1
|
Cortés AJ. Abiotic Stress Tolerance Boosted by Genetic Diversity in Plants. Int J Mol Sci 2024; 25:5367. [PMID: 38791404 PMCID: PMC11121514 DOI: 10.3390/ijms25105367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 05/26/2024] Open
Abstract
Plant breeding [...].
Collapse
Affiliation(s)
- Andrés J. Cortés
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. La Selva, Km 7 vía Rionegro—Las Palmas, Rionegro 054048, Colombia;
- Facultad de Ciencias Agrarias—de Ciencias Forestales, Universidad Nacional de Colombia—Sede Medellín, Medellín 050034, Colombia
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma 23436, Sweden
| |
Collapse
|
2
|
Shahriari Z, Su X, Zheng K, Zhang Z. Advances and Prospects of Virus-Resistant Breeding in Tomatoes. Int J Mol Sci 2023; 24:15448. [PMID: 37895127 PMCID: PMC10607384 DOI: 10.3390/ijms242015448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Plant viruses are the main pathogens which cause significant quality and yield losses in tomato crops. The important viruses that infect tomatoes worldwide belong to five genera: Begomovirus, Orthotospovirus, Tobamovirus, Potyvirus, and Crinivirus. Tomato resistance genes against viruses, including Ty gene resistance against begomoviruses, Sw gene resistance against orthotospoviruses, Tm gene resistance against tobamoviruses, and Pot 1 gene resistance against potyviruses, have been identified from wild germplasm and introduced into cultivated cultivars via hybrid breeding. However, these resistance genes mainly exhibit qualitative resistance mediated by single genes, which cannot protect against virus mutations, recombination, mixed-infection, or emerging viruses, thus posing a great challenge to tomato antiviral breeding. Based on the epidemic characteristics of tomato viruses, we propose that future studies on tomato virus resistance breeding should focus on rapidly, safely, and efficiently creating broad-spectrum germplasm materials resistant to multiple viruses. Accordingly, we summarized and analyzed the advantages and characteristics of the three tomato antiviral breeding strategies, including marker-assisted selection (MAS)-based hybrid breeding, RNA interference (RNAi)-based transgenic breeding, and CRISPR/Cas-based gene editing. Finally, we highlighted the challenges and provided suggestions for improving tomato antiviral breeding in the future using the three breeding strategies.
Collapse
Affiliation(s)
- Zolfaghar Shahriari
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
- Crop and Horticultural Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz 617-71555, Iran
| | - Xiaoxia Su
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
| | - Kuanyu Zheng
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
| | - Zhongkai Zhang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
| |
Collapse
|
3
|
Cortés AJ, Barnaby JY. Editorial: Harnessing genebanks: High-throughput phenotyping and genotyping of crop wild relatives and landraces. FRONTIERS IN PLANT SCIENCE 2023; 14:1149469. [PMID: 36968416 PMCID: PMC10036837 DOI: 10.3389/fpls.2023.1149469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Andrés J. Cortés
- Corporación Colombiana de Investigación Agropecuaria – AGROSAVIA, C.I. La Selva, Rionegro, Colombia
| | - Jinyoung Y. Barnaby
- U.S. Department of Agriculture, U.S. National Arboretum, Floral and Nursery Plants Research Unit, Beltsville, MD, United States
| |
Collapse
|
4
|
Que Q, Liang X, Song H, Li C, Li P, Pian R, Chen X, Zhou W, Ouyang K. Evolution and Expression Patterns of the Fructose 1,6-Bisphosptase Gene Family in a Miracle Tree ( Neolamarckia cadamba). Genes (Basel) 2022; 13:genes13122349. [PMID: 36553616 PMCID: PMC9778321 DOI: 10.3390/genes13122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Neolamarckia cadamba (N. cadamba) is a fast-growing tree species with tremendous economic and ecological value; the study of the key genes regulating photosynthesis and sugar accumulation is very important for the breeding of N. cadamba. Fructose 1,6-bisphosptase (FBP) gene has been found to play a key role in plant photosynthesis, sugar accumulation and other growth processes. However, no systemic analysis of FBPs has been reported in N. cadamba. A total of six FBP genes were identifed and cloned based on the N. cadamba genome, and these FBP genes were sorted into four groups. The characteristics of the NcFBP gene family were analyzed such as phylogenetic relationships, gene structures, conserved motifs, and expression patterns. A cis-acting element related to circadian control was first found in the promoter region of FBP gene. Phylogenetic and quantitative real-time PCR analyses showed that NcFBP5 and NcFBP6 may be chloroplast type 1 FBP and cytoplasmic FBP, respectively. FBP proteins from N. cadamba and 22 other plant species were used for phylogenetic analyses, indicating that FBP family may have expanded during the evolution of algae to mosses and differentiated cpFBPase1 proteins in mosses. This work analyzes the internal relationship between the evolution and expression of the six NcFBPs, providing a scientific basis for the evolutionary pattern of plant FBPs, and promoting the functional studies of FBP genes.
Collapse
Affiliation(s)
- Qingmin Que
- College of Forestry and Landscape Architecture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Xiaohan Liang
- College of Forestry and Landscape Architecture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Huiyun Song
- College of Forestry and Landscape Architecture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Chunmei Li
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Pei Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Ruiqi Pian
- College of Forestry and Landscape Architecture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Xiaoyang Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Wei Zhou
- College of Forestry and Landscape Architecture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
- Correspondence: (W.Z.); (K.O.)
| | - Kunxi Ouyang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
- Correspondence: (W.Z.); (K.O.)
| |
Collapse
|
5
|
Younessi-Hamzekhanlu M, Gailing O. Genome-Wide SNP Markers Accelerate Perennial Forest Tree Breeding Rate for Disease Resistance through Marker-Assisted and Genome-Wide Selection. Int J Mol Sci 2022; 23:ijms232012315. [PMID: 36293169 PMCID: PMC9604372 DOI: 10.3390/ijms232012315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022] Open
Abstract
The ecological and economic importance of forest trees is evident and their survival is necessary to provide the raw materials needed for wood and paper industries, to preserve the diversity of associated animal and plant species, to protect water and soil, and to regulate climate. Forest trees are threatened by anthropogenic factors and biotic and abiotic stresses. Various diseases, including those caused by fungal pathogens, are one of the main threats to forest trees that lead to their dieback. Genomics and transcriptomics studies using next-generation sequencing (NGS) methods can help reveal the architecture of resistance to various diseases and exploit natural genetic diversity to select elite genotypes with high resistance to diseases. In the last two decades, QTL mapping studies led to the identification of QTLs related to disease resistance traits and gene families and transcription factors involved in them, including NB-LRR, WRKY, bZIP and MYB. On the other hand, due to the limitation of recombination events in traditional QTL mapping in families derived from bi-parental crosses, genome-wide association studies (GWAS) that are based on linkage disequilibrium (LD) in unstructured populations overcame these limitations and were able to narrow down QTLs to single genes through genotyping of many individuals using high-throughput markers. Association and QTL mapping studies, by identifying markers closely linked to the target trait, are the prerequisite for marker-assisted selection (MAS) and reduce the breeding period in perennial forest trees. The genomic selection (GS) method uses the information on all markers across the whole genome, regardless of their significance for development of a predictive model for the performance of individuals in relation to a specific trait. GS studies also increase gain per unit of time and dramatically increase the speed of breeding programs. This review article is focused on the progress achieved in the field of dissecting forest tree disease resistance architecture through GWAS and QTL mapping studies. Finally, the merit of methods such as GS in accelerating forest tree breeding programs is also discussed.
Collapse
Affiliation(s)
- Mehdi Younessi-Hamzekhanlu
- Department of Forestry and Medicinal Plants, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, 29 Bahman Blvd., Tabriz P.O. Box 5166616471, Iran
- Correspondence: (M.Y.-H.); (O.G.)
| | - Oliver Gailing
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Büsgenweg 2, D-37077 Göttingen, Germany
- Correspondence: (M.Y.-H.); (O.G.)
| |
Collapse
|
6
|
Whole Transcriptome Sequencing Unveils the Genomic Determinants of Putative Somaclonal Variation in Mint ( Mentha L.). Int J Mol Sci 2022; 23:ijms23105291. [PMID: 35628103 PMCID: PMC9141282 DOI: 10.3390/ijms23105291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 12/21/2022] Open
Abstract
Mint (Mentha L., Lamiaceae) is a strongly scented herb of the family Lamiaceae that is grown mostly by clonal propagation, making it a valuable species for the study of somaclonal variation and its phenotypic consequences. The recent introduction of a few species of mint in South America, followed by a presumably rampant propagation, make this region particularly ideal for studying the extent of somaclonal genetic diversity. Hence, the objective of this work was to offer a preliminary characterization of somaclonal genetically coding diversity of the mint in the northern Andes in order to address the question of whether somaclonal variants may have emerged despite relatively recent introductions in a region where mint is not native. A total of 29 clonally propagated specimens, collected in mint export farms in the province of Antioquia, a major region for mint production in the northwest Andes of Colombia, were genotyped using RNA sequencing (RNA-Seq). SNP calling was carried out from the leaves’ transcriptome profiles of each plant by combining the GATK4 and TRINITY protocols, obtaining a total of 2033 loci across 912 transcripts with a minimum read depth of 20X and 4% of missing data. Unsupervised machine learning algorithms considered the K-means, AGNES and UPGMA approaches, all of which suggested three genetic clusters for M. spicata and a unique cluster for M. × piperita. The results indicate that at least two different origins of M. spicata reached the eastern region of the Antioquia province, clonally propagated in the locality ever since for local consumption and export. One of these ancestries had more population structure, possibly due to environmental or anthropological pressures that intervened in the fragmentation of this genetic group or to a higher somaclonal mutation rate. This work offers a first step into the study of the accumulation and transmission of presumably quasi-neutral somatic mutations at coding regions in an herbaceous clonally propagated scented species such as mint, likely favored by an expected population expansion after its Andean introduction. These ad hoc hypotheses warrant further study as part of future research.
Collapse
|
7
|
Haleem A, Klees S, Schmitt AO, Gültas M. Deciphering Pleiotropic Signatures of Regulatory SNPs in Zea mays L. Using Multi-Omics Data and Machine Learning Algorithms. Int J Mol Sci 2022; 23:5121. [PMID: 35563516 PMCID: PMC9100765 DOI: 10.3390/ijms23095121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 01/25/2023] Open
Abstract
Maize is one of the most widely grown cereals in the world. However, to address the challenges in maize breeding arising from climatic anomalies, there is a need for developing novel strategies to harness the power of multi-omics technologies. In this regard, pleiotropy is an important genetic phenomenon that can be utilized to simultaneously enhance multiple agronomic phenotypes in maize. In addition to pleiotropy, another aspect is the consideration of the regulatory SNPs (rSNPs) that are likely to have causal effects in phenotypic development. By incorporating both aspects in our study, we performed a systematic analysis based on multi-omics data to reveal the novel pleiotropic signatures of rSNPs in a global maize population. For this purpose, we first applied Random Forests and then Markov clustering algorithms to decipher the pleiotropic signatures of rSNPs, based on which hierarchical network models are constructed to elucidate the complex interplay among transcription factors, rSNPs, and phenotypes. The results obtained in our study could help to understand the genetic programs orchestrating multiple phenotypes and thus could provide novel breeding targets for the simultaneous improvement of several agronomic traits.
Collapse
Affiliation(s)
- Ataul Haleem
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (A.H.); (S.K.); (A.O.S.)
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany
| | - Selina Klees
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (A.H.); (S.K.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
| | - Armin Otto Schmitt
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (A.H.); (S.K.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
| | - Mehmet Gültas
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
| |
Collapse
|
8
|
Cañas-Gutiérrez GP, Sepulveda-Ortega S, López-Hernández F, Navas-Arboleda AA, Cortés AJ. Inheritance of Yield Components and Morphological Traits in Avocado cv. Hass From "Criollo" "Elite Trees" via Half-Sib Seedling Rootstocks. FRONTIERS IN PLANT SCIENCE 2022; 13:843099. [PMID: 35685008 PMCID: PMC9171141 DOI: 10.3389/fpls.2022.843099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/10/2022] [Indexed: 05/11/2023]
Abstract
Grafting induces precocity and maintains clonal integrity in fruit tree crops. However, the complex rootstock × scion interaction often precludes understanding how the tree phenotype is shaped, limiting the potential to select optimum rootstocks. Therefore, it is necessary to assess (1) how seedling progenies inherit trait variation from elite 'plus trees', and (2) whether such family superiority may be transferred after grafting to the clonal scion. To bridge this gap, we quantified additive genetic parameters (i.e., narrow sense heritability-h 2, and genetic-estimated breeding values-GEBVs) across landraces, "criollo", "plus trees" of the super-food fruit tree crop avocado (Persea americana Mill.), and their open-pollinated (OP) half-sib seedling families. Specifically, we used a genomic best linear unbiased prediction (G-BLUP) model to merge phenotypic characterization of 17 morpho-agronomic traits with genetic screening of 13 highly polymorphic SSR markers in a diverse panel of 104 avocado "criollo" "plus trees." Estimated additive genetic parameters were validated at a 5-year-old common garden trial (i.e., provenance test), in which 22 OP half-sib seedlings from 82 elite "plus trees" served as rootstocks for the cv. Hass clone. Heritability (h 2) scores in the "criollo" "plus trees" ranged from 0.28 to 0.51. The highest h 2 values were observed for ribbed petiole and adaxial veins with 0.47 (CI 95%0.2-0.8) and 0.51 (CI 0.2-0.8), respectively. The h 2 scores for the agronomic traits ranged from 0.34 (CI 0.2-0.6) to 0.39 (CI 0.2-0.6) for seed weight, fruit weight, and total volume, respectively. When inspecting yield variation across 5-year-old grafted avocado cv. Hass trees with elite OP half-sib seedling rootstocks, the traits total number of fruits and fruits' weight, respectively, exhibited h 2 scores of 0.36 (± 0.23) and 0.11 (± 0.09). Our results indicate that elite "criollo" "plus trees" may serve as promissory donors of seedling rootstocks for avocado cv. Hass orchards due to the inheritance of their outstanding trait values. This reinforces the feasibility to leverage natural variation from "plus trees" via OP half-sib seedling rootstock families. By jointly estimating half-sib family effects and rootstock-mediated heritability, this study promises boosting seedling rootstock breeding programs, while better discerning the consequences of grafting in fruit tree crops.
Collapse
Affiliation(s)
- Gloria Patricia Cañas-Gutiérrez
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. La Selva, Rionegro, Colombia
- Corporation for Biological Research (CIB), Unit of Phytosanity and Biological Control, Medellín, Colombia
- *Correspondence: Gloria Patricia Cañas-Gutiérrez,
| | - Stella Sepulveda-Ortega
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. La Selva, Rionegro, Colombia
| | - Felipe López-Hernández
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. La Selva, Rionegro, Colombia
| | | | - Andrés J. Cortés
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. La Selva, Rionegro, Colombia
- Andrés J. Cortés,
| |
Collapse
|
9
|
Fernández-Paz J, Cortés AJ, Hernández-Varela CA, Mejía-de-Tafur MS, Rodriguez-Medina C, Baligar VC. Rootstock-Mediated Genetic Variance in Cadmium Uptake by Juvenile Cacao ( Theobroma cacao L.) Genotypes, and Its Effect on Growth and Physiology. FRONTIERS IN PLANT SCIENCE 2021; 12:777842. [PMID: 35003163 PMCID: PMC8733334 DOI: 10.3389/fpls.2021.777842] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/12/2021] [Indexed: 05/02/2023]
Abstract
Grafting typically offers a shortcut to breed tree orchards throughout a multidimensional space of traits. Despite an overwhelming spectrum of rootstock-mediated effects on scion traits observed across several species, the exact nature and mechanisms underlying the rootstock-mediated effects on scion traits in cacao (Theobroma cacao L.) plants often remain overlooked. Therefore, we aimed to explicitly quantify rootstock-mediated genetic contributions in recombinant juvenile cacao plants across target traits, specifically cadmium (Cd) uptake, and its correlation with growth and physiological traits. Content of chloroplast pigments, fluorescence of chlorophyll a, leaf gas exchange, nutrient uptake, and plant biomass were examined across ungrafted saplings and target rootstock × scion combinations in soils with contrasting levels of Cd. This panel considered a total of 320 progenies from open-pollinated half-sib families and reciprocal full-sib progenies (derived from controlled crosses between the reference genotypes IMC67 and PA121). Both family types were used as rootstocks in grafts with two commercial clones (ICS95 and CCN51) commonly grown in Colombia. A pedigree-based best linear unbiased prediction (A-BLUP) mixed model was implemented to quantify rootstock-mediated narrow-sense heritability (h 2) for target traits. A Cd effect measured on rootstocks before grafting was observed in plant biomass, nutrient uptake, and content of chloroplast pigments. After grafting, damage to the Photosystem II (PSII) was also evident in some rootstock × scion combinations. Differences in the specific combining ability for Cd uptake were mostly detected in ungrafted rootstocks, or 2 months after grafting with the clonal CCN51 scion. Moderate rootstock effects (h 2> 0.1) were detected before grafting for five growth traits, four nutrient uptake properties, and chlorophylls and carotenoids content (h 2 = 0.19, 95% CI 0.05-0.61, r = 0.7). Such rootstock effects faded (h 2< 0.1) when rootstock genotypes were examined in soils without Cd, or 4 months after grafting. These results suggest a pervasive genetic conflict between the rootstock and the scion genotypes, involving the triple rootstock × scion × soil interaction when it refers to Cd and nutrient uptake, early growth, and photosynthetic process in juvenile cacao plants. Overall, deepening on these findings will harness early breeding schemes of cacao rootstock genotypes compatible with commercial clonal scions and adapted to soils enriched with toxic levels of Cd.
Collapse
Affiliation(s)
- Jessica Fernández-Paz
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA) – C.I Palmira, Palmira, Colombia
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia Sede Palmira, Palmira, Colombia
| | - Andrés J. Cortés
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA) – C.I La Selva, Rionegro, Colombia
- Facultad de Ciencias Agrarias – Departamento de Ciencias Forestales, Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia
| | | | - Maria Sara Mejía-de-Tafur
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia Sede Palmira, Palmira, Colombia
| | - Caren Rodriguez-Medina
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA) – C.I Palmira, Palmira, Colombia
| | - Virupax C. Baligar
- United States Department of Agriculture-Agricultural Research Service-Beltsville Agricultural Research Center, Beltsville, MD, United States
| |
Collapse
|
10
|
Cortés AJ, Cornille A, Yockteng R. Evolutionary Genetics of Crop-Wild Complexes. Genes (Basel) 2021; 13:1. [PMID: 35052346 PMCID: PMC8774885 DOI: 10.3390/genes13010001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Since Darwin's time, the role of crop wild relatives (CWR), landraces, and cultivated genepools in shaping plant diversity and boosting food resources has been a major question [...].
Collapse
Affiliation(s)
- Andrés J. Cortés
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. La Selva, Km 7 vía Rionegro—Las Palmas, Rionegro 054048, Colombia
- Facultad de Ciencias Agrarias—Departamento de Ciencias Forestales, Universidad Nacional de Colombia—Sede Medellín, Medellín 050034, Colombia
| | - Amandine Cornille
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE—Le Moulon, Gif-sur-Yvette, France; or
| | - Roxana Yockteng
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. Tibaitatá, Km 14 vía Mosquera, Cundinamarca 250047, Colombia;
- Institut de Systématique, Evolution, Biodiversité-UMR-CNRS 7205, National Museum of Natural History, 75005 Paris, France
| |
Collapse
|
11
|
Zoghbi-Rodríguez NM, Gamboa-Tuz SD, Pereira-Santana A, Rodríguez-Zapata LC, Sánchez-Teyer LF, Echevarría-Machado I. Phylogenomic and Microsynteny Analysis Provides Evidence of Genome Arrangements of High-Affinity Nitrate Transporter Gene Families of Plants. Int J Mol Sci 2021; 22:13036. [PMID: 34884876 PMCID: PMC8658032 DOI: 10.3390/ijms222313036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/29/2022] Open
Abstract
Nitrate transporter 2 (NRT2) and NRT3 or nitrate-assimilation-related 2 (NAR2) proteins families form a two-component, high-affinity nitrate transport system, which is essential for the acquisition of nitrate from soils with low N availability. An extensive phylogenomic analysis across land plants for these families has not been performed. In this study, we performed a microsynteny and orthology analysis on the NRT2 and NRT3 genes families across 132 plants (Sensu lato) to decipher their evolutionary history. We identified significant differences in the number of sequences per taxonomic group and different genomic contexts within the NRT2 family that might have contributed to N acquisition by the plants. We hypothesized that the greater losses of NRT2 sequences correlate with specialized ecological adaptations, such as aquatic, epiphytic, and carnivory lifestyles. We also detected expansion on the NRT2 family in specific lineages that could be a source of key innovations for colonizing contrasting niches in N availability. Microsyntenic analysis on NRT3 family showed a deep conservation on land plants, suggesting a high evolutionary constraint to preserve their function. Our study provides novel information that could be used as guide for functional characterization of these gene families across plant lineages.
Collapse
Affiliation(s)
- Normig M. Zoghbi-Rodríguez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico;
| | - Samuel David Gamboa-Tuz
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico; (S.D.G.-T.); (L.C.R.-Z.)
| | - Alejandro Pereira-Santana
- Conacyt-Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 44270, Mexico;
| | - Luis C. Rodríguez-Zapata
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico; (S.D.G.-T.); (L.C.R.-Z.)
| | - Lorenzo Felipe Sánchez-Teyer
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico; (S.D.G.-T.); (L.C.R.-Z.)
| | - Ileana Echevarría-Machado
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico;
| |
Collapse
|
12
|
Thianthavon T, Aesomnuk W, Pitaloka MK, Sattayachiti W, Sonsom Y, Nubankoh P, Malichan S, Riangwong K, Ruanjaichon V, Toojinda T, Wanchana S, Arikit S. Identification and Validation of a QTL for Bacterial Leaf Streak Resistance in Rice ( Oryza sativa L.) against Thai Xoc Strains. Genes (Basel) 2021; 12:1587. [PMID: 34680982 PMCID: PMC8535723 DOI: 10.3390/genes12101587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/02/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Rice is one of the most important food crops in the world and is of vital importance to many countries. Various diseases caused by fungi, bacteria and viruses constantly threaten rice plants and cause yield losses. Bacterial leaf streak disease (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) is one of the most devastating rice diseases. However, most modern rice varieties are susceptible to BLS. In this study, we applied the QTL-seq approach using an F2 population derived from the cross between IR62266 and Homcholasit (HSC) to rapidly identify the quantitative trait loci (QTL) that confers resistance to BLS caused by a Thai Xoc isolate, SP7-5. The results showed that a single genomic region at the beginning of chromosome 5 was highly associated with resistance to BLS. The gene xa5 was considered a potential candidate gene in this region since most associated single nucleotide polymorphisms (SNPs) were within this gene. A Kompetitive Allele-Specific PCR (KASP) marker was developed based on two consecutive functional SNPs in xa5 and validated in six F2 populations inoculated with another Thai Xoc isolate, 2NY2-2. The phenotypic variance explained by this marker (PVE) ranged from 59.04% to 70.84% in the six populations. These findings indicate that xa5 is a viable candidate gene for BLS resistance and may help in breeding programs for BLS resistance.
Collapse
Affiliation(s)
- Tripop Thianthavon
- Plant Breeding Program, Faculty of Agriculture at Kamphaeng Saen, Kesetsart University, Nakhon Pathom 73140, Thailand;
| | - Wanchana Aesomnuk
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand; (W.A.); (W.S.); (Y.S.); (P.N.); (V.R.); (T.T.)
| | - Mutiara K. Pitaloka
- Rice Science Center, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
| | - Wannapa Sattayachiti
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand; (W.A.); (W.S.); (Y.S.); (P.N.); (V.R.); (T.T.)
| | - Yupin Sonsom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand; (W.A.); (W.S.); (Y.S.); (P.N.); (V.R.); (T.T.)
| | - Phakchana Nubankoh
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand; (W.A.); (W.S.); (Y.S.); (P.N.); (V.R.); (T.T.)
| | - Srihunsa Malichan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand;
| | - Kanamon Riangwong
- Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Sanamchandra Palace Campus, Nakhon Pathom 73000, Thailand;
| | - Vinitchan Ruanjaichon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand; (W.A.); (W.S.); (Y.S.); (P.N.); (V.R.); (T.T.)
| | - Theerayut Toojinda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand; (W.A.); (W.S.); (Y.S.); (P.N.); (V.R.); (T.T.)
| | - Samart Wanchana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand; (W.A.); (W.S.); (Y.S.); (P.N.); (V.R.); (T.T.)
| | - Siwaret Arikit
- Rice Science Center, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| |
Collapse
|