1
|
Ma Y, Zeng T, Li Z, Jue D, Sui Y, Wang X, Zhong H, Yang J. Transcriptomic analysis reveals long non-coding RNA involved in the key metabolic pathway in response to Botrytis cinerea in kiwifruit. BMC PLANT BIOLOGY 2025; 25:474. [PMID: 40234757 PMCID: PMC11998429 DOI: 10.1186/s12870-025-06499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/01/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Understanding the molecular mechanisms that confer kiwifruit resistance to Botrytis cinerea is essential for developing resistant cultivars. Long non-coding RNAs (lncRNAs), known to participate in various physiological processes including plant defense against diseases, have an undefined role in kiwifruit's resistance. RESULTS Our study aimed to identify lncRNAs induced by B. cinerea infection in 'Hongyang' kiwifruit at 0 to 3 days post-inoculation (dpi) through high-throughput sequencing. The differential expression analysis identified 126 differentially expressed lncRNAs (DELs). Subsequent GO and KEGG analyses indicated that these lncRNAs' target genes were predominantly associated with plant-pathogen interactions, carbohydrate metabolism including starch and sucrose, mitogen-activated protein kinase (MAPK) signaling pathways, and plant hormone signal transduction. Co-expression analysis revealed that lncRNAs modulate the expression of genes involved in phytohormone signaling pathways, such as those for auxin, ethylene (ETH), abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA), as well as the MAPK signaling pathway. This regulation affects the biosynthesis of defense-related secondary metabolites like ADP-glucose, sucrose, 1,3-β-glucan, and cellulose, thereby enhancing the fruit's disease resistance. CONCLUSION Our findings offer valuable insights into the mechanisms by which lncRNAs respond to biotic stress in kiwifruit, potentially aiding in the development of strategies for breeding kiwifruit with improved resistance to B. cinerea.
Collapse
Affiliation(s)
- Yijia Ma
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Tianjing Zeng
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Zhexin Li
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China.
| | - Dengwei Jue
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Yuan Sui
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Xu Wang
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Hongpan Zhong
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Jiaqi Yang
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| |
Collapse
|
2
|
De Y, Yan W, Gao F, Mu H. Unraveling the signaling pathways of phytohormones underlying salt tolerance in Elymus sibiricus: A transcriptomic and metabolomic approach. Genomics 2024; 116:110893. [PMID: 38944355 DOI: 10.1016/j.ygeno.2024.110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Understanding phytohormonal signaling is crucial for elucidating plant defense mechanisms against environmental stressors. However, knowledge regarding phytohormone-mediated tolerance pathways under salt stress in Elymus sibiricus, an important species for forage and ecological restoration, remains limited. In this study, transcriptomic and metabolomic approaches uncover the dynamics of phytohormonal signaling in Elymus sibiricus under salt stress. Notably, four hours after exposure to salt, significant activity was observed in the ABA, JA, IAA, and CTK pathways, with ABA, JA, JA-L-Ile, and IAA identified as key mediators in the response of Elymus sibiricus' to salinity. Moreover, SAPK3, Os04g0167900-like, CAT1, MKK2, and MPK12 were identified as potential central regulators within these pathways. The complex interactions between phytohormones and DEGs are crucial for facilitating the adaptation of Elymus sibiricus to saline environments. These findings enhance our understanding of the salt tolerance mechanisms in Elymus sibiricus and provide a foundation for breeding salt-resistant varieties.
Collapse
Affiliation(s)
- Ying De
- Chinese Academy of Agricultural Sciences, Grassland Research Institute, Hohhot 010010, China.
| | - Weihong Yan
- Chinese Academy of Agricultural Sciences, Grassland Research Institute, Hohhot 010010, China
| | - Fengqin Gao
- Chinese Academy of Agricultural Sciences, Grassland Research Institute, Hohhot 010010, China
| | - Huaibin Mu
- Chinese Academy of Agricultural Sciences, Grassland Research Institute, Hohhot 010010, China
| |
Collapse
|
3
|
Sharma V, Sharma DP, Salwan R. Surviving the stress: Understanding the molecular basis of plant adaptations and uncovering the role of mycorrhizal association in plant abiotic stresses. Microb Pathog 2024; 193:106772. [PMID: 38969183 DOI: 10.1016/j.micpath.2024.106772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/28/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Environmental stresses severely impair plant growth, resulting in significant crop yield and quality loss. Among various abiotic factors, salt and drought stresses are one of the major factors that affect the nutrients and water uptake by the plants, hence ultimately various physiological aspects of the plants that compromises crop yield. Continuous efforts have been made to investigate, dissect and improve plant adaptations at the molecular level in response to drought and salinity stresses. In this context, the plant beneficial microbiome presents in the rhizosphere, endosphere, and phyllosphere, also referred as second genomes of the plant is well known for its roles in plant adaptations. Exploration of beneficial interaction of fungi with host plants known as mycorrhizal association is one such special interaction that can facilitates the host plants adaptations. Mycorrhiza assist in alleviating the salinity and drought stresses of plants via redistributing the ion imbalance through translocation to different parts of the plants, as well as triggering oxidative machinery. Mycorrhiza association also regulates the level of various plant growth regulators, osmolytes and assists in acquiring minerals that are helpful in plant's adaptation against extreme environmental stresses. The current review examines the role of various plant growth regulators and plants' antioxidative systems, followed by mycorrhizal association during drought and salt stresses.
Collapse
Affiliation(s)
- Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali PB 140413, India.
| | - D P Sharma
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur, H.P 177 001, India
| | - Richa Salwan
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur, H.P 177 001, India.
| |
Collapse
|
4
|
Xiao X, Lang D, Yong J, Zhang X. Bacillus cereus G2 alleviate salt stress in Glycyrrhiza uralensis Fisch. by balancing the downstream branches of phenylpropanoids and activating flavonoid biosynthesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116129. [PMID: 38430580 DOI: 10.1016/j.ecoenv.2024.116129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/11/2024] [Accepted: 02/18/2024] [Indexed: 03/04/2024]
Abstract
The salinity environment is one of the biggest threats to Glycyrrhiza uralensis Fisch. (G. uralensis) growth, resulting from the oxidative stress caused by excess reactive oxygen species (ROS). Flavonoids are the main pharmacodynamic composition and help maintain ROS homeostasis and mitigate oxidative damage in G. uralensis in the salinity environment. To investigate whether endophytic Bacillus cereus G2 can improve the salt-tolerance of G. uralensis through controlling flavonoid biosynthesis, the transcriptomic and physiological analysis of G. uralensis treated by G2 in the saline environment was conducted, focused on flavonoid biosynthesis-related pathways. Results uncovered that salinity inhibited flavonoids synthesis by decreasing the activities of phenylalanine ammonialyase (PAL) and 4-coumarate-CoA ligase (4CL) (42% and 39%, respectively) due to down-regulated gene Glyur000910s00020578 at substrate level, and then decreasing the activities of chalcone isomerase (CHI) and chalcone synthase (CHS) activities (50% and 42%, respectively) due to down-regulated genes Glyur006062s00044203 and Glyur000051s00003431, further decreasing isoliquiritigenin content by 53%. However, salt stress increased liquiritin content by 43%, which might be a protective mechanism of salt-treated G. uralensis seedlings. Interestingly, G2 enhanced PAL activity by 27% whereas reduced trans-cinnamate 4-monooxygenase (C4H) activity by 43% which could inhibit lignin biosynthesis but promote flavonoid biosynthesis of salt-treated G. uralensis at the substrate level. G2 decreased shikimate O-hydroxycinnamoyltransferase (HCT) activity by 35%, increased CHS activity by 54% through up-regulating the gene Glyur000051s00003431 encoding CHS, and increased CHI activity by 72%, thereby decreasing lignin (34%) and liquiritin (24%) content, but increasing isoliquiritigenin content (35%), which could mitigate oxidative damage and changed salt-tolerance mechanism of G. uralensis.
Collapse
Affiliation(s)
- Xiang Xiao
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Duoyong Lang
- College of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Jingjiao Yong
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xinhui Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan 750004, China.
| |
Collapse
|
5
|
Trivellini A, Carmassi G, Scatena G, Vernieri P, Ferrante A. Molecular and physiological responses to salt stress in salinity-sensitive and tolerant Hibiscus rosa-sinensis cultivars. MOLECULAR HORTICULTURE 2023; 3:28. [PMID: 38115113 PMCID: PMC10731769 DOI: 10.1186/s43897-023-00075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023]
Abstract
Ornamental plants are used to decorate urban and peri-urban areas, and during their cultivation or utilisation, they can be exposed to abiotic stress. Salinity is an abiotic stress factor that limits plant growth and reduces the ornamental value of sensitive species. In this study, transcriptomic analysis was conducted to identify genes associated with tolerance or sensitivity to salinity in two hibiscus (Hibiscus rosa-sinensis L.) cultivars, 'Porto' and 'Sunny wind'. The physiological and biochemical parameters of plants exposed to 50, 100, or 200 mM NaCl and water (control) were monitored. Salinity treatments were applied for six weeks. After four weeks, differences between cultivars were clearly evident and 'Porto' was more tolerant than 'Sunny wind'. The tolerant cultivar showed lower electrolyte leakage and ABA concentrations, and higher proline content in the leaves. Accumulation of Na in different organs was lower in the flower organs of 'Porto'. At the molecular level, several differential expressed genes were observed between the cultivars and flower organs. Among the highly expressed DEGs, coat protein, alcohol dehydrogenase, and AP2/EREBP transcription factor ERF-1. Among the downregulated genes, GH3 and NCED were the most interesting. The differential expression of these genes may explain the salt stress tolerance of 'Porto'.
Collapse
Affiliation(s)
- Alice Trivellini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy.
| | - Giulia Carmassi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Guido Scatena
- Italian Institute for Environmental Protection and Research - ISPRA, Via del Cedro 38, 57122, Leghorn, Italy
| | - Paolo Vernieri
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università Degli Studi Di Milano, Via Celoria 2, 20133, Milan, Italy
| |
Collapse
|
6
|
Luo P, Li TT, Shi WM, Ma Q, Di DW. The Roles of GRETCHEN HAGEN3 (GH3)-Dependent Auxin Conjugation in the Regulation of Plant Development and Stress Adaptation. PLANTS (BASEL, SWITZERLAND) 2023; 12:4111. [PMID: 38140438 PMCID: PMC10747189 DOI: 10.3390/plants12244111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
The precise control of free auxin (indole-3-acetic acid, IAA) gradient, which is orchestrated by biosynthesis, conjugation, degradation, hydrolyzation, and transport, is critical for all aspects of plant growth and development. Of these, the GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetase family, pivotal in conjugating IAA with amino acids, has garnered significant interest. Recent advances in understanding GH3-dependent IAA conjugation have positioned GH3 functional elucidation as a hot topic of research. This review aims to consolidate and discuss recent findings on (i) the enzymatic mechanisms driving GH3 activity, (ii) the influence of chemical inhibitor on GH3 function, and (iii) the transcriptional regulation of GH3 and its impact on plant development and stress response. Additionally, we explore the distinct biological functions attributed to IAA-amino acid conjugates.
Collapse
Affiliation(s)
- Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Ting-Ting Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Ming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Jing H, Wilkinson EG, Sageman-Furnas K, Strader LC. Auxin and abiotic stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:7000-7014. [PMID: 37591508 PMCID: PMC10690732 DOI: 10.1093/jxb/erad325] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Plants are exposed to a variety of abiotic stresses; these stresses have profound effects on plant growth, survival, and productivity. Tolerance and adaptation to stress require sophisticated stress sensing, signaling, and various regulatory mechanisms. The plant hormone auxin is a key regulator of plant growth and development, playing pivotal roles in the integration of abiotic stress signals and control of downstream stress responses. In this review, we summarize and discuss recent advances in understanding the intersection of auxin and abiotic stress in plants, with a focus on temperature, salt, and drought stresses. We also explore the roles of auxin in stress tolerance and opportunities arising for agricultural applications.
Collapse
Affiliation(s)
- Hongwei Jing
- Department of Biology, Duke University, Durham, NC 27008, USA
| | | | | | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| |
Collapse
|
8
|
Wang A, Guo J, Wang S, Zhang Y, Lu F, Duan J, Liu Z, Ji W. BoPEP4, a C-Terminally Encoded Plant Elicitor Peptide from Broccoli, Plays a Role in Salinity Stress Tolerance. Int J Mol Sci 2022; 23:ijms23063090. [PMID: 35328511 PMCID: PMC8952307 DOI: 10.3390/ijms23063090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022] Open
Abstract
Plant peptide hormones play various roles in plant development, pathogen defense and abiotic stress tolerance. Plant elicitor peptides (Peps) are a type of damage-associated molecular pattern (DAMP) derived from precursor protein PROPEPs. In this study, we identified nine PROPEP genes in the broccoli genome. qRT-PCR analysis indicated that the expression levels of BoPROPEPs were induced by NaCl, ABA, heat, SA and P. syringae DC3000 treatments. In order to study the functions of Peps in salinity stress response, we synthesized BoPep4 peptide, the precursor gene of which, BoPROPEP4, was significantly responsive to NaCl treatment, and carried out a salinity stress assay by exogenous application of BoPep4 in broccoli sprouts. The results showed that the application of 100 nM BoPep4 enhanced tolerance to 200 mM NaCl in broccoli by reducing the Na+/K+ ratio and promoting accumulation of wax and cutin in leaves. Further RNA-seq analysis identified 663 differentially expressed genes (DGEs) under combined treatment with BoPep4 and NaCl compared with NaCl treatment, as well as 1776 genes differentially expressed specifically upon BoPep4 and NaCl treatment. GO and KEGG analyses of these DEGs indicated that most genes were enriched in auxin and ABA signal transduction, as well as wax and cutin biosynthesis. Collectively, this study shows that there was crosstalk between peptide hormone BoPep4 signaling and some well-established signaling pathways under salinity stress in broccoli sprouts, which implies an essential function of BoPep4 in salinity stress defense.
Collapse
|