1
|
Vukadinović A, Ognjanović M, Mijović M, Warren B, Erić S, Prijović Ž. Lignin-Based Nanocarrier for Simultaneous Delivery of 131I and SN-38 in the Combined Treatment of Solid Tumors by a Nanobrachytherapy Approach. Pharmaceuticals (Basel) 2025; 18:177. [PMID: 40005991 PMCID: PMC11859004 DOI: 10.3390/ph18020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/12/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Background: The rapid rise in cancer incidence significantly augments efforts to improve cancer treatments. A multimodal approach in the nanobrachytherapy of solid tumors is one of the promising methods under investigation. This study presents a novel biocompatible lignin-based nanomaterial, loaded with cytostatic agent SN-38 and radionuclide 131I, for simultaneous radiation and chemotherapy of solid tumors by a nanobrachytherapy approach. Method: Nanoparticles of ~100 nm in size, composed of lignin alone or loaded with 10% (m/m) of SN-38 (SN-38@lignin), were synthesized using a bottom-up approach and characterized. Subsequent radiolabeling of the nanoparticles by 131I produced 131I-lignin and 131I-SN-38@lignin. Their antitumor efficiency was tested against luciferase-expressing 4T1 mouse breast cancer xenografts of ~100 mm3 size on Balb/c mice. Results: An intratumoral injection of 1.85 MBq of 131I-lignin was retained within the tumor and achieved a moderate twofold decrease in tumor size compared to the control group. Injecting SN-38@lignin containing 25 µg of SN-38 decreased tumor size 3.5-fold. The therapy using the same doses of 131I-SN-38@lignin produced the most potent antitumor effect, with tumors being 6-fold smaller and having extensive intratumoral necrosis, all of it without signs of systemic toxicity. Conclusions: These results support the intratumoral delivery of lignin-based nanomaterial carrying radioisotopes and camptothecins for effective multimodal anticancer therapy.
Collapse
Affiliation(s)
- Aleksandar Vukadinović
- “Vinča” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia
| | - Miloš Ognjanović
- “Vinča” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia
| | - Milica Mijović
- Institute of Pathology, Faculty of Medicine, University in Priština-Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia;
| | - Bryce Warren
- Natural State Science LLC, 415 N. McKinley Street, Little Rock, AR 72205, USA
| | - Slavica Erić
- Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia;
| | - Željko Prijović
- “Vinča” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia
| |
Collapse
|
2
|
An J, Park H, Ju M, Woo Y, Seo Y, Min J, Lee T. An updated review on the development of a nanomaterial-based field-effect transistor-type biosensors to detect exosomes for cancer diagnosis. Talanta 2024; 279:126604. [PMID: 39068827 DOI: 10.1016/j.talanta.2024.126604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Cancer, a life-threatening genetic disease caused by abnormalities in normal cell growth regulatory functions, poses a significant challenge that current medical technologies cannot fully overcome. The current desired breakthrough is to diagnose cancer as early as possible and increase survival rates through treatments tailored to the prognosis and appropriate follow-up. From a perspective that reflects this contemporary paradigm of cancer diagnostics, exosomes are emerging as promising biomarkers. Exosomes, serving as mobile biological information repositories of cancer cells, have been known to create a microtumor environment in surrounding cells, and significant insight into the clinical significance of cancer diagnosis targeting them has been reported. Therefore, there are growing interests in constructing a system that enables continuous screening with a focus on patient-friendly and flexible diagnosis, aiming to improve cancer screening rates through exosome detection. This review focuses on a proposed exosome-embedded biological information-detecting platform employing a field-effect transistor (FET)-based biosensor that leverages portability, cost-effectiveness, and rapidity to minimize the stages of sacrifice attributable to cancer. The FET-applied biosensing technique, stemming from variations in an electric field, is considered an early detection system, offering high sensitivity and a prompt response frequency for the qualitative and quantitative analysis of biomolecules. Hence, an in-depth discussion was conducted on the understanding of various exosome-based cancer biomarkers and the clinical significance of recent studies on FET-based biosensors applying them.
Collapse
Affiliation(s)
- Jeongyun An
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Hyunjun Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Minyoung Ju
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Yeeun Woo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Yoshep Seo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Dongjak-Gu, Seoul, 06974, Republic of Korea.
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea.
| |
Collapse
|
3
|
Tang X, Gao D, Liu X, Liu J, Chen T, He J. Novel RGD-decorated micelles loaded with doxorubicin for targeted breast cancer chemotherapy. Biomed Pharmacother 2024; 180:117460. [PMID: 39316967 DOI: 10.1016/j.biopha.2024.117460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024] Open
Abstract
Nanotechnology has emerged as a promising innovative avenue for therapeutic intervention in cancer research. However, achieving satisfactory accumulation of nanoparticles in the tumor and fabricating optimized nanoparticles remain challenging. In this work, we developed a novel polymeric micelle system to actively target integrin receptors, which are usually overexpressed in breast cancer. We first synthesized a targeted peptide-modified cyclic (Arg-Gly-Asp-D-Phe-Cys) (c(RGDfc))-polyethylene glycol-acitretin amphipathic conjugate (RPA) and prepared doxorubicin (DOX)-loaded RPADm (RPA@DOX) micelles with a high drug loading content of more than 11 %. Compared with unmodified DOX-containing micelles, RPADm demonstrated increased cytotoxicity and cellular uptake by MCF-7 cells. Importantly, competitive binding experiments confirmed that the observed enhancement effect was attributed to the modification of c(RGDfc) on the surface of the micelles. Furthermore, due to its active tumor-targeting ability, compared with the other DOX-based formulations, the RPADm exhibited the highest tumor distribution and strongest therapeutic efficacy in MCF-7 tumor-bearing nude mice. Additionally, the safety evaluation experiments revealed that the DOX-loaded micelles had no obvious systemic toxicity. These results suggest that the developed micelles modified with c(RGDfc) are promising candidates for tumor-active targeting therapies.
Collapse
Affiliation(s)
- Xiang Tang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Dongxu Gao
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Xuejie Liu
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Junfeng Liu
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Tong Chen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China.
| | - Jun He
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China.
| |
Collapse
|
4
|
Guo S, Cao Y, Cheng B, Zhou Y, Li X, Zhang M, Huang Y, Wei S, Luo K, Dai R, Wang R. A nanoprodrug derived from branched poly (ethylene glycol) recognizes prostate-specific membrane antigen to precisely suppress prostate cancer progression. Int J Biol Macromol 2024; 282:136831. [PMID: 39454922 DOI: 10.1016/j.ijbiomac.2024.136831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Prostate-specific membrane antigen (PSMA) is overexpressed in 80-90 % of prostate cancers (PCa) and is widely used as a diagnostic and therapeutic biomarker. Docetaxel (DTX), an FDA-approved anti-microtubule drug, is commonly employed to manage metastatic castration-resistant PCa; however, DTX therapy is often associated with severe side effects. One promising strategy to mitigate these side effects is the development of nanomedicine by loading small molecules into biocompatible vectors. Poly (ethylene glycol) (PEG) has been extensively used in clinical settings for this purpose, with PEGylated drugs demonstrating significant success. Compared to linear PEG, branched PEG (multi-arm PEG) provides enhanced stability for nanomedicines. In this study, we developed a novel nanoprodrug 4armPEG-Docetaxel DCL (4armPEG-DD) by conjugating a 4-arm PEG with DTX via a reduction-sensitive disulfide bond and further modifying it with 2-[3-[5-amino-1-carboxypentyl]-ureido]-pentanedioic acid (DCL), a PSMA-targeting ligand. Both in vitro and in vivo results demonstrated that the designed nanoprodrug specifically recognized PSMA-positive PCa cells and effectively released DTX in response to the intracellular reducing environment, leading to potent cytotoxic effects on PSMA-positive prostate tumors. Importantly, 4armPEG-DD exhibited improved in vivo safety compared to small-molecule DTX. Thus, we propose that 4armPEG-DD represents a promising candidate for the clinical treatment of PSMA-positive PCa.
Collapse
Affiliation(s)
- Shiwei Guo
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yu Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Bo Cheng
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Meng Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Yilan Huang
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Siping Wei
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi Province 541004, China
| | - Kui Luo
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Rongyang Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Department of Biochemistry and Molecular Biology, School of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan Province 637000, China.
| | - Ronghao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
5
|
Marques AC, Costa PC, Velho S, Amaral MH. Analytical Techniques for Characterizing Tumor-Targeted Antibody-Functionalized Nanoparticles. Life (Basel) 2024; 14:489. [PMID: 38672759 PMCID: PMC11051252 DOI: 10.3390/life14040489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The specific interaction between cell surface receptors and corresponding antibodies has driven opportunities for developing targeted cancer therapies using nanoparticle systems. It is challenging to design and develop such targeted nanomedicines using antibody ligands, as the final nanoconjugate's specificity hinges on the cohesive functioning of its components. The multicomponent nature of antibody-conjugated nanoparticles also complicates the characterization process. Regardless of the type of nanoparticle, it is essential to perform physicochemical characterization to establish a solid foundation of knowledge and develop suitable preclinical studies. A meaningful physicochemical evaluation of antibody-conjugated nanoparticles should include determining the quantity and orientation of the antibodies, confirming the antibodies' integrity following attachment, and assessing the immunoreactivity of the obtained nanoconjugates. In this review, the authors describe the various techniques (electrophoresis, spectroscopy, colorimetric assays, immunoassays, etc.) used to analyze the physicochemical properties of nanoparticles functionalized with antibodies and discuss the main results.
Collapse
Affiliation(s)
- Ana Camila Marques
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paulo C. Costa
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Sérgia Velho
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Maria Helena Amaral
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|