1
|
Fontanini D, Bulleri F, Ravaglioli C, Capocchi A. A Comparison of Methods for Assessing the Antioxidant Expression in Posidonia oceanica (L.) Delile. Molecules 2025; 30:1828. [PMID: 40333864 PMCID: PMC12029781 DOI: 10.3390/molecules30081828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/02/2025] [Accepted: 04/10/2025] [Indexed: 05/09/2025] Open
Abstract
Non-enzymatic antioxidants, such as polyphenols, can counteract free radicals and other potentially toxic oxidants produced by marine plants exposed to stress. In this study, we assessed different methods for measuring antioxidant capacities and condensed tannins in the seagrass Posidonia oceanica (L.) Delile. Two polyphenol extraction methods, direct and sequential, were compared to determine their efficiencies. Condensed tannins were assayed directly on leaf flour using a modified HCl-butanol-acetone-iron reagent method. Total antioxidant capacities were assayed with the ABTS, CUPRAC, and ORAC methods, both on extracts and on powdered samples (QUENCHER). The direct assays showed higher sensitivity compared to their in-solution counterparts. Our results indicate that in-depth measurement of antioxidant compounds and capacities can be achieved by direct assays on P. oceanica powder samples, and these data can be used to assess changes in the plant biochemistry due to the exposure to varying biotic and abiotic conditions.
Collapse
Affiliation(s)
- Debora Fontanini
- Department of Biology, University of Pisa, Via L. Ghini 13, 56126 Pisa, Italy; (C.R.); (A.C.)
- MARinePHARMA Center, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Fabio Bulleri
- Department of Biology, University of Pisa, Via L. Ghini 13, 56126 Pisa, Italy; (C.R.); (A.C.)
| | - Chiara Ravaglioli
- Department of Biology, University of Pisa, Via L. Ghini 13, 56126 Pisa, Italy; (C.R.); (A.C.)
| | - Antonella Capocchi
- Department of Biology, University of Pisa, Via L. Ghini 13, 56126 Pisa, Italy; (C.R.); (A.C.)
| |
Collapse
|
2
|
Botes J, Ma X, Chang J, Van de Peer Y, Berger DK. Flavonoids and anthocyanins in seagrasses: implications for climate change adaptation and resilience. FRONTIERS IN PLANT SCIENCE 2025; 15:1520474. [PMID: 39935685 PMCID: PMC11810914 DOI: 10.3389/fpls.2024.1520474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025]
Abstract
Seagrasses are a paraphyletic group of marine angiosperms and retain certain adaptations from the ancestors of all embryophytes in the transition to terrestrial environments. Among these adaptations is the production of flavonoids, versatile phenylpropanoid secondary metabolites that participate in a variety of stress responses. Certain features, such as catalytic promiscuity and metabolon interactions, allow flavonoid metabolism to expand to produce novel compounds and respond to a variety of stimuli. As marine environments expose seagrasses to a unique set of stresses, these plants display interesting flavonoid profiles, the functions of which are often not completely clear. Flavonoids will likely prove to be effective and versatile agents in combating the new host of stress conditions introduced to marine environments by anthropogenic climate change, which affects marine environments differently from terrestrial ones. These new stresses include increased sulfate levels, changes in salt concentration, changes in herbivore distributions, and ocean acidification, which all involve flavonoids as stress response mechanisms, though the role of flavonoids in combatting these climate change stresses is seldom discussed directly in the literature. Flavonoids can also be used to assess the health of seagrass meadows through an interplay between flavonoid and simple phenolic levels, which may prove to be useful in monitoring the response of seagrasses to climate change. Studies focusing on the genetics of flavonoid metabolism are limited for this group, but the large chalcone synthase gene families in some species may provide an interesting topic of research. Anthocyanins are typically studied separately from other flavonoids. The phenomenon of reddening in certain seagrass species typically focuses on the importance of anthocyanins as a UV-screening mechanism, while the role of anthocyanins in cold stress is discussed less often. Both of these stress response functions would be useful for adaptation to climate change-induced deviations in tidal patterns and emersion. However, ocean warming will likely lead to a decrease in anthocyanin content, which may impact the performance of intertidal seagrasses. This review highlights the importance of flavonoids in angiosperm stress response and adaptation, examines research on flavonoids in seagrasses, and hypothesizes on the importance of flavonoids in these organisms under climate change.
Collapse
Affiliation(s)
- Jana Botes
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Xiao Ma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Centre for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jiyang Chang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Centre for Plant Systems Biology, VIB, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Centre for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Dave Kenneth Berger
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Ribas-Taberner MDM, Mir-Rossello PM, Gil L, Sureda A, Capó X. Potential Use of Marine Plants as a Source of Bioactive Compounds. Molecules 2025; 30:485. [PMID: 39942590 PMCID: PMC11821081 DOI: 10.3390/molecules30030485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
The search for bioactive natural compounds, traditionally focused on terrestrial environments, has increasingly expanded to the seas and oceans, opening new frontiers for exploration. Among the diverse organisms inhabiting these ecosystems, marine phanerogams have emerged as a promising source of health-promoting bioactive compounds. This review highlights the distinctive chemical diversity of seagrasses including species such as Posidonia oceanica, Zostera marina, and Cymodocea nodosa, among others, and focusses on the growing interest in natural therapies as alternatives to conventional pharmaceuticals. Compounds such as polysaccharides or secondary metabolites such as polyphenol and flavonoids produced by marine plants exhibit a broad range of beneficial properties, including anti-inflammatory, antibacterial, antioxidant, and antidiabetic qualities. This review describes how these compounds can mitigate inflammation, promote skin health, and combat oxidative stress. Moreover, certain marine extracts have demonstrated potential to inhibit cancer cell growth and improve metabolic disorders like obesity and diabetes. The manuscript also discusses the potential of marine plant extracts in the development of novel therapeutic agents to address various illnesses, including infections, chronic diseases, and metabolic disorders. It emphasizes the need for further research to fully elucidate the mechanisms underlying the activity of these bioactive compounds and their potential therapeutic applications. In summary, this study highlights marine plants as a valuable reservoir for identifying organic molecules, paving the way for innovative advancements in medical and healthcare interventions.
Collapse
Affiliation(s)
- Maria del Mar Ribas-Taberner
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Mallorca, Spain; (M.d.M.R.-T.); (A.S.)
| | - Pere Miquel Mir-Rossello
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, E-07122 Palma, Balearic Islands, Spain;
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB)-Agro-Environmental and Water Economics Institute (INAGEA), E-07122 Palma, Balearic Islands, Spain;
| | - Lorenzo Gil
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB)-Agro-Environmental and Water Economics Institute (INAGEA), E-07122 Palma, Balearic Islands, Spain;
| | - Antoni Sureda
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Mallorca, Spain; (M.d.M.R.-T.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Community Nutrition & Oxidative Stress, Research Group, Health Research Institute of Balearic Islands (IdISBa), E-07120 Palma de Mallorca, Mallorca, Spain
| | - Xavier Capó
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Mallorca, Spain; (M.d.M.R.-T.); (A.S.)
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), E-07120 Palma de Mallorca, Mallorca, Spain
| |
Collapse
|
4
|
Menicagli V, Ruffini Castiglione M, Cioni E, Spanò C, Balestri E, De Leo M, Bottega S, Sorce C, Lardicci C. Stress responses of the seagrass Cymodocea nodosa to environmentally relevant concentrations of pharmaceutical ibuprofen: Ecological implications. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135188. [PMID: 39024758 DOI: 10.1016/j.jhazmat.2024.135188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Pharmaceuticals like ibuprofen (IBU) entering marine environments are of great concern due to their increasing consumption and impact on wildlife. No information on IBU toxicity to seagrasses is yet available. Seagrasses form key habitats and are threatened worldwide by multiple stressors. Here, the responses of the seagrass Cymodocea nodosa to a short-term exposure (12 days) to environmentally realistic IBU concentrations (0.25-2.5-25 µg L-1), both at organism (plant growth) and sub-organism level (oxidative status, photosynthetic efficiency, and specialized metabolites production), were assessed in mesocosm. Chemical analyses to detect the presence of IBU and its metabolites in seawater and plants were also performed. IBU did not affect plant growth but caused physiological alterations which varied in severity depending on its concentration. Concentrations of 0.25 and 2.5 µg L-1 resulted in oxidative stress, but an increased antioxidant enzyme activity enabled plants to tolerate stress. A concentration of 25 µg L-1 caused greater oxidative stress, reduced antioxidant enzyme activity and specialized metabolites production, and impaired photosynthetic machinery functioning (particularly PSII). IBU was detected in seawater but not in plants suggesting no bioaccumulation. These findings indicate that C. nodosa could not withstand high IBU stress, and this could reduce its resilience to additional environmental stressors.
Collapse
Affiliation(s)
- Virginia Menicagli
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy
| | - Monica Ruffini Castiglione
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43-44, 56126 Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| | - Emily Cioni
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy
| | - Carmelina Spanò
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| | - Elena Balestri
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43-44, 56126 Pisa, Italy.
| | - Marinella De Leo
- Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43-44, 56126 Pisa, Italy; Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy
| | - Stefania Bottega
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy
| | - Carlo Sorce
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| | - Claudio Lardicci
- Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43-44, 56126 Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy; Department of Earth Sciences, University of Pisa, via S. Maria 53, 56126 Pisa, Italy
| |
Collapse
|
5
|
Pagenkopp Lohan KM, Gignoux-Wolfsohn SA, Ruiz GM. Biodiversity differentially impacts disease dynamics across marine and terrestrial habitats. Trends Parasitol 2024; 40:106-117. [PMID: 38212198 DOI: 10.1016/j.pt.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
The relationship between biodiversity and infectious disease, where increased biodiversity leads to decreased disease risk, originated from research in terrestrial disease systems and remains relatively underexplored in marine systems. Understanding the impacts of biodiversity on disease in marine versus terrestrial systems is key to continued marine ecosystem functioning, sustainable aquaculture, and restoration projects. We compare the biodiversity-disease relationship across terrestrial and marine systems, considering biodiversity at six levels: intraspecific host diversity, host microbiomes, interspecific host diversity, biotic vectors and reservoirs, parasite consumers, and parasites. We highlight gaps in knowledge regarding how these six levels of biodiversity impact diseases in marine systems and propose two model systems, the Perkinsus-oyster and Labyrinthula-seagrass systems, to address these gaps.
Collapse
Affiliation(s)
- Katrina M Pagenkopp Lohan
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD 21037, USA.
| | - Sarah A Gignoux-Wolfsohn
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD 21037, USA; Current address: Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Gregory M Ruiz
- Marine Invasions Research Laboratory, Smithsonian Environmental Research Center, Edgewater, MD 21037, USA
| |
Collapse
|
6
|
Baranzelli J, Somacal S, Araujo Amorim Bonini C, Smaniotto FA, Sant'Anna Monteiro C, Trivisiol da Silva D, de Oliveira Mello R, Ramos Boldori J, Casagrande Denardin C, Rodrigues E, Zavariz de Miranda M, Emanuelli T. Influence of sprouting on the bioaccessibility and bioactivity of benzoxazinoids, phenolic acids, and flavonoids of soft and hard wheat cultivars. Food Res Int 2023; 173:113338. [PMID: 37803692 DOI: 10.1016/j.foodres.2023.113338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 10/08/2023]
Abstract
Grain germination increases the contents of benzoxazinoids and the antioxidant capacity of wheat and differentially affects the phytochemical composition of hard and soft wheat cultivars. It was investigated whether wheat cultivars (sprouted or not) with distinct grain texture characteristics (BRS Guaraim, soft vs. BRS Marcante, hard texture) would have different behavior in relation to changes in phytochemical compounds, bioaccessibility and antioxidant capacity during simulated gastrointestinal digestion of a tabbouleh preparation. Sprouting increased the nominal amount of phytochemicals in tabbouleh resulting in increased release of phenolic acids (up to 7.5-fold) and benzoxazinoids (up to 12.5-fold) during all digestion phases besides higher bioaccessibility (up to 2.8-fold). Sprouting caused greater increase in the bioaccessibility of phenolic acids for the soft wheat cultivar (4.5-fold) than for the hard cultivar (1.9-fold) and it increased the colon available index of phenolic acids only for the soft cultivar (1.8-fold). Flavonoids, mainly represented by apigenin glycosides, were marginally increased after sprouting but underwent relative increase along digestion being the major phytochemicals found in the bioaccessible fraction obtained after intestinal digestion (73-94% of total phytochemicals). The increase in apigenin glycosides was associated to the increase of in vitro and intracellular antioxidant capacity of tabbouleh along digestion. Sprouting increased the peroxyl radical removal capacity of tabbouleh in the gastric phase and in the non-bioaccessible fraction regardless of the cultivar. The highest hydroxyl radical removal capacities were found in non-sprouted cultivars, especially in the soft texture cultivar in the undigested and bioaccessible fractions. The bioaccessible fraction obtained after wheat digestion was more efficient to scavenge intracellular ROS than undigested samples, the highest scavenging potency being observed for the hard texture cultivar with no effect of sprouting. These findings confirm the hypothesis that the phytochemicals of hard and soft wheat cultivars (sprouted or not) have different behavior during digestion in terms of biotransformation, bioaccessibility and ability to remove reactive species and indicate that tabbouleh produced from sprouted wheat results in increased release of bioactive phytochemicals during digestion.
Collapse
Affiliation(s)
- Julia Baranzelli
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Sabrina Somacal
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Camila Araujo Amorim Bonini
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Franciele Aline Smaniotto
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Camila Sant'Anna Monteiro
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Dariane Trivisiol da Silva
- Department of Pharmacology, Center of Health Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Renius de Oliveira Mello
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Jean Ramos Boldori
- Research Group on Biochemistry and Toxicology of Bioactive Compounds (GBToxBio), Federal University of Pampa, 97500-970 Uruguaiana, RS, Brazil
| | - Cristiane Casagrande Denardin
- Research Group on Biochemistry and Toxicology of Bioactive Compounds (GBToxBio), Federal University of Pampa, 97500-970 Uruguaiana, RS, Brazil
| | - Eliseu Rodrigues
- Department of Food Science, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Rio Grande do Sul, Brazil
| | - Martha Zavariz de Miranda
- Grain Quality Laboratory, Brazilian Agricultural Research Corporation - Embrapa Trigo, 99050-970 Passo Fundo, RS, Brazil
| | - Tatiana Emanuelli
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil; Department of Pharmacology, Center of Health Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
7
|
Abruscato G, Chiarelli R, Lazzara V, Punginelli D, Sugár S, Mauro M, Librizzi M, Di Stefano V, Arizza V, Vizzini A, Vazzana M, Luparello C. In Vitro Cytotoxic Effect of Aqueous Extracts from Leaves and Rhizomes of the Seagrass Posidonia oceanica (L.) Delile on HepG2 Liver Cancer Cells: Focus on Autophagy and Apoptosis. BIOLOGY 2023; 12:biology12040616. [PMID: 37106816 PMCID: PMC10135731 DOI: 10.3390/biology12040616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023]
Abstract
Aqueous extracts from Posidonia oceanica's green and brown (beached) leaves and rhizomes were prepared, submitted to phenolic compound and proteomic analysis, and examined for their potential cytotoxic effect on HepG2 liver cancer cells in culture. The chosen endpoints related to survival and death were cell viability and locomotory behavior, cell-cycle analysis, apoptosis and autophagy, mitochondrial membrane polarization, and cell redox state. Here, we show that 24 h exposure to both green-leaf- and rhizome-derived extracts decreased tumor cell number in a dose-response manner, with a mean half maximal inhibitory concentration (IC50) estimated at 83 and 11.5 μg of dry extract/mL, respectively. Exposure to the IC50 of the extracts appeared to inhibit cell motility and long-term cell replicating capacity, with a more pronounced effect exerted by the rhizome-derived preparation. The underlying death-promoting mechanisms identified involved the down-regulation of autophagy, the onset of apoptosis, the decrease in the generation of reactive oxygen species, and the dissipation of mitochondrial transmembrane potential, although, at the molecular level, the two extracts appeared to elicit partially differentiating effects, conceivably due to their diverse composition. In conclusion, P. oceanica extracts merit further investigation to develop novel promising prevention and/or treatment agents, as well as beneficial supplements for the formulation of functional foods and food-packaging material with antioxidant and anticancer properties.
Collapse
Affiliation(s)
- Giulia Abruscato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Roberto Chiarelli
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Valentina Lazzara
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Diletta Punginelli
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Simon Sugár
- MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, 1117 Budapest, Hungary
| | - Manuela Mauro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Mariangela Librizzi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Vita Di Stefano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Aiti Vizzini
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Claudio Luparello
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| |
Collapse
|
8
|
Baranzelli J, Somacal S, Monteiro CS, Mello RDO, Rodrigues E, Prestes OD, López-Ruiz R, Garrido Frenich A, Romero-González R, de Miranda MZ, Emanuelli T. Grain Germination Changes the Profile of Phenolic Compounds and Benzoxazinoids in Wheat: A Study on Hard and Soft Cultivars. Molecules 2023; 28:molecules28020721. [PMID: 36677783 PMCID: PMC9864386 DOI: 10.3390/molecules28020721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Pre-harvest sprouting is a frequent problem for wheat culture that can be simulated by laboratory-based germination. Despite reducing baking properties, wheat sprouting has been shown to increase the bioavailability of some nutrients. It was investigated whether wheat cultivars bearing distinct grain texture characteristics (BRS Guaraim, soft vs. BRS Marcante, hard texture) would have different behavior in terms of the changes in phytochemical compounds during germination. Using LC-Q-TOF-MS, higher contents of benzoxazinoids and flavonoids were found in the hard cultivar than in the soft one. Free phytochemicals, mainly benzoxazinoids, increased during germination in both cultivars. Before germination, soft and hard cultivars had a similar profile of matrix-bound phytochemicals, but during germination, these compounds have been shown to decrease only in the hard-texture cultivar, due to decreased levels of phenolic acids (trans-ferulic acid) and flavonoids (apigenin) that were bound to the cell wall through ester-type bonds. These findings confirm the hypothesis that hard and soft wheat cultivars have distinct behavior during germination concerning the changes in phytochemical compounds, namely the matrix-bound compounds. In addition, germination has been shown to remarkably increase the content of benzoxazinoids and the antioxidant capacity, which could bring a health-beneficial appeal for pre-harvested sprouted grains.
Collapse
Affiliation(s)
- Julia Baranzelli
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria 97105-900, Rio Grande do Sul, Brazil
| | - Sabrina Somacal
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria 97105-900, Rio Grande do Sul, Brazil
| | - Camila Sant’Anna Monteiro
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria 97105-900, Rio Grande do Sul, Brazil
| | - Renius de Oliveira Mello
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria 97105-900, Rio Grande do Sul, Brazil
| | - Eliseu Rodrigues
- Department of Food Science, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Rio Grande do Sul, Brazil
| | - Osmar Damian Prestes
- Department of Chemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, Rio Grande do Sul, Brazil
| | - Rosalía López-Ruiz
- Research Group ‘Analytical Chemistry of Contaminants’, Department of Chemistry and Physics, Research Center for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, 04120 Almeria, Spain
| | - Antonia Garrido Frenich
- Research Group ‘Analytical Chemistry of Contaminants’, Department of Chemistry and Physics, Research Center for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, 04120 Almeria, Spain
| | - Roberto Romero-González
- Research Group ‘Analytical Chemistry of Contaminants’, Department of Chemistry and Physics, Research Center for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, 04120 Almeria, Spain
| | - Martha Zavariz de Miranda
- Grain Quality Laboratory, Brazilian Agricultural Research Corporation-Embrapa Trigo, Passo Fundo 99050-970, Rio Grande do Sul, Brazil
| | - Tatiana Emanuelli
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria 97105-900, Rio Grande do Sul, Brazil
- Correspondence:
| |
Collapse
|
9
|
Current advances on the therapeutic potential of pinocembrin: An updated review. Biomed Pharmacother 2023; 157:114032. [PMID: 36481404 DOI: 10.1016/j.biopha.2022.114032] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022] Open
Abstract
Pinocembrin (5,7-dihydroxyflavone) is a major flavonoid found in many plants, fungi and hive products, mainly honey and propolis. Several in vitro and preclinical studies revealed numerous pharmacological activities of pinocembrin including antioxidant, anti-inflammatory, antimicrobial, neuroprotective, cardioprotective and anticancer activities. Here, we comprehensively review and critically analyze the studies carried out on pinocembrin. We also discuss its potential mechanisms of action, bioavailability, toxicity, and clinical investigations. The wide therapeutic window of pinocembrin makes it a promising drug candidate for many clinical applications. We recommend some future perspectives to improve its pharmacokinetic and pharmacodynamic properties for better delivery that may also lead to new therapeutic advances.
Collapse
|
10
|
Ferchichi K, Amdouni N, Chevalier Y, Hbaieb S. Low-cost Posidonia oceanica bio-adsorbent for efficient removal of antibiotic oxytetracycline from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83112-83125. [PMID: 35761137 DOI: 10.1007/s11356-022-21647-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The presence of antibiotics as micro-contaminants in the water and aqueous environments is a health concern to humans and the ecosystem. Therefore, their elimination by adsorption to available and cheap materials in water treatment plants is a research topic of high relevance. The present paper reports on the adsorption behavior of oxytetracycline on a bio-adsorbent prepared from Posidonia oceanica; an abundant Mediterranean biomass. Characterization of the pretreated Posidonia biomaterial was achieved using several analyses such as Boehm acid-base titration method, pHPZC determination, and analysis techniques (FTIR, 13C CP-MAS NMR, optical microscopy, and TGA). The pHPZC occurred around pH 2.11. Posidonia biomaterial showed a fast and high uptake rate throughout the adsorption process, which is a definite advantage for analytical applications such as water decontamination. The experimental kinetic data fitted very rightly the pseudo-second-order kinetic model and the equilibrium uptake can adopt the bi-Langmuir isotherm model for all studied pH values which assumes adsorptions at the two localized sites. Maximum adsorption capacities of 11.8 mg∙g-1 and 4.4 mg∙g-1 for the two adsorption sites are reached at pH 6. The oxytetracycline adsorption process onto Posidonia bio-adsorbent is spontaneous (ΔadsG0 < 0), exothermic (ΔadsH0 < 0), and entropically favorable (ΔadsS0 > 0). The effect of pH on adsorption behavior and the thermodynamic parameters of adsorption are consistent with a possible origin of adsorption of oxytetracycline by means of hydrogen bonding interactions between surface hydroxyl and phenolic groups of the biomaterial and oxytetracycline. The proposed green and environmentally friendly biomaterial offers potential benefits as a bio-adsorbent in the remediation of aquatic environments contaminated by various organic materials.
Collapse
Affiliation(s)
- Karima Ferchichi
- Laboratoire de Recherche: Caractérisations, Applications Et Modélisation de Matériaux, Faculté Des Sciences de Tunis, Université de Tunis El Manar, Campus universitaire El Manar, Tunis, Tunisia
| | - Noureddine Amdouni
- Laboratoire de Recherche: Caractérisations, Applications Et Modélisation de Matériaux, Faculté Des Sciences de Tunis, Université de Tunis El Manar, Campus universitaire El Manar, Tunis, Tunisia
| | - Yves Chevalier
- Laboratoire d'Automatique, de Génie Des Procédés Et de Génie Pharmaceutique, Université de Lyon 1, UMR 5007 CNRS, 43 bd 11 Novembre, 69622, Villeurbanne, France
| | - Souhaira Hbaieb
- Laboratoire de Recherche: Caractérisations, Applications Et Modélisation de Matériaux, Faculté Des Sciences de Tunis, Université de Tunis El Manar, Campus universitaire El Manar, Tunis, Tunisia.
| |
Collapse
|
11
|
Hernán G, Ortega MJ, Tomas F. Specialized compounds across ontogeny in the seagrass Posidonia oceanica. PHYTOCHEMISTRY 2022; 196:113070. [PMID: 34999511 DOI: 10.1016/j.phytochem.2021.113070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Differences in phenolic composition across different ontogenic stages can be crucial in determining the interaction outcomes between plants and their surrounding biotic environment. In seagrasses, specific phenolic compounds have rarely been analyzed and remain unexplored in ontogenic stages other than non-reproductive adults. Furthermore, it is generally accepted that plants would prioritize defense (e.g., through increased phenolic content) on tissues or stages that are critical for plant fitness but how this affects nutritional quality or plant resources has been scarcely explored. We analyzed how phenolic composition, N and C content and carbohydrate resources varied among different life stages (i.e. old and young leaves of reproductive and non-reproductive plants, and leaves of seedlings) in the seagrass Posidonia oceanica. We identified five phenolic compounds, whose structures were established as hydroxycinnamate esters of tartaric acid. Also, our results show that in all examined ontogenic stages phenolic compounds have the same qualitative composition but inflorescences exhibit higher contents than vegetative tissues. We did not find a reduction in stored resources in reproductive plants, pointing to some kind of compensatory mechanism in the production or storage of resources. In contrast, seedlings seemed to have less phenolic compounds than reproductive plants, perhaps due to limited resources available to allocate to phenolic production. Our results demonstrate how different ontogenic stages change their investment in specialized phenolic compounds prioritizing different functions according to the needs and limitations of that stage.
Collapse
Affiliation(s)
- Gema Hernán
- Department of Biological Science, Florida State University, Tallahassee, FL, USA; Department of Marine Ecology, IMEDEA (CSIC-UIB), Esporles, Spain.
| | - María J Ortega
- Department of Organic Chemistry, University of Cadiz, Puerto Real, Spain
| | - Fiona Tomas
- Department of Marine Ecology, IMEDEA (CSIC-UIB), Esporles, Spain
| |
Collapse
|
12
|
Messina CM, Arena R, Manuguerra S, Pericot Y, Curcuraci E, Kerninon F, Renda G, Hellio C, Santulli A. Antioxidant Bioactivity of Extracts from Beach Cast Leaves of Posidonia oceanica (L.) Delile. Mar Drugs 2021; 19:560. [PMID: 34677459 PMCID: PMC8539254 DOI: 10.3390/md19100560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
The marine environment is a generous source of biologically active compounds useful for human health. In 50 years, about 25,000 bioactive marine compounds have been identified, with an increase of 5% per year. Peculiar feature of algae and plants is the production of secondary metabolites, such as polyphenols, synthesized as a form of adaptation to environmental stress. Posidonia oceanica is a Mediterranean endemic and dominant seagrass and represents a biologically, ecologically and geologically important marine ecosystem. Within this study, methanolic and ethanolic extracts were generated from fresh and dried Posidonia oceanica leaves, with the aim to employ and valorize the beach cast leaves. The best yield and antioxidant activity (polyphenols content equal to 19.712 ± 0.496 mg GAE/g and DPPH IC50 of 0.090 µg/µL.) were recorded in 70% ethanol extracts (Gd-E4) obtained from leaves dried for two days at 60 °C and ground four times. HPLC analyses revealed the presence of polyphenols compounds (the most abundant of which was chicoric acid) with antioxidant and beneficial properties. Bioactive properties of the Gd-E4 extracts were evaluated in vitro using fibroblast cells line (HS-68), subjected to UV induced oxidative stress. Pre-treatment of cells with Gd-E4 extracts led to significant protection against oxidative stress and mortality associated with UV exposure, thus highlighting the beneficial properties of antioxidants compounds produced by these marine plants against photo damage, free radicals and associated negative cellular effects. Beach cast leaves selection, processing and extraction procedures, and the in vitro assay results suggested the potentiality of a sustainable approach for the biotechnological exploitation of this resource and could serve a model for other marine resources.
Collapse
Affiliation(s)
- Concetta Maria Messina
- Laboratorio di Biochimica Marina ed Ecotossicologia, Dipartimento di Scienze Della Terra e del Mare DiSTeM, Università Degli Studi di Palermo, Via G. Barlotta 4, 91100 Trapani, Italy; (R.A.); (S.M.); (E.C.); (A.S.)
| | - Rosaria Arena
- Laboratorio di Biochimica Marina ed Ecotossicologia, Dipartimento di Scienze Della Terra e del Mare DiSTeM, Università Degli Studi di Palermo, Via G. Barlotta 4, 91100 Trapani, Italy; (R.A.); (S.M.); (E.C.); (A.S.)
| | - Simona Manuguerra
- Laboratorio di Biochimica Marina ed Ecotossicologia, Dipartimento di Scienze Della Terra e del Mare DiSTeM, Università Degli Studi di Palermo, Via G. Barlotta 4, 91100 Trapani, Italy; (R.A.); (S.M.); (E.C.); (A.S.)
| | - Yann Pericot
- LEMAR, IRD, CNRS, Ifremer, Université de Brest, F-29280 Plouzane, France; (Y.P.); (F.K.); (C.H.)
| | - Eleonora Curcuraci
- Laboratorio di Biochimica Marina ed Ecotossicologia, Dipartimento di Scienze Della Terra e del Mare DiSTeM, Università Degli Studi di Palermo, Via G. Barlotta 4, 91100 Trapani, Italy; (R.A.); (S.M.); (E.C.); (A.S.)
| | - Fanny Kerninon
- LEMAR, IRD, CNRS, Ifremer, Université de Brest, F-29280 Plouzane, France; (Y.P.); (F.K.); (C.H.)
| | - Giuseppe Renda
- Istituto di Biologia Marina, Consorzio Universitario della Provincia di Trapani, Via G. Barlotta 4, 91100 Trapani, Italy;
| | - Claire Hellio
- LEMAR, IRD, CNRS, Ifremer, Université de Brest, F-29280 Plouzane, France; (Y.P.); (F.K.); (C.H.)
| | - Andrea Santulli
- Laboratorio di Biochimica Marina ed Ecotossicologia, Dipartimento di Scienze Della Terra e del Mare DiSTeM, Università Degli Studi di Palermo, Via G. Barlotta 4, 91100 Trapani, Italy; (R.A.); (S.M.); (E.C.); (A.S.)
- Istituto di Biologia Marina, Consorzio Universitario della Provincia di Trapani, Via G. Barlotta 4, 91100 Trapani, Italy;
| |
Collapse
|