38412066 DOI: 10.1021/acsabm.3c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Over the past decade, nanotechnology has seen extensive integration into biomedical applications, playing a crucial role in biodetection, drug delivery, and diagnostic imaging. This is especially important in reproductive health care, which has become an emerging and significant area of research. Global concerns have intensified around disorders such as infertility, endometriosis, ectopic pregnancy, erectile dysfunction, benign prostate hyperplasia, sexually transmitted infections, and reproductive cancers. Nanotechnology presents promising solutions to address these concerns by introducing innovative tools and techniques, facilitating early detection, targeted drug delivery, and improved imaging capabilities. Through the utilization of nanoscale materials and devices, researchers can craft treatments that are not only more precise but also more effective, significantly enhancing outcomes in reproductive healthcare. Looking forward, the future of nanotechnology in reproductive medicine holds immense potential for reshaping diagnostics, personalized therapies, and fertility preservation. The utilization of nanotechnology-driven drug delivery systems is anticipated to elevate treatment effectiveness, minimize side effects, and offer patients therapies that are not only more precise but also more efficient. This review aims to delve into the various types, properties, and preparation techniques of nanocarriers specifically designed for drug delivery in the context of reproductive disorders, shedding light on the current landscape and potential future directions in this dynamic field.
Collapse
Affiliation(s)
- Biswajeet Acharya
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| | - Amulyaratna Behera
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| | | | - Srikanta Moharana
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
17
|
Talianu MT, Dinu-Pîrvu CE, Ghica MV, Anuţa V, Prisada RM, Popa L. Development and Characterization of New Miconazole-Based Microemulsions for Buccal Delivery by Implementing a Full Factorial Design Modeling. Pharmaceutics 2024; 16:271. [PMID: 38399325 PMCID: PMC10893023 DOI: 10.3390/pharmaceutics16020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
This research aimed to develop miconazole-based microemulsions using oleic acid as a natural lipophilic phase and a stabilizer mixture comprising Tween 20 and PEG 400 to solubilize miconazole as an antifungal agent known for its activity in oral candidiasis and to improve its bioavailability. The formulation and preparation process was combined with a mathematical approach using a 23-full factorial plan. Fluid and gel-like microemulsions were obtained and analyzed considering pH, conductivity, and refractive index, followed by extensive analyses focused on droplet size, zeta potential, rheological behavior, and goniometry. In vitro release tests were performed to assess their biopharmaceutical characteristics. Independent variables coded X1-Oleic acid (%, w/w), X2-Tween 20 (%, w/w), and X3-PEG 400 (%, w/w) were analyzed in relationship with three main outputs like mean droplet size, work of adhesion, and diffusion coefficient by combining statistical tools with response surface methodology. The microemulsion containing miconazole base-2%, oleic acid-5%, Tween 20-40%, PEG 400-20%, and water-33% exhibited a mean droplet size of 119.6 nm, a work of adhesion of 71.98 mN/m, a diffusion coefficient of 2.11·10-5 cm2/s, and together with remarked attributes of two gel-like systems formulated with higher oil concentrations, modeled the final optimization step of microemulsions as potential systems for buccal delivery.
Collapse
Affiliation(s)
- Marina-Theodora Talianu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (R.M.P.); (L.P.)
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (R.M.P.); (L.P.)
- Innovative Therapeutic Structures R&D Center (InnoTher), “Carol Davila’’ University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (R.M.P.); (L.P.)
- Innovative Therapeutic Structures R&D Center (InnoTher), “Carol Davila’’ University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Valentina Anuţa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (R.M.P.); (L.P.)
- Innovative Therapeutic Structures R&D Center (InnoTher), “Carol Davila’’ University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Răzvan Mihai Prisada
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (R.M.P.); (L.P.)
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (R.M.P.); (L.P.)
- Innovative Therapeutic Structures R&D Center (InnoTher), “Carol Davila’’ University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| |
Collapse
|
18
|
Racovita RC, Ciuca MD, Catana D, Comanescu C, Ciocirlan O. Microemulsions of Nonionic Surfactant with Water and Various Homologous Esters: Preparation, Phase Transitions, Physical Property Measurements, and Application for Extraction of Tricyclic Antidepressant Drugs from Aqueous Media. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2311. [PMID: 37630897 PMCID: PMC10458553 DOI: 10.3390/nano13162311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Microemulsions are nanocolloidal systems composed of water, an oil, and a surfactant, sometimes with an additional co-surfactant, which have found a wide range of practical applications, including the extractive removal of contaminants from polluted water. In this study, microemulsion systems, including a nonionic surfactant (Brij 30), water, and esters selected from two homologous series of C1-C6 alkyl acetates and ethyl C1-C4 carboxylates, respectively, were prepared by the surfactant titration method. Phase transitions leading to the formation of Winsor II and Winsor IV microemulsions were observed and phase diagrams were constructed. The dependences of phase transitions on the salinity and pH and the addition of isopropanol as a co-surfactant were also investigated. Some physical properties, namely density, refractive index, electrical conductivity, dynamic viscosity, and particle size, were measured for a selection of Winsor IV microemulsions, providing further insight into some other phase transitions occurring in the monophasic domains of phase diagrams. Finally, Winsor II microemulsions were tested as extraction solvents for the removal of four tricyclic antidepressant drugs from aqueous media. Propyl acetate/Brij 30/H2O microemulsions provided the best extraction yields (>90%), the highest Nernst distribution coefficients (~40-88), and a large volumetric ratio of almost 3 between the recovered purified water and the resulting microemulsion extract. Increasing the ionic strength (salinity) or the pH of the aqueous antidepressant solutions led to an improvement in extraction efficiencies, approaching 100%. These results could be extrapolated to other classes of pharmaceutical contaminants and suggest ester- and nonionic surfactant-based microemulsions are a promising tool for environmental remediation.
Collapse
Affiliation(s)
- Radu C. Racovita
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu St., District 1, 011061 Bucharest, Romania; (M.D.C.); (D.C.); (O.C.)
| | - Maria D. Ciuca
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu St., District 1, 011061 Bucharest, Romania; (M.D.C.); (D.C.); (O.C.)
| | - Daniela Catana
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu St., District 1, 011061 Bucharest, Romania; (M.D.C.); (D.C.); (O.C.)
| | - Cezar Comanescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu St., District 1, 011061 Bucharest, Romania; (M.D.C.); (D.C.); (O.C.)
- National Institute of Materials Physics, 405A Atomistilor St., 077125 Magurele, Romania
- Faculty of Physics, University of Bucharest, 405 Atomistilor St., 077125 Magurele, Romania
| | - Oana Ciocirlan
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu St., District 1, 011061 Bucharest, Romania; (M.D.C.); (D.C.); (O.C.)
| |
Collapse
|