1
|
Msarie MW, Methela NJ, Islam MS, An TH, Das AK, Lee DS, Mun BG, Yun BW. Enhancing Soybean Salt Tolerance with GSNO and Silicon: A Comprehensive Physiological, Biochemical, and Genetic Study. Int J Mol Sci 2025; 26:609. [PMID: 39859323 PMCID: PMC11765656 DOI: 10.3390/ijms26020609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Soil salinity is a major global challenge affecting agricultural productivity and food security. This study explores innovative strategies to improve salt tolerance in soybean (Glycine max), a crucial crop in the global food supply. This study investigates the synergistic effects of S-nitroso glutathione (GSNO) and silicon on enhancing salt tolerance in soybean (Glycine max). Two soybean cultivars, Seonpung (salt-tolerant) and Cheongja (salt-sensitive), were analyzed for various physiological, biochemical, and genetic traits under salt stress. The results showed that the combined GSNO and Si treatment significantly improved several key traits, including plant height, relative water content, root development, nodule numbers, chlorophyll content, and stomatal aperture, under both control and salt stress conditions. Additionally, this treatment optimized ion homeostasis by enhancing the Na/K ratio and Ca content, while reducing damage markers such as electrolyte leakage, malondialdehyde, and hydrogen peroxide. The stress-responsive compounds, including proline, ascorbate peroxidase, and water-soluble proteins, were elevated under stress conditions, indicating improved tolerance. Gene expression analysis revealed significant upregulation of genes such as GmNHX1, GmSOS2, and GmAKT1, associated with salt stress response, while GmNIP2.1, GmNIP2.2, and GmLBR were downregulated in both varieties. Notably, the salt-sensitive variety Cheongja exhibited higher electrolyte leakage and oxidative damage compared to the salt-tolerant Seonpung. These findings suggest that the combination of GSNO and silicon enhances salt tolerance in soybean by improving physiological resilience, ion homeostasis, and stress-responsive gene expression.
Collapse
Affiliation(s)
- Meshari Winledy Msarie
- Department of Food Security and Agricultural Development, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Nusrat Jahan Methela
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (N.J.M.); (M.S.I.)
- Department of Agriculture, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Mohammad Shafiqul Islam
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (N.J.M.); (M.S.I.)
- Department of Agriculture, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Tran Hoang An
- Department of Food Security and Agricultural Development, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ashim Kumar Das
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (N.J.M.); (M.S.I.)
| | - Da-Sol Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (N.J.M.); (M.S.I.)
| | - Bong-Gyu Mun
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Byung-Wook Yun
- Department of Food Security and Agricultural Development, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (N.J.M.); (M.S.I.)
| |
Collapse
|
2
|
Hafez EM, Alharbi K, Gharib HS, Omara AED, Elatafi E, Hamada MM, Rashwan E, Alshaal T. Synergistic Effect of Sugarcane Bagasse and Zinc Oxide Nanoparticles on Eco-Remediation of Cadmium-Contaminated Saline Soils in Wheat Cultivation. PLANTS (BASEL, SWITZERLAND) 2024; 14:85. [PMID: 39795345 PMCID: PMC11722730 DOI: 10.3390/plants14010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/16/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
Soil contamination with cadmium (Cd) and salinity poses a significant challenge, affecting crop health and productivity. This study explores the combined application of sugarcane bagasse (SCB) and zinc oxide nanoparticles (ZnO NPs) to mitigate the toxic effects of Cd and salinity in wheat plants. Field experiments conducted in Cd-contaminated saline soils revealed that the application of SCB (0, 5, and 10 t ha-1) and ZnO NPs (0, 12.5, and 25 mg L-1) significantly improved key soil physicochemical properties, including soil pH, electrical conductivity (EC), and exchangeable sodium percentage (ESP). The combined application of SCB and ZnO NPs significantly mitigated the effects of Cd and salinity on soil and wheat plants. SCB (10 t ha-1) reduced soil pH by 6.2% and ESP by 30.8% compared to the control, while increasing microbial biomass by 151.1%. ZnO NPs (25 mg L-1) reduced Cd accumulation in wheat shoots by 43.3% and seeds by 46.3%, while SCB and ZnO NPs combined achieved a reduction of 74.1% and 62.9%, respectively. These amendments enhanced antioxidant enzyme activity, with catalase (CAT) increasing by 35.3% and ascorbate peroxidase (APX) by 54.9%. Wheat grain yield increased by 42% with SCB alone and by 75.2% with combined SCB and ZnO NP treatment, underscoring their potential as eco-friendly soil amendments for saline, Cd-contaminated soils. These results underscore the potential of SCB and ZnO NPs as eco-friendly amendments for improving wheat productivity in contaminated soils, offering a promising strategy for sustainable agriculture in salt-affected areas.
Collapse
Affiliation(s)
- Emad M. Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Khadiga Alharbi
- Department of Biology, College of science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Hany S. Gharib
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
| | - Alaa El-Dein Omara
- Department of Microbiology, Soils, Water Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt;
| | - Essam Elatafi
- Department of Pomology, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Maha M. Hamada
- Agronomy Department, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt;
| | - Emadelden Rashwan
- Agronomy Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt;
| | - Tarek Alshaal
- Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 138, 4032 Debrecen, Hungary
- Soil and Water Department, Faculty of Agriculture, University of Kafrelsheikh, Kafr El-Sheikh 33516, Egypt
| |
Collapse
|
3
|
Alharbi K, Hafez EM, Elhawat N, Omara AED, Rashwan E, Mohamed HH, Alshaal T, Gadow SI. Revitalizing Soybean Plants in Saline, Cd-Polluted Soil Using Si-NPs, Biochar, and PGPR. PLANTS (BASEL, SWITZERLAND) 2024; 13:3550. [PMID: 39771248 PMCID: PMC11680020 DOI: 10.3390/plants13243550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Excessive irrigation of saline-alkaline soils with Cd-contaminated wastewater has resulted in deterioration of both soil and plant quality. To an investigate this, a study was conducted to explore the effects of biochar (applied at 10 t ha-1), PGPRs (Bradyrhizobium japonicum (USDA 110) + Trichoderma harzianum at 1:1 ratio), and Si-NPs (25 mg L-1) on soybean plants grown in saline-alkali soil irrigated with wastewater. The results showed that the trio-combination of biochar with PGPRs, (as soil amendments) and Si-NPs (as foliar spraying), was more effective than individual or coupled applications in reducing Cd bioavailability in the soil, minimizing its absorption, translocation and bioconcentration in soybean tissues. The trio-combination reduced Cd bioavailability in the soil by 39.1% and Cd accumulation in plant roots, shoots, and seeds by 61.0%, 69.3%, and 61.1%, respectively. Physiological improvements in soybean plants were also observed, including 197.8% increase in root growth, 209.3% increase in chlorophyll content, and 297.4% increase in carotenoid levels. The trio-combination significantly improved soil physicochemical characteristics, enhanced soil microbial indicators and boosted soil enzymes activity, which in turn facilitated nutrient uptake and increased antioxidant enzymes activity. These positive outcomes enhanced photosynthesis, improved productivity and increased seed nutritional value. Overall, the trio-combination of biochar with PGPRs and Si-NPs are considered a reliable approach not only for revitalizing soybean growth but also for immobilizing Cd and improving soil health under wastewater irrigation.
Collapse
Affiliation(s)
- Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Emad M. Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Nevien Elhawat
- Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 138, 4032 Debrecen, Hungary
- Faculty of Agriculture (for Girls), Al-Azhar University, Tanta 31732, Egypt
| | - Alaa El-Dein Omara
- Department of Microbiology, Soils, Water Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt;
| | - Emadelden Rashwan
- Agronomy Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt;
| | - Hossam H. Mohamed
- Agronomy Department, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt;
| | - Tarek Alshaal
- Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 138, 4032 Debrecen, Hungary
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Samir I. Gadow
- Department of Agricultural Microbiology, Agriculture and Biology Research Institute, National Research Centre, 33 EI Buhouth St., Dokki, Cairo 12622, Egypt;
| |
Collapse
|
4
|
Jhanani GK, Govindasamy C, Raghavendra T. Germination and biological adaptation approaches as salt-stress tolerance process in selected paddy cultivars under salinity stress. ENVIRONMENTAL RESEARCH 2024; 259:119566. [PMID: 38971355 DOI: 10.1016/j.envres.2024.119566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Cultivating productive paddy crops on salty soil to maximise production is a challenging approach to meeting the world's growing food demand. Thus, determining salinity tolerance rates in specific paddy cultivars is urgently needed. In this study, the salt tolerance traits of selected paddy cultivars, ADT45 and ADT39, were investigated by analysing germination, metabolites (pigments and biomolecules), and enzymatic (Superoxide dismutase (SOD), Catalase (CAT), and Peroxidase (POD) adaptation strategies as salt-stress tolerance mechanisms. This study found that salinity-induced reactive oxygen species (ROS) were efficiently detoxified by the antioxidant enzymes Superoxide dismutase (SOD), Catalase (CAT), and Peroxidase (POD) in ADT45 paddy varieties, followed by ADT39. Salinity stress had a significant impact on pigments and essential biomolecules in ADT45 and ADT39 paddy cultivars, including total chlorophyll, anthocyanin, carotenoids, ascorbic acid, hydrogen peroxide (H2O2), malondialdehyde, and proline. ADT45 demonstrated a significant relationship between H2O2 and antioxidant enzyme levels, followed by ADT39 paddy but not IR64. Morphological, physiological, and biochemical analyses revealed that ADT45, followed by ADT39, is a potential salt-tolerant rice cultivar.
Collapse
Affiliation(s)
- G K Jhanani
- University Centre for Research & Development, Chandigarh University, Mohali, 140103, India.
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - T Raghavendra
- Environmental Science Division, H&S Department, CVR College of Engineering, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Hafez EM, Gao Y, Alharbi K, Chen W, Elhawat N, Alshaal T, Osman HS. Antioxidative and Metabolic Responses in Canola: Strategies with Wood Distillate and Sugarcane Bagasse Ash for Improved Growth under Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2152. [PMID: 39124270 PMCID: PMC11313884 DOI: 10.3390/plants13152152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
In the context of increasing agricultural challenges posed by soil salinity and drought stress, the main importance of the present study was to evaluate some novel treatments for improving canola productivity and resilience by applying wood distillate (WD) in combination with bagasse ash (SBA). A two-year field experiment using a split plot design was conducted and evaluated several physiological and biochemical parameters under different irrigation regimes conducted at 80% and 50% field capacity. While there were considerable moderation effects of SBA and WD on soil salinity, expressed as exchangeable sodium percentage (ESP), under both well-irrigated and drought conditions, more importantly, the ESP was reduced to 31% under drought stress with combined WD and SBA applications over any single factor. WD and SBA treatments of canola leaves showed reduced Na content with increased K levels, and the plants maintained physiological attributes-chlorophyll content, stomatal conductance, and relative water content-to the level of controls of well-irrigation. Besides, they significantly alleviated oxidative stress by decreasing the hydrogen peroxide (H2O2), malondialdehyde (MDA), and electrolyte leakage (EL) levels and increasing the activities of antioxidant enzymes like superoxide dismutase (SOD) and ascorbate peroxidase (APX). Nonenzymatic antioxidants such as total soluble sugars (TSS), total soluble proteins (TSP), total phenolic content (TPC), and total flavonoid content (TFC) were significantly increased under stress conditions with a special accent on combined treatment, whereas the levels of proline and GB that increased in alignment with drought reduced under the combined application. Various growth parameters of plants like plant height, number of branches, and siliques per plant were significantly improved with WD and SBA under drought stress. Principal component analysis (PCA) and Pearson correlation further confirmed the relationships among these parameters and thus underpinned that WD and SBA can evoke a synergistic effect to enhance growth promotion and stress tolerance in canola. This, therefore, infers that the combined application of WD and SBA can be key, offering very high potential as viable options to better canola productivity under adverse environmental conditions.
Collapse
Affiliation(s)
- Emad M. Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Key Laboratory of Agro-Environment Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Nanjing 210014, China
| | - Yan Gao
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Key Laboratory of Agro-Environment Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Nanjing 210014, China
| | - Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Wei Chen
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Key Laboratory of Agro-Environment Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Nanjing 210014, China
| | - Nevien Elhawat
- Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, 4032 Debrecen, Hungary;
- Faculty of Agriculture (Girls), Al-Azhar University, Cairo 11884, Egypt
| | - Tarek Alshaal
- Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, 4032 Debrecen, Hungary;
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Hany S. Osman
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Hadayek Shubra, Cairo 11241, Egypt;
| |
Collapse
|
6
|
Omar S, Salim H, Eldenary M, Nosov AV, Allakhverdiev SI, Alfiky A. Ameliorating effect of nanoparticles and seeds' heat pre-treatment on soybean plants exposed to sea water salinity. Heliyon 2023; 9:e21446. [PMID: 37964846 PMCID: PMC10641219 DOI: 10.1016/j.heliyon.2023.e21446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023] Open
Abstract
Impairing plant growth and reducing crop production, salinity is considered as major problem in modern agriculture. The current study aimed to investigate the role of seeds' heat pretreatment at 45 °C as well as application of two different nanoparticles nanosilica (N1) and nanoselenium (N2) in reducing salinity stress in three genotypes of Egyptian commercial soybeans (Glycine max L.). Two levels of salt stress using diluted sea water (1/12 and 1/6) were tested either alone or in combination with protective treatments. Obtained results revealed that salinity caused a significant reduction in all tested physiological parameters such as germination rate and membrane stability in soybean plants. A significant reduction in mitotic index and arrest in metaphase were recorded under both tested levels of salinity. It was also revealed that chromosomal abnormalities in soybean plants were positively correlated with the applied salinity concentrations. The fragmentation effect of salinity on the nuclear DNA was investigated and confirmed using Comet assay analysis. Seeds heat pre-treatment (45 °C) and both types of nanoparticles' treatments yielded positive effects on both the salt-stressed and unstressed plants. Quantitative real-time reverse transcription PCR (qRT-PCR) analysis for salt stress responsive marker genes revealed that most studied genes (CAT, APX, DHN2, CAB3, GMPIPL6 and GMSALT3) responded favorably to protective treatments. The modulation in gene expression pattern was associated with improving growth vigor and salinity tolerance in soybean plants. Our results suggest that seeds' heat pretreatment and nanoparticle applications support the recovery against oxidative stresses and represent a promising strategy for alleviating salt stress in soybean genotypes.
Collapse
Affiliation(s)
- Samar Omar
- Genetics Department, Faculty of Agriculture, Tanta University, 31527, Tanta, Egypt
| | - Hagar Salim
- Genetics Department, Faculty of Agriculture, Tanta University, 31527, Tanta, Egypt
| | - Medhat Eldenary
- Genetics Department, Faculty of Agriculture, Tanta University, 31527, Tanta, Egypt
| | - Alexander V. Nosov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia
| | - Suleyman I. Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia
- Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, 34353, Turkey
| | - Alsayed Alfiky
- Genetics Department, Faculty of Agriculture, Tanta University, 31527, Tanta, Egypt
| |
Collapse
|
7
|
Ilyas MZ, Park H, Baek YS, Sa KJ, Kim MJ, Lee JK. Efficacy of Carbon Nanodots and Manganese Ferrite (MnFe 2O 4) Nanoparticles in Stimulating Growth and Antioxidant Activity in Drought-Stressed Maize Inbred Lines. PLANTS (BASEL, SWITZERLAND) 2023; 12:2922. [PMID: 37631134 PMCID: PMC10458536 DOI: 10.3390/plants12162922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Despite being the third most-consumed crop, maize (Zea mays L.) is highly vulnerable to drought stress. The predominant secondary metabolite in plants is phenolic acids, which scavenge reactive oxygen species to minimize oxidative stress under drought stress. Herein, the effect of carbon nanodots (CND) and manganese ferrite (MnFe2O4) nanoparticles (NP) on the drought stress tolerance of maize has been studied. The experimental results revealed that the highest leaf blade length (54.0 cm) and width (3.9 cm), root length (45.2 cm), stem diameter (11.1 mm), root fresh weight (7.0 g), leaf relative water content (84.8%) and chlorogenic (8.7 µg/mL), caffeic (3.0 µg/mL) and syringic acid (1.0 µg/mL) contents were demonstrated by CND-treated (10 mg L-1) inbred lines (GP5, HW19, HCW2, 17YS6032, HCW3, HCW4, HW7, HCW2, and 16S8068-9, respectively). However, the highest shoot length (71.5 cm), leaf moisture content (83.9%), shoot fresh weight (12.5 g), chlorophyll content (47.3), and DPPH free radical scavenging activity (34.1%) were observed in MnFe2O4 NP-treated (300 mg L-1) HF12, HW15, 11BS8016-7, HW15, HW12, and KW7 lines, respectively. The results indicate that CND and MnFe2O4 NP can mitigate drought stress effects on different accessions of the given population, as corroborated by improvements in growth and physio-biochemical traits among several inbred lines of maize.
Collapse
Affiliation(s)
- Muhammad Zahaib Ilyas
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (M.Z.I.); (H.P.); (K.J.S.); (M.J.K.)
| | - Hyeon Park
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (M.Z.I.); (H.P.); (K.J.S.); (M.J.K.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea;
| | - Young Sun Baek
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea;
| | - Kyu Jin Sa
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (M.Z.I.); (H.P.); (K.J.S.); (M.J.K.)
| | - Myong Jo Kim
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (M.Z.I.); (H.P.); (K.J.S.); (M.J.K.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea;
| | - Ju Kyong Lee
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (M.Z.I.); (H.P.); (K.J.S.); (M.J.K.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea;
| |
Collapse
|
8
|
Sharma A, Kumar S, Singh R. Formulation of Zinc oxide/Gum acacia nanocomposite as a novel slow-release fertilizer for enhancing Zn uptake and growth performance of Spinacia oleracea L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107884. [PMID: 37451005 DOI: 10.1016/j.plaphy.2023.107884] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Zinc (Zn) deficiency has caused nutritional disorders in 17% of the world's population; thus, producing Zn-enriched plants as a dietary source is necessary. Recently, nanofertilizers have gained much attention as a substitute for conventional fertilizers; however, soil application of polymer-coated Zn-based nanofertilizer has not been explored much. The present study depicts the green synthesis of ZnO nanoparticles using Melia azedarach L. leaf extract, whose phytoconstituents have reducing abilities. The synthesized nanoparticles were combined with gum acacia (GA) to form a ZnOGA nanocomposite. The structural and morphological properties of ZnOGA were studied using XRD, FTIR, FESEM, and EDX. A pot experiment study was carried out with Spinacia oleracea L. at various doses (3, 5, and 10 mg/kg) of the synthesized ZnOGA to evaluate its effectiveness as a slow-release fertilizer and was compared with a commercial Zn fertilizer. The plant growth studies revealed a significant increase in the phyto-morphological traits of the plants fertilized with ZnOGA compared to commercial fertilizer. The plants also displayed significantly higher contents of protein (17-47%), phenols (25-60%), proline (82-94%), total soluble sugar (20-31%), DPPH activity (70-72%), and Zn uptake (91-106%). The doses of ZnOGA played an imperative role in determining the growth and productivity of the plant. Soil column studies showed that ZnOGA reduces Zn leaching by 52% compared to commercial Zn fertilizer. This study signifies the potential of ZnOGA to be applied as an eco-friendly and sustainable substitute for conventional Zn fertilizer minimizing Zn losses and Zn deficiency-related health problems in human populations.
Collapse
Affiliation(s)
- Avimanu Sharma
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India
| | - Sanjeev Kumar
- Department of Geology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Ritu Singh
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
9
|
Benito P, Bellón J, Porcel R, Yenush L, Mulet JM. The Biostimulant, Potassium Humate Ameliorates Abiotic Stress in Arabidopsis thaliana by Increasing Starch Availability. Int J Mol Sci 2023; 24:12140. [PMID: 37569516 PMCID: PMC10418871 DOI: 10.3390/ijms241512140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Potassium humate is a widely used biostimulant known for its ability to enhance growth and improve tolerance to abiotic stress. However, the molecular mechanisms explaining its effects remain poorly understood. In this study, we investigated the mechanism of action of potassium humate using the model plant Arabidopsis thaliana. We demonstrated that a formulation of potassium humate effectively increased the fresh weight accumulation of Arabidopsis plants under normal conditions, salt stress (sodium or lithium chloride), and particularly under osmotic stress (mannitol). Interestingly, plants treated with potassium humate exhibited a reduced antioxidant response and lower proline accumulation, while maintaining photosynthetic activity under stress conditions. The observed sodium and osmotic tolerance induced by humate was not accompanied by increased potassium accumulation. Additionally, metabolomic analysis revealed that potassium humate increased maltose levels under control conditions but decreased levels of fructose. However, under stress, both maltose and glucose levels decreased, suggesting changes in starch utilization and an increase in glycolysis. Starch concentration measurements in leaves showed that plants treated with potassium humate accumulated less starch under control conditions, while under stress, they accumulated starch to levels similar to or higher than control plants. Taken together, our findings suggest that the molecular mechanism underlying the abiotic stress tolerance conferred by potassium humate involves its ability to alter starch content under normal growth conditions and under salt or osmotic stress.
Collapse
Affiliation(s)
- Patricia Benito
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain; (P.B.); (R.P.); (L.Y.)
- Caldic Ibérica, S. L. U. Llobateras 23-25, pol.ind. Santiga, Barberà del Vallés, 08210 Barcelona, Spain;
| | - Javier Bellón
- Caldic Ibérica, S. L. U. Llobateras 23-25, pol.ind. Santiga, Barberà del Vallés, 08210 Barcelona, Spain;
| | - Rosa Porcel
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain; (P.B.); (R.P.); (L.Y.)
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain; (P.B.); (R.P.); (L.Y.)
| | - José M. Mulet
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain; (P.B.); (R.P.); (L.Y.)
| |
Collapse
|
10
|
Ahmed R, Zia-Ur-Rehman M, Sabir M, Usman M, Rizwan M, Ahmad Z, Alharby HF, Al-Zahrani HS, Alsamadany H, Aldhebiani AY, Alzahrani YM, Bamagoos AA. Differential response of nano zinc sulphate with other conventional sources of Zn in mitigating salinity stress in rice grown on saline-sodic soil. CHEMOSPHERE 2023; 327:138479. [PMID: 36965530 DOI: 10.1016/j.chemosphere.2023.138479] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/06/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Salinization causes the degradation of the soil and threatening the global food security but the application of essential micronutrients like zinc (Zn), improve the plant growth by stabilizing the plant cell and root development. Keeping in view the above-mentioned scenario, an experiment was conducted to compare the efficiency of conventional Zn fertilizers like zinc sulphate (ZnSO4), zinc ethylene diamine tetra acetic acid (Zn-EDTA) and advance nano Zn fertilizers such as zinc sulphate nanoparticles (ZnSO4NPs), and zinc oxide nanoparticles (ZnONPs) (applied at the rate of 5 and 10 mg/kg) in saline-sodic soil. Results revealed that the maximum plant height (67%), spike length (72%), root length (162%), number of tillers (71%), paddy weight (100%), shoot dry weight (158%), and root dry weight (119%) was found in ZnSO4NPs applied at the rate of 10 mg/kg (ZnSO4NPs-10) as compared to salt-affected control (SAC). Similarly, the plants physiological attributes like chlorophyll contents (91%), photosynthesis rate (113%), transpiration rate (106%), stomatal conductance (56%) and internal CO2 (11%) were increased by the application of ZnSO4NPs-10, as compared to SAC. The maximum Zn concentration in root (153%), shoot (205%) and paddy (167%) found in ZnSO4NPs-10, as compared to control. In the body of rice plants, other nutrients like phosphorus and potassium were also increased by the application of ZnSO4NPs-10 and soil chemical attributes such as sodium and sodium adsorption ratio were decreased. The current experiment concluded that the application of ZnSO4NPs at the rate of 10 mg/kg in salt-affected paddy soil increased the growth, physiology, up take of essential nutrients and yield of rice by balancing the cationic ratio under salt stress.
Collapse
Affiliation(s)
- Rubaz Ahmed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan.
| | - Muhammad Sabir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Usman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, 38000, Faisalabad, Pakistan.
| | - Zahoor Ahmad
- Department of Botany, University of Central Punjab, Constituent College, Bahawalpur, 63100, Pakistan
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hassan S Al-Zahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hameed Alsamadany
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amal Y Aldhebiani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Yahya M Alzahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Atif A Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
11
|
Alharbi K, Hafez EM, Omara AED, Osman HS. Mitigating Osmotic Stress and Enhancing Developmental Productivity Processes in Cotton through Integrative Use of Vermicompost and Cyanobacteria. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091872. [PMID: 37176930 PMCID: PMC10180996 DOI: 10.3390/plants12091872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/13/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
There is an urgent demand for biostimulant amendments that can sustainably alleviate osmotic stress. However, limited information is available about the integrated application of vermicompost and a cyanobacteria extract on cotton plants. In 2020 and 2021, two field experiments were carried out in which twelve combinations of three irrigation intervals were employed every 14 days (Irrig.14), 21 days (Irrig.21), and 28 days (Irrig.28) along with four amendment treatments (a control, vermicompost, cyanobacteria extract, and combination of vermicompost + cyanobacteria extract) in salt-affected soil. The integrative use of vermicompost and a cyanobacteria extract resulted in an observed improvement in the physicochemical attributes; non-enzymatic antioxidants (free amino acids, proline, total soluble sugars, and phenolics); and antioxidant enzyme activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) and a decrease in the levels of oxidative damage indicators (H2O2 and MDA). Significant augmentation in the content of chlorophyll a and b, carotenoid concentration, relative water content, stomatal conductance, and K+ was also observed. In conjunction with these findings, noticeable decreases in the content of Na+ and hydrogen peroxide (H2O2) and the degree of lipid peroxidation (MDA) proved the efficacy of this technique. Consequently, the highest cotton yield and productivity as well as fiber quality were achieved when vermicompost and a cyanobacteria extract were used together under increasing irrigation intervals in salt-affected soil. In conclusion, the integrated application of vermicompost and a cyanobacteria extract can be helpful for obtaining higher cotton productivity and fiber quality compared with the studied control and the individual applications of the vermicompost or the cyanobacteria extract under increasing irrigation intervals within salt-affected soil. Additionally, it can also help alleviate the harmful impact of these abiotic stresses.
Collapse
Affiliation(s)
- Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Emad M Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Alaa El-Dein Omara
- Department of Microbiology, Soils, Water Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt
| | - Hany S Osman
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Hadayek Shubra, Cairo 11241, Egypt
| |
Collapse
|
12
|
Alharbi K, Hafez EM, Omara AED, Nehela Y. Composted Bagasse and/or Cyanobacteria-Based Bio-Stimulants Maintain Barley Growth and Productivity under Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091827. [PMID: 37176885 PMCID: PMC10181477 DOI: 10.3390/plants12091827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/16/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Soil and water salinity are among the most fatal environmental challenges that threaten agricultural production worldwide. This study investigated the potential impact(s) of soil amendment using composted bagasse and/or foliar application of cyanobacteria-based bio-stimulants (Arthrospira platensis, also known as Spirulina platensis) to combat the harmful effect(s) of using saline water to irrigate barley plants grown in salt-affected soils during 2020/2021 and 2021/2022. Briefly, the dual application of composted bagasse and cyanobacteria-based bio-stimulants significantly improved the soil properties, buffered the exchangeable sodium percentage (ESP), and enhanced the activity of soil enzymes (urease and dehydrogenase). Moreover, both treatments and their combination notably augmented the water relations of barley plants under salinity stress. All treatments significantly decreased stomatal conductance (gs) and relative water content (RWC) but increased the electrolyte leakage (EL) and balanced the contents of Na+ and K+, and their ratio (K+/Na+) of barley leaves under salinity stress compared with those irrigated with fresh water during the 2020/2021 and 2021/2022 seasons. Additionally, composted bagasse and cyanobacteria-based bio-stimulants diminished the oxidative stress in barley plants under salinity stress by improving the activity of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX). Consequently, the combination of composted bagasse and cyanobacteria extract resulted in superior yield-related traits such as spike length, number of grains per spike, 1000-grain weight, grain yield, straw yield, and harvest index. Collectively, our findings suggest that the integrative application of composted bagasse and cyanobacteria is promising as a sustainable environmental strategiy that can be used to improve soil properties, plant growth, and productivity of not only barley plants but also maybe other cereal crops irrigated with saline water in salt-affected soil.
Collapse
Affiliation(s)
- Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Emad M Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Alaa El-Dein Omara
- Department of Microbiology, Soils, Water Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt
| | - Yasser Nehela
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
13
|
Farouk S, AL-Huqail AA, El-Gamal SMA. Potential Role of Biochar and Silicon in Improving Physio-Biochemical and Yield Characteristics of Borage Plants under Different Irrigation Regimes. PLANTS (BASEL, SWITZERLAND) 2023; 12:1605. [PMID: 37111829 PMCID: PMC10146047 DOI: 10.3390/plants12081605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Silicon (Si) and biochar (Bc) are key signaling conditioners that improve plant metabolic processes and promote drought tolerance. However, the specific role of their integrative application under water restrictions on economical plants is not yet well understood. Two field experiments throughout 2018/2019 and 2019/2020 were conducted to examine the physio-biochemical modifications and yield attributes of borage plants mediated by Bc (9.52 tons ha-1) and/or Si (300 mg L-1) under different irrigation regimes (100, 75, and 50% of crop evapotranspiration). Catalase (CAT) and peroxidase (POD) activity; relative water content, water, and osmotic potential; leaf area per plant and yield attributes; and chlorophyll (Chl) content, Chla/chlorophyllidea (Chlida), and Chlb/Chlidb were considerably reduced within the drought condition. On the other hand, oxidative biomarkers, as well as organic and antioxidant solutes, were increased under drought, associated with membrane dysfunction, superoxide dismutase (SOD) activation, and osmotic adjustment (OA) capacity as well as a hyperaccumulation of porphyrin intermediates. Supplementation of Bc and Si lessens the detrimental impacts of drought on several plant metabolic processes associated with increasing leaf area and yield attributes. Their application under normal or drought conditions significantly elicited the accumulation of organic and antioxidant solutes as well as the activation of antioxidant enzymes, followed by lessening the formation of free radical oxygen and mitigating oxidative injuries. Moreover, their application maintained water status and OA capacity. Si and/or Bc treatment reduced protoporphyrin, magnesium-protoporphyrin, and protochlorophyllide while increasing Chla and Chlb assimilation and boosting the ratio of Chla/Chlida and Chlb/Chlidb, resulting in a rise in leaf area per plant and yield components following these modifications. These findings highlight the significance of Si and/or Bc as (a) stress-signaling molecule(s) in regulating defensive systems in drought-affected borage plants by boosting antioxidant aptitude, regulating water status, and accelerating chlorophyll assimilation, thus leading to increasing leaf area and productivity.
Collapse
Affiliation(s)
- Saad Farouk
- Agricultural Botany Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Arwa Abdulkreem AL-Huqail
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Seham M. A. El-Gamal
- Medicinal and Aromatic Plants Research Department, Horticulture Research Institute, Agricultural Research Center, Giza 12619, Egypt;
| |
Collapse
|
14
|
Hanif S, Zia M. Glycine betaine capped ZnO NPs eliminate oxidative stress to coriander plants grown under NaCl presence. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107651. [PMID: 36989991 DOI: 10.1016/j.plaphy.2023.107651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/21/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Salinity is one of the major abiotic stresses for sustainable agriculture. The use of mineral nutrients in form of nanoparticles can be a novel strategy to fight against abiotic stresses. An in vitro study has been conducted to investigate the effect of zinc oxide nanoparticles (ZnO NPs) capped with glycine betaine (ZnOBt) on coriander plants exposed to saline (NaCl) stress. SEM and XRD analysis revealed 14.73 nm and 17.34 nm size of ZnO and ZnOBt NPs, respectively with spherical to hexagonal structures. Coriander plant length and biomass increased by the application of ZnO and ZnOBt NPs. ZnOBt NPs depicted promising results at 100 mg/L where, shoot and root length increased up to 14 cm and 13 cm, respectively as compared to plants grown under saline stress. ZnOBt NPs also increased fresh and dry weight of shoots and roots as compared to other treatments. The results depict that ZnOBt NPs mitigated stress condition. This is evident from concentration of phenolic and flavonoid contents that decreased in both roots and shoots. Free radical scavenging activity, total antioxidant capacity and total reducing power also decreased in plants by ZnOBt NPs when applied with stress. The concentration of superoxide and peroxide dismutase also decreased by application of ZnOBt NPs to salt stress plants. Glycine betaine with ZnO NPs, in conclusion, can be an effective remedy for salinity-exposed plants. These nanoparticles can be encouraged as a viable technique to overcome the detrimental effects of saline stress on plants.
Collapse
Affiliation(s)
- Saad Hanif
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
15
|
Alharbi K, Osman HS, Rashwan E, Hafez EM, Omara AED. Stimulating the Growth, Anabolism, Antioxidants, and Yield of Rice Plants Grown under Salt Stress by Combined Application of Bacterial Inoculants and Nano-Silicon. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11243431. [PMID: 36559542 PMCID: PMC9787420 DOI: 10.3390/plants11243431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 05/27/2023]
Abstract
The growth and development of rice face many issues, including its exposure to high soil salinity. This issue can be alleviated using new approaches to overwhelm the factors that restrict rice productivity. The objective of our investigation was the usage of the rhizobacteria (Pseudomonas koreensis and Bacillus coagulans) as plant growth-promoting rhizobacteria (PGPRs) and nano-silicon, which could be a positive technology to cope with the problems raised by soil salinity in addition to improvement the morpho-physiological properties, and productivity of two rice varieties (i.e., Giza 177 as salt-sensitive and Giza 179 as salt-tolerant). The findings stated that the application of combined PGPRs and nano-Si resulted in the highest soil enzymes activity (dehydrogenase and urease), root length, leaf area index, photosynthesis pigments, K+ ions, relative water content (RWC), and stomatal conductance (gs) while resulted in the reduction of Na+, electrolyte leakage (EL), and proline content. All these improvements are due to increased antioxidant enzymes activity such as catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), which decreased hydrogen peroxide (H2O2) and malondialdehyde (MDA) under soil salinity in rice plants compared to the other treatments. Combined application of PGPRs and nano-Si to Giza 177 significantly surpassed Giza 179, which was neither treated with PGPR nor nano-Si in the main yield components (number of grains/panicles, 1000 grain weight, and grain yield as well as nutrient uptake. In conclusion, both PGPRs and nano-Si had stimulating effects that mitigated the salinity-deleterious effects and encouraged plant growth, and, therefore, enhanced the grain yield.
Collapse
Affiliation(s)
- Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Hany S. Osman
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Hadayek Shubra, Cairo 11241, Egypt
| | - Emadeldeen Rashwan
- Agronomy Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Emad M. Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Alaa El-Dein Omara
- Department of Microbiology, Soils, Water Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt
| |
Collapse
|
16
|
Alharbi K, Rashwan E, Hafez E, Omara AED, Mohamed HH, Alshaal T. Potassium Humate and Plant Growth-Promoting Microbes Jointly Mitigate Water Deficit Stress in Soybean Cultivated in Salt-Affected Soil. PLANTS (BASEL, SWITZERLAND) 2022; 11:3016. [PMID: 36432745 PMCID: PMC9698740 DOI: 10.3390/plants11223016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Lack of high-quality irrigation water and soil salinity are two main environmental factors that affect plant development. When both stressors are combined, the soil becomes sterile and constrains plant productivity. Consequently, two field trials were designed to assess whether plant growth-promoting microbes (PGPMs; Bradyrhizobium japonicum (USDA 110) and Trichoderma harzianum) and potassium humate (K-humate) can stimulate soybean growth, productivity, and seed quality under two different watering regimes as follows: (i) well-watered (WW), where plants were irrigated at 12-day intervals (recommended), and (ii) water stress (WS), where plants were irrigated at the 18-day intervals in salt-affected soil during 2020 and 2021 seasons. Results revealed that coupled application of PGPMs and K-humate resulted in a substantial improvement in K+ levels in the leaves compared to Na+ levels, which has a direct positive impact on an enhancement in the antioxidants defense system (CAT, POX, SOD), which caused the decline of the oxidative stress indicators (H2O2, MDA, and EL%) as well as proline content under water stress in salt-affected soil. Hence, a significant increase in root length, nodule weight, soybean relative water content (RWC), stomatal conductance, photosynthetic pigments, net photosynthetic rate, soluble protein, seed carbohydrate content as well as the number of pods plant-1 and seed yield was reported. In conclusion, the combined application of PGPMs and K-humate might be recommended to maximize the soybean growth and productivity under harsh growth conditions (e.g., water stress and soil salinity).
Collapse
Affiliation(s)
- Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Emadeldeen Rashwan
- Agronomy Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Emad Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Alaa El-Dein Omara
- Agricultural Research Center, Microbiology, Soils, Water Environment Research Institute, Giza 12112, Egypt
| | - Hossam Hussein Mohamed
- Department of Agronomy, Faculty of Agriculture, Ain Shams University, Cairo 13625, Egypt
| | - Tarek Alshaal
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
- Department of Applied Plant Biology, Institute of Crop Sciences, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
| |
Collapse
|
17
|
Nano-Restoration for Sustaining Soil Fertility: A Pictorial and Diagrammatic Review Article. PLANTS 2022; 11:plants11182392. [PMID: 36145792 PMCID: PMC9504293 DOI: 10.3390/plants11182392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022]
Abstract
Soil is a real treasure that humans cannot live without. Therefore, it is very important to sustain and conserve soils to guarantee food, fiber, fuel, and other human necessities. Healthy or high-quality soils that include adequate fertility, diverse ecosystems, and good physical properties are important to allow soil to produce healthy food in support of human health. When a soil suffers from degradation, the soil’s productivity decreases. Soil restoration refers to the reversal of degradational processes. This study is a pictorial review on the nano-restoration of soil to return its fertility. Restoring soil fertility for zero hunger and restoration of degraded soils are also discussed. Sustainable production of nanoparticles using plants and microbes is part of the process of soil nano-restoration. The nexus of nanoparticle–plant–microbe (NPM) is a crucial issue for soil fertility. This nexus itself has several internal interactions or relationships, which control the bioavailability of nutrients, agrochemicals, or pollutants for cultivated plants. The NPM nexus is also controlled by many factors that are related to soil fertility and its restoration. This is the first photographic review on nano-restoration to return and sustain soil fertility. However, several additional open questions need to be answered and will be discussed in this work.
Collapse
|
18
|
Alam P, Arshad M, Al-Kheraif AA, Azzam MA, Al Balawi T. Silicon Nanoparticle-Induced Regulation of Carbohydrate Metabolism, Photosynthesis, and ROS Homeostasis in Solanum lycopersicum Subjected to Salinity Stress. ACS OMEGA 2022; 7:31834-31844. [PMID: 36120047 PMCID: PMC9475630 DOI: 10.1021/acsomega.2c02586] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/11/2022] [Indexed: 06/02/2023]
Abstract
Agricultural crops are facing major restraints with the rapid augmentation of global warming, salt being a major factor affecting productivity. Tomato (Solanum lycopersicum) plant has immense nutritional significance; however, it can be negatively influenced by salinity stress. Nanoparticles (NPs) have excellent properties, due to which these particles are used in agriculture to enhance various growth parameters even in the presence of abiotic stresses. The objective of this study was to investigate the effects of silicon NPs (Si-NPs) through root dipping and foliar spray on tomato in the presence/absence of salt stress. Plant root and leaf were used for the measurements of morphological, physiological, and biochemical parameters treated with Si-NPs under salt stress. At 45 days after sowing, the activity of antioxidant enzymes, photosynthesis, mineral concentration, chlorophyll index, and growth attributes of tomato plants were measured. The developmental processes of tomato plants were severely slowed down by salt stress upto 35.8% (shoot dry mass), 44.3% (root dry mass), 51% (shoot length), and 62% (root length), but this reduction was mitigated by the treatment of Si-NPs. Application of Si-NPs significantly increased the growth attributes (height and dry weight), mineral content [magnesium (Mg), potassium (K), copper (Cu), iron (Fe), manganese (Mn), zinc (Zn)], photosynthesis [net photosynthetic rate (P N), stomatal conductance (gs), transpiration rate (E), internal CO2 concentration (Ci)], and activity of antioxidative enzymes including superoxide dismutase and catalase in salt stress. Foliar application of Si-NPs in tomato plants appears to be more effective over root dipping and alleviates the salt stress by increasing the plant's antioxidant enzyme activity.
Collapse
Affiliation(s)
- Pravej Alam
- Department
of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed Arshad
- Dental
Biomaterials Research Chair, Dental Health Department, College of
Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz A. Al-Kheraif
- Dental
Biomaterials Research Chair, Dental Health Department, College of
Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maged A. Azzam
- Department
of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Thamer Al Balawi
- Department
of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
19
|
Rabiya UE, Ali M, Farooq MA, Siddiq Z, Alamri SA, Siddiqui MH, Khan WUD. Comparative efficiency of silica gel, biochar, and plant growth promoting bacteria on Cr and Pb availability to Solanum melongena L. in contaminated soil irrigated with wastewater. FRONTIERS IN PLANT SCIENCE 2022; 13:950362. [PMID: 35991387 PMCID: PMC9386531 DOI: 10.3389/fpls.2022.950362] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/27/2022] [Indexed: 06/01/2023]
Abstract
Crop irrigation with untreated wastewater is a routine practice in developing countries that causes multiple human health consequences. A comparative study was performed to regulate total Cr and Pb stress in soil and Solanum melongena L. plant. For this purpose, 0.2% chitosan polymerized silica gel (CP-silica gel), 1.5% zinc-enriched biochar (ZnBc), and three bacterial species such as Trichococcus sp. (B1), Pseudomonas alcaligenes (B2), and Bacillus subtilis (B3) were selected. Initially, a biosorption trial was conducted to test the heavy metal removal efficiency of three bacterial species B1, B2, and B3 for 24 h. Hence, B3 showed maximum Cr and Pb removal efficiency among the studied bacterial isolates. Then, a pot study was conducted with 12 different treatments having three replicates. After harvesting, different growth and biochemical parameters such as chlorophyll concentration, proteins, phenolics, reactive oxygen species, and antioxidant enzymes were analyzed. The results demonstrated that wastewater application significantly (p ≤ 0.01) reduced the fresh and dry weights of the root, stem, and leaves due to high total Cr and Pb toxicity. However, CP-silica gel and ZnBc treatments performed best when applied in combination with B3. The concentration of leaf total Cr was significantly decreased (91 and 85%) with the application of ZnBc + B3 and CP-Silica gel + B3, respectively, as compared to control. There was a reduction in stem hydrogen peroxide (87%) and malondialdehyde (81%) recorded with CP-silica gel + B3 treatment due to enhanced activities of antioxidant enzymes viz. ascorbate peroxidase (6-folds) and catalase (7-folds) relative to control. Similarly, leaf total phenolics (3-folds) and protein (6-folds) contents were enhanced with CP silica gel+B3 application relative to control. Overall, CP-silica gel and ZnBc with B3 application proved to be the most appropriate treatments and can be used in developing countries to limit the deleterious effects of total Cr and Pb pollution.
Collapse
Affiliation(s)
- Umm e Rabiya
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Muhammad Ali
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Muhammad Ansar Farooq
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Zafar Siddiq
- Department of Botany, Government College University, Lahore, Pakistan
| | - Saud A. Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Waqas-ud-Din Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
20
|
Application of Silica Nanoparticles in Combination with Two Bacterial Strains Improves the Growth, Antioxidant Capacity and Production of Barley Irrigated with Saline Water in Salt-Affected Soil. PLANTS 2022; 11:plants11152026. [PMID: 35956503 PMCID: PMC9370161 DOI: 10.3390/plants11152026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 01/24/2023]
Abstract
Exploitation of low-quality water or irrigation of field crops with saline water in salt-affected soil is a critical worldwide challenge that rigorously influences agricultural productivity and sustainability, especially in arid and semiarid zones with limited freshwater resources. Therefore, we investigated a synergistic amendment strategy for salt-affected soil using a singular and combined application of plant growth-promoting rhizobacteria (PGPR at 950 g ha−1; Azotobacter chroococcum SARS 10 and Pseudomonas koreensis MG209738) and silica nanoparticles (SiNPs) at 500 mg L−1 to mitigate the detrimental impacts of irrigation with saline water on the growth, physiology, and productivity of barley (Hordum vulgare L.), along with soil attributes and nutrient uptake during 2019/2020 and 2020/2021. Our field trials showed that the combined application of PGPR and SiNPs significantly improved the soil physicochemical properties, mainly by reducing the soil exchangeable sodium percentage. Additionally, it considerably enhanced the microbiological counts (i.e., bacteria, azotobacter, and bacillus) and soil enzyme activity (i.e., urease and dehydrogenase) in both growing seasons compared with the control. The combined application of PGPR and SiNPs alleviated the detrimental impacts of saline water on barley plants grown in salt-affected soil compared to the single application of PGPR or SiNPs. The marked improvement was due to the combined application of PGPR and SiNPs, which enhanced the physiological properties (e.g., relative chlorophyll content (SPAD), relative water content (RWC), stomatal conductance, and K/Na ratio), enzyme activity (superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX)), and yield and yield-related traits and nutrient uptake (N, P, and K) of barley plants. Moreover, the Na+ content, hydrogen peroxide (H2O2) content, lipid peroxidation (MDA), electrolyte leakage (EL), and proline content were reduced upon the application of PGPR + SiNPs. These results could be important information for cultivating barley and other cereal crops in salt-affected soil under irrigation with saline water.
Collapse
|
21
|
Alleviation of Cadmium and Nickel Toxicity and Phyto-Stimulation of Tomato Plant L. by Endophytic Micrococcus luteus and Enterobacter cloacae. PLANTS 2022; 11:plants11152018. [PMID: 35956496 PMCID: PMC9370581 DOI: 10.3390/plants11152018] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 01/22/2023]
Abstract
Cadmium (Cd) and nickel (Ni) are two of the most toxic metals, wreaking havoc on human health and agricultural output. Furthermore, high levels of Cd and Ni in the soil environment, particularly in the root zone, may slow plant development, resulting in lower plant biomass. On the other hand, endophytic bacteria offer great promise for reducing Cd and Ni. Moreover, they boost plants’ resistance to heavy metal stress. Different bacterium strains were isolated from tomato roots. These isolates were identified as Micrococcus luteus and Enterobacter cloacae using 16SrDNA and were utilized to investigate their involvement in mitigating the detrimental effects of heavy metal stress. The two bacterial strains can solubilize phosphorus and create phytohormones as well as siderophores. Therefore, the objective of this study was to see how endophytic bacteria (Micrococcus luteus and Enterobactercloacae) affected the mitigation of stress from Cd and Ni in tomato plants grown in 50 μM Cd or Ni-contaminated soil. According to the findings, Cd and Ni considerably lowered growth, biomass, chlorophyll (Chl) content, and photosynthetic properties. Furthermore, the content of proline, phenol, malondialdehyde (MDA), H2O2, OH, O2, the antioxidant defense system, and heavy metal (HM) contents were significantly raised under HM-stress conditions. However, endophytic bacteria greatly improved the resistance of tomato plants to HM stress by boosting enzymatic antioxidant defenses (i.e., catalase, peroxidase, superoxide dismutase, glutathione reductase, ascorbate peroxidase, lipoxygenase activity, and nitrate reductase), antioxidant, non-enzymatic defenses, and osmolyte substances such as proline, mineral content, and specific regulatory defense genes. Moreover, the plants treated had a higher value for bioconcentration factor (BCF) and translocation factor (TF) due to more extensive loss of Cd and Ni content from the soil. To summarize, the promotion of endophytic bacterium-induced HM resistance in tomato plants is essentially dependent on the influence of endophytic bacteria on antioxidant capacity and osmoregulation.
Collapse
|
22
|
Omara AED, Hafez EM, Osman HS, Rashwan E, El-Said MAA, Alharbi K, Abd El-Moneim D, Gowayed SM. Collaborative Impact of Compost and Beneficial Rhizobacteria on Soil Properties, Physiological Attributes, and Productivity of Wheat Subjected to Deficit Irrigation in Salt Affected Soil. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070877. [PMID: 35406858 PMCID: PMC9002696 DOI: 10.3390/plants11070877] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 05/27/2023]
Abstract
Plant growth and crop productivity under unfavorable environmental challenges require a unique strategy to scavenge the severely negative impacts of these challenges such as soil salinity and water stress. Compost and plant growth-promoting rhizobacteria (PGPR) have many beneficial impacts, particularly in plants exposed to different types of stress. Therefore, a field experiment during two successive seasons was conducted to investigate the impact of compost and PGPR either separately or in a combination on exchangeable sodium percentage (ESP), soil enzymes (urease and dehydrogenase), wheat physiology, antioxidant defense system, growth, and productivity under deficient irrigation and soil salinity conditions. Our findings showed that exposure of wheat plants to deficit irrigation in salt-affected soil inhibited wheat growth and development, and eventually reduced crop productivity. However, these injurious impacts were diminished after soil amendment using the combined application of compost and PGPR. This combined application enhanced soil urease and dehydrogenase, ion selectivity, chlorophylls, carotenoids, stomatal conductance, and the relative water content (RWC) whilst reducing ESP, proline content, which eventually increased the yield-related traits of wheat plants under deficient irrigation conditions. Moreover, the coupled application of compost and PGPR reduced the uptake of Na and resulted in an increment in superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX) activities that lessened oxidative damage and improved the nutrient uptake (N, P, and K) of deficiently irrigated wheat plants under soil salinity. It was concluded that to protect wheat plants from environmental stressors, such as water stress and soil salinity, co-application of compost with PGPR was found to be effective.
Collapse
Affiliation(s)
- Alaa El-Dein Omara
- Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt;
| | - Emad M. Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Hany S. Osman
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Hadayek Shubra, Cairo 11241, Egypt
| | - Emadeldeen Rashwan
- Agronomy Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt;
| | - Mohamed A. A. El-Said
- Department of Agronomy, Faculty of Agriculture, Al-Azhar University, Assiut 71524, Egypt;
| | - Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Diaa Abd El-Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish 45511, Egypt;
| | - Salah M. Gowayed
- Department of Botany, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
23
|
El-Shamy MA, Alshaal T, Mohamed HH, Rady AMS, Hafez EM, Alsohim AS, Abd El-Moneim D. Quinoa Response to Application of Phosphogypsum and Plant Growth-Promoting Rhizobacteria under Water Stress Associated with Salt-Affected Soil. PLANTS 2022; 11:plants11070872. [PMID: 35406852 PMCID: PMC9003221 DOI: 10.3390/plants11070872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 01/24/2023]
Abstract
The aim of the study was to estimate the impact of soil amendments (i.e., phosphogypsum and plant growth-promoting rhizobacteria (PGPR)) separately or their combination on exchangeable sodium percentage (ESP), soil enzymes’ activity (urease and dehydrogenase), pigment content, relative water content (RWC), antioxidant enzymatic activity, oxidative stress, productivity, and quality of quinoa under deficient irrigation conditions in two field experiments during the 2019–2020 and 2020–2021 seasons under salt-affected soil. Results revealed that ESP, soil urease activity, soil dehydrogenase activity, leaf chlorophyll a, b, and carotenoids, leaf K content, RWC, SOD (superoxide dismutase), CAT (catalase), and POD (peroxidase) activities were declined, resulting in overproduction of leaf Na content, proline content, and oxidative stress indicators (H2O2, malondialdehyde (MDA) and electrolyte leakage) under water stress and soil salinity, which negatively influence yield-related traits, productivity, and seed quality of quinoa. However, amendment of salt-affected soil with combined phosphogypsum and seed inoculation with PGPR under deficient irrigation conditions was more effective than singular application and control plots in ameliorating the harmful effects of water stress and soil salinity. Additionally, combined application limited Na uptake in leaves and increased K uptake and leaf chlorophyll a, b, and carotenoids as well as improved SOD, CAT, and POD activities to ameliorate oxidative stress indicators (H2O2, MDA, and electrolyte leakage), which eventually positively reflected on productivity and quality in quinoa. We conclude that the potential utilization of phosphogypsum and PGPR are very promising as sustainable eco-friendly strategies to improve quinoa tolerance to water stress under soil salinity.
Collapse
Affiliation(s)
- Moshira A. El-Shamy
- Crop Intensification Research Department, Field Crops Research Institute, Giza 12511, Egypt;
| | - Tarek Alshaal
- Department of Applied Plant Biology, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary;
- Soil and Water Department, Faculty of Agriculture, University of Kafrelsheikh, Kafr El-Sheikh 33516, Egypt
| | - Hossam Hussein Mohamed
- Department of Agronomy, Faculty of Agriculture, Ain Shams University, Cairo 11782, Egypt;
| | - Asmaa M. S. Rady
- Crop Science Department, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Emad M. Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
- Correspondence: (E.M.H.); (A.S.A.)
| | - Abdullah S. Alsohim
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Burydah 51452, Saudi Arabia
- Correspondence: (E.M.H.); (A.S.A.)
| | - Diaa Abd El-Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, Arish 45511, Egypt;
| |
Collapse
|
24
|
Mokabel S, Olama Z, Ali S, El-Dakak R. The Role of Plant Growth Promoting Rhizosphere Microbiome as Alternative Biofertilizer in Boosting Solanum melongena L. Adaptation to Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050659. [PMID: 35270129 PMCID: PMC8912713 DOI: 10.3390/plants11050659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 05/07/2023]
Abstract
Recent ecological perturbations are presumed to be minimized by the application of biofertilizers as a safe alternative to chemical fertilizers. The current study aims to use bioinoculum (I) as an alternative biofertilizer and to alleviate salinity stress in the cultivar Solanum melongena L. Baldi. The salinity drench was 200 mM NaCl (S), which was used with different treatments (0; I; S; S + I) in pots prefilled with clay and sand (1:2). Results showed that salinity stress inhibited both plant fresh and dry weights, water content, and photosynthetic pigments. The content of root spermine (Spm), spermidine (Spd), and puterscine (Put) decreased. However, addition of the bioinoculum to salt-treated plants increased pigment content (80.35, 39.25, and 82.44% for chl a, chl b, and carotenoids, respectively). Similarly, K+, K+/Na+, Ca2+, P, and N contents were significantly enhanced. Increases were recorded for Spm + Spd and Put in root and shoot (8.4-F, 1.6-F and 2.04-F, 2.13-F, respectively). RAPD PCR showed gene expression upregulation of photosystem II D2 protein, glutathione reductase, glutathione-S-transferase, protease I, and protease II. The current work recommends application of the selected bioinoculum as a green biofertilizer and biopesticide. Additionally, the studied eggplant cultivar can be regarded as a source of salt tolerance genes in agricultural fields.
Collapse
Affiliation(s)
- Souhair Mokabel
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; (S.M.); (Z.O.)
| | - Zakia Olama
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; (S.M.); (Z.O.)
| | - Safaa Ali
- Nucleic Acid Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications (SRTA-City), Alexandria 21934, Egypt;
| | - Rehab El-Dakak
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; (S.M.); (Z.O.)
- Correspondence:
| |
Collapse
|
25
|
Salt Stress Amelioration in Maize Plants through Phosphogypsum Application and Bacterial Inoculation. PLANTS 2021; 10:plants10102024. [PMID: 34685833 PMCID: PMC8540408 DOI: 10.3390/plants10102024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022]
Abstract
The use of phosphogypsum (PG) and plant growth-promoting rhizobacteria (PGPR) for agricultural purposes are good options to improve soil properties and increase crop yield. The objective of this study was to investigate the effect of different rates of PG (ton ha−1; 0 (PG1), 3 (PG2), 6 (PG3), and 9 (PG4)) combined with PGPR inoculation (Azospirillum lipoferum (control, T1), A. lipoferum + Bacillus coagulans (T2), A. lipoferum + B. circulance (T3), and A. lipoferum + B. subtilis (T4)) on soil properties, plant physiology, antioxidant enzymes, nutrient uptake, and yield of maize plants (Zea mays L., cv. HSC 10) grown in salt-affected soil. Over two growing seasons, 2019 and 2020, field experiments were conducted as a split-plot design with triplicates. The results show that applying PG (9 ton ha−1) and co-inoculation (A. lipoferum + B. circulance) treatment significantly increased chlorophyll and carotenoids content, antioxidant enzymes, microbial communities, soil enzymes activity, and nutrient contents, and showed inhibitory impacts on proline content and pH, as well as EC and ESP, thus improving the productivity of maize plant compared to the control treatment. It could be concluded that PG, along with microbial inoculation, may be an important approach for ameliorating the negative impacts of salinity on maize plants.
Collapse
|
26
|
Nehela Y, Mazrou YSA, Alshaal T, Rady AMS, El-Sherif AMA, Omara AED, Abd El-Monem AM, Hafez EM. The Integrated Amendment of Sodic-Saline Soils Using Biochar and Plant Growth-Promoting Rhizobacteria Enhances Maize ( Zea mays L.) Resilience to Water Salinity. PLANTS (BASEL, SWITZERLAND) 2021; 10:1960. [PMID: 34579492 PMCID: PMC8466265 DOI: 10.3390/plants10091960] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022]
Abstract
The utilization of low-quality water or slightly saline water in sodic-saline soil is a major global conundrum that severely impacts agricultural productivity and sustainability, particularly in arid and semiarid regions with limited freshwater resources. Herein, we proposed an integrated amendment strategy for sodic-saline soil using biochar and/or plant growth-promoting rhizobacteria (PGPR; Azotobacter chroococcum SARS 10 and Pseudomonas koreensis MG209738) to alleviate the adverse impacts of saline water on the growth, physiology, and productivity of maize (Zea mays L.), as well as the soil properties and nutrient uptake during two successive seasons (2018 and 2019). Our field experiments revealed that the combined application of PGPR and biochar (PGPR + biochar) significantly improved the soil ecosystem and physicochemical properties and K+, Ca2+, and Mg2+ contents but reduced the soil exchangeable sodium percentage and Na+ content. Likewise, it significantly increased the activity of soil urease (158.14 ± 2.37 and 165.51 ± 3.05 mg NH4+ g-1 dry soil d-1) and dehydrogenase (117.89 ± 1.86 and 121.44 ± 1.00 mg TPF g-1 dry soil d-1) in 2018 and 2019, respectively, upon irrigation with saline water compared with non-treated control. PGPR + biochar supplementation mitigated the hazardous impacts of saline water on maize plants grown in sodic-saline soil better than biochar or PGPR individually (PGPR + biochar > biochar > PGPR). The highest values of leaf area index, total chlorophyll, carotenoids, total soluble sugar (TSS), relative water content, K+ and K+/Na+ of maize plants corresponded to PGPR + biochar treatment. These findings could be guidelines for cultivating not only maize but other cereal crops particularly in salt-affected soil and sodic-saline soil.
Collapse
Affiliation(s)
- Yasser Nehela
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
- Citrus Research and Education Center, Department of Plant Pathology, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA
| | - Yasser S. A. Mazrou
- Business Administration Department, Community College, King Khalid University, Guraiger, Abha 62529, Saudi Arabia; or
- Department of Agriculture Economic, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Tarek Alshaal
- Agricultural Botany, Plant Physiology and Biotechnology Department, University of Debrecen, AGTC, 4032 Debrecen, Hungary; or
- Soil and Water Department, Faculty of Agriculture, University of Kafrelsheikh, Kafr El-Sheikh 33516, Egypt
| | - Asmaa M. S. Rady
- Crop Science Department, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Ahmed M. A. El-Sherif
- Department of Agronomy, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt;
| | - Alaa El-Dein Omara
- Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt;
| | - Ahmed M. Abd El-Monem
- Department of Agronomy, Faculty of Agriculture, New Valley University, New Valley, Elkharrga 72511, Egypt;
| | - Emad M. Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt; or
| |
Collapse
|
27
|
Hafez EM, Gowayed SM, Nehela Y, Sakran RM, Rady AMS, Awadalla A, Omara AED, Alowaiesh BF. Incorporated Biochar-Based Soil Amendment and Exogenous Glycine Betaine Foliar Application Ameliorate Rice ( Oryza sativa L.) Tolerance and Resilience to Osmotic Stress. PLANTS 2021; 10:plants10091930. [PMID: 34579461 PMCID: PMC8471834 DOI: 10.3390/plants10091930] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/24/2023]
Abstract
Osmotic stress is a major physiologic dysfunction that alters the water movement across the cell membrane. Soil salinity and water stress are major causal factors of osmotic stress that severely affect agricultural productivity and sustainability. Herein, we suggested and evaluated the impact of integrated biochar-based soil amendment and exogenous glycine betaine application on the growth, physiology, productivity, grain quality, and osmotic stress tolerance of rice (Oryza sativa L., cv. Sakha 105) grown in salt-affected soil under three irrigation intervals (6, 9, or 12 days), as well as soil properties and nutrient uptake under field conditions during the 2019 and 2020 seasons. Our findings showed that dual application of biochar and glycine betaine (biochar + glycine betaine) reduced the soil pH, electrical conductivity, and exchangeable sodium percentage. However, it enhanced the K+ uptake which increased in the leaves of treated-rice plants. Additionally, biochar and glycine betaine supplementation enhanced the photosynthetic pigments (chlorophyll a, b, and carotenoids) and physiological attributes (net photosynthetic rate, stomatal conductance, relative water content, and electrolyte leakage) of osmotic-stressed rice plants. Biochar + glycine betaine altered the activity of antioxidant-related enzymes (catalase, ascorbate peroxide, and peroxidase). Moreover, it improved the yield components, biological yield, and harvest index, as well as the nutrient value of rice grains of osmotic-stressed rice plants. Collectively, these findings underline the potential application of biochar and glycine betaine as a sustainable eco-friendly strategy to improve plant resilience, not only rice, but other plant species in general and other cereal crops in particular, to abiotic stress, particularly those growing in salt-affected soil.
Collapse
Affiliation(s)
- Emad M. Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
| | - Salah M. Gowayed
- Department of Botany, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt;
| | - Yasser Nehela
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
- Citrus Research and Education Center, Department of Plant Pathology, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA
- Correspondence:
| | - Raghda M. Sakran
- Rice Research Department, Field Crops Research Institute, Agricultural Research Center, Giza 12112, Egypt;
| | - Asmaa M. S. Rady
- Crop Science Department, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Abdelmoniem Awadalla
- Department of Agronomy, Faculty of Agriculture and Natural Resources, Aswan University, Aswan 81528, Egypt;
| | - Alaa El-Dein Omara
- Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt;
| | - Bassam F. Alowaiesh
- Biology Department, College of Science, Jouf University, Sakaka 72341, Saudi Arabia;
| |
Collapse
|