1
|
Dai T, Guo Y, Wen T, Yu S, Tao Y, Liu Z. Establishment of a Rapid Detection Technique Based on RPA-LFD and RPA-CRISPR/Cas12a on Phytophthora pini. Microorganisms 2025; 13:863. [PMID: 40284699 PMCID: PMC12029582 DOI: 10.3390/microorganisms13040863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Phytophthora pini, a globally dispersed plant pathogen, poses a significant threat to natural ecosystems and cultivated horticultural crops. Early and precise detection of P. pini is essential for effective disease management. This study focused on developing specific, rapid, and sensitive molecular diagnostic techniques to identify the pathogenic oomycete P. pini. We employed recombinase polymerase amplification with lateral flow device (RPA-LFD) and RPA combined with CRISPR/Cas12a. The RPA-LFD method can identify P. pini at concentrations as low as 10 pg/μL in 30 min, while the RPA-CRISPR/Cas12a approach can detect the pathogen at 1 pg/μL in approximately 50 min. These methods are highly effective in identifying disease caused by P. pini and provide a basis for future field detection, which may reduce the economic losses associated with this devastating disease.
Collapse
Affiliation(s)
- Tingting Dai
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.G.); (T.W.); (Y.T.); (Z.L.)
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037, China
| | - Yufang Guo
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.G.); (T.W.); (Y.T.); (Z.L.)
| | - Tongyue Wen
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.G.); (T.W.); (Y.T.); (Z.L.)
| | - Sinong Yu
- Modern Forestry Innovation Center of Yancheng State-Owned Forest Farm, Yancheng 224049, China;
| | - Yuan Tao
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.G.); (T.W.); (Y.T.); (Z.L.)
| | - Zhuo Liu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.G.); (T.W.); (Y.T.); (Z.L.)
| |
Collapse
|
2
|
Tian Q, Zhou H, Zhao Z, Zhang Y, Zhao W, Cai L, Guo T. Single and dual RPA-CRISPR/Cas assays for point-of-need detection of Stewart's wilt pathogen (Pantoea stewartii subsp. stewartii) of corn and Maize dwarf mosaic virus. PEST MANAGEMENT SCIENCE 2025; 81:1988-1999. [PMID: 39663809 PMCID: PMC11906906 DOI: 10.1002/ps.8597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Pantoea stewartii subsp. stewartii and Maize dwarf mosaic virus (MDMV) infections severely affect corn productivity worldwide. Rapid point-of-need diagnoses of quarantine pathogens P. stewartii subsp. stewartii and MDMV are required for early detection, timely disease management and ensuring phytosanitary regulations. Recombinase polymerase amplification (RPA) is an isothermal technique suitable for rapid diagnostics using minimally processed samples. Integrating CRISPR/Cas collateral activities with the RPA assays further enhances the specificity and sensitivity of molecular toolkits for diagnostic assays. RESULTS RPA-CRISPR/Cas12a assay targeting the intergenic spacer region between capsular polysaccharide genes cpsA and cpsB of P. stewartii subsp. stewartii detected 1 × 10-6 ng DNA μL-1 using real-time fluorescence and blue light observation methods, and 1 × 10-4 ng DNA μL-1 using the lateral flow dipstick (LFD). Likewise, RPA-CRISPR/Cas13a assay detected MDMV coat protein (CP) gene with an ultrasensitive detection limit of 3.69 × 10-7 ng μL-1 using the real-time fluorescence and blue light observation methods, and 3.69 × 10-5 ng μL-1 using the LFD. The dual RPA-CRISPR/Cas assays detected both pathogens without compromising the speed and/or detection sensitivity of the single assays. CONCLUSION The validated assays provide a useful and sensitive molecular tool for detecting two quarantine pathogens of maize within a minimal resource framework suitable for fast-tracking the containment strategies. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Qian Tian
- Center for BiosafetyChinese Academy of Inspection and QuarantineSanyaChina
- Institute of Plant Quarantine ResearchChinese Academy of Inspection and QuarantineBeijingChina
| | - Hua Zhou
- College of Plant ProtectionChina Agricultural UniversityBeingChina
| | - Zhenxing Zhao
- Institute of Plant Quarantine ResearchChinese Academy of Inspection and QuarantineBeijingChina
| | - Yongjiang Zhang
- Institute of Plant Quarantine ResearchChinese Academy of Inspection and QuarantineBeijingChina
| | - Wenjun Zhao
- Center for BiosafetyChinese Academy of Inspection and QuarantineSanyaChina
- Institute of Plant Quarantine ResearchChinese Academy of Inspection and QuarantineBeijingChina
| | - Lulu Cai
- Center for BiosafetyChinese Academy of Inspection and QuarantineSanyaChina
- Institute of Plant Quarantine ResearchChinese Academy of Inspection and QuarantineBeijingChina
| | - Tao Guo
- Southern Breeding Administrate Office of Hainan ProvinceSanyaChina
| |
Collapse
|
3
|
Zheng L, Jiang W, Zou X, Song L, Xu X, Han Y, Lian H, Wu X, Fang X, Zhang L. Establishment of a Cas12a-Based Visual Detection Method Involving PMNT for the Colletotrichum gloeosporioides Species Complex. PLANT DISEASE 2025; 109:532-541. [PMID: 39342962 DOI: 10.1094/pdis-07-24-1411-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Strawberry anthracnose, caused by Colletotrichum spp., is a devastating disease that significantly reduces strawberry yield and quality. This study aimed to develop a simple diagnostic method to detect infection by the Colletotrichum gloeosporioides species complex (CGSC), the most predominant and virulent Colletotrichum species complex causing strawberry anthracnose in China. In this study, a Cas12aVIP diagnostic method was developed for the rapid detection of the CGSC in strawberry seedlings. This method targets the β-tubulin gene and combines recombinase polymerase amplification (RPA), the CRISPR/Cas12a system, and a cationic-conjugated polythiophene derivative [poly(3-(3'-N,N,N-triethylamino-1'-propyloxy)-4-methyl-2,5-thiophene hydrochloride) (PMNT)] mixed with single-stranded DNA. This method shows high sensitivity (10 copies per reaction) and no cross-reactivity against related pathogens. The entire procedure, from sample to result, can be completed within 50 min, including simplified DNA extraction (15 min), RPA reaction (37°C for 20 min), CRISPR/Cas12a detection (37°C for 10 min), and visual detection by the naked eye (1 to 2 min). Furthermore, the Cas12aVIP assay successfully detected the CGSC in naturally infected strawberry seedling samples in field conditions. Asymptomatic infected plants and plant residues have been identified as primary inoculum sources for the CGSC. This method enables visible detection without the need for expensive equipment or specialized technical skills, thereby offering an efficient and straightforward approach for detecting the CGSC in strawberries. The newly developed detection method can be used to promote healthier strawberry production.
Collapse
Affiliation(s)
- Liu Zheng
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wei Jiang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Xiaohua Zou
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Lili Song
- People's Government of Nanping Town, Zhuanglang County, Pingliang 744600, China
| | - Xiaofeng Xu
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yongchao Han
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Industrial Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Hongli Lian
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 212400, China
| | - Xiao Wu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Xianping Fang
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Liqing Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
4
|
Ali Agha AS, Al-Samydai A, Aburjai T. New frontiers in CRISPR: Addressing antimicrobial resistance with Cas9, Cas12, Cas13, and Cas14. Heliyon 2025; 11:e42013. [PMID: 39906792 PMCID: PMC11791237 DOI: 10.1016/j.heliyon.2025.e42013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Background The issue of antimicrobial resistance (AMR) poses a major challenge to global health, evidenced by alarming mortality predictions and the diminishing efficiency of conventional antimicrobial drugs. The CRISPR-Cas system has proven to be a powerful tool in addressing this challenge. It originated from bacterial adaptive immune mechanisms and has gained significant recognition in the scientific community. Objectives This review aims to explore the applications of CRISPR-Cas technologies in combating AMR, evaluating their effectiveness, challenges, and potential for integration into current antimicrobial strategies. Methods We conducted a comprehensive review of recent literature from databases such as PubMed and Web of Science, focusing on studies that employ CRISPR-Cas technologies against AMR. Conclusions CRISPR-Cas technologies offer a transformative approach to combat AMR, with potential applications that extend beyond traditional antimicrobial strategies. Integrating these technologies with existing methods could significantly enhance our ability to manage and potentially reverse the growing problem of antimicrobial resistance. Future research should address technical and ethical barriers to facilitate safe and effective clinical and environmental applications. This review underscores the necessity for interdisciplinary collaboration and international cooperation to harness the full potential of CRISPR-Cas technologies in the fight against superbugs.
Collapse
Affiliation(s)
- Ahmed S.A. Ali Agha
- School of Pharmacy, Department of Pharmaceutical Sciences, The University of Jordan, Amman, 11942, Jordan
| | - Ali Al-Samydai
- Pharmacological and Diagnostic Research Center, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, (AA), Amman, 19328, Jordan
| | - Talal Aburjai
- School of Pharmacy, Department of Pharmaceutical Sciences, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
5
|
Matthews MC, van der Linden J, Robène I, Rozsasi S, Coetzee B, Campa M, Burger J, Akwuruoha UN, Madufor NJ, Perold W, Opara UL, Viljoen A, Mostert D. A combined recombinase polymerase amplification CRISPR/Cas12a assay for detection of Fusarium oxysporum f. sp. cubense tropical race 4. Sci Rep 2025; 15:2436. [PMID: 39828694 PMCID: PMC11743600 DOI: 10.1038/s41598-025-85633-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
The soilborne pathogen Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is currently devastating banana production worldwide. Once introduced, it is not possible to eradicate the pathogen from soils where it can survive for decades. The only management option available then is to replace Foc TR4-susceptible with -resistant varieties. Timely detection of the pathogen, however, is an important strategy to prevent the introduction of Foc TR4 into new areas and prevent its spread from infested sites. In this study, a single-tube detection technique was developed by combining recombinase polymerase amplification (RPA) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a technology (RPA-Cas12a) for detection of Foc TR4. The RPA-Cas12a assay was conducted isothermally, had a sensitivity of up to 10 fg target DNA and did not cross react with any of the 76 non-target isolates included in the specificity testing. The RPA-Cas12a assay detected Foc TR4 from naturally infected banana samples collected in the field and visualization was possible with the naked eye under LED blue light transillumination. The method can be integrated with inexpensive fluorescent or electronic detection devices to accelerate Foc TR4 in-field detection and, thereby, fast-track disease containment strategies.
Collapse
Affiliation(s)
- Megan Ceris Matthews
- Department of Plant Pathology, Faculty of Agrisciences, Stellenbosch University, Matieland, 7602, South Africa
| | - Jos van der Linden
- Department of Plant Pathology, Faculty of Agrisciences, Stellenbosch University, Matieland, 7602, South Africa
| | - Isabelle Robène
- Department of Plant Pathology, Faculty of Agrisciences, Stellenbosch University, Matieland, 7602, South Africa
- CIRAD, UMR PVBMT, St Pierre, La Réunion, F-97410, France
| | - Samuel Rozsasi
- Department of Plant Pathology, Faculty of Agrisciences, Stellenbosch University, Matieland, 7602, South Africa
- CIRAD, UMR PVBMT, St Pierre, La Réunion, F-97410, France
| | - Beatrix Coetzee
- Department of Plant Pathology, Faculty of Agrisciences, Stellenbosch University, Matieland, 7602, South Africa
- School for Data Science and Computational Thinking, Stellenbosch University, Matieland, 7602, South Africa
| | - Manuela Campa
- Department of Genetics, Faculty of Agrisciences, Stellenbosch University, Matieland, 7602, South Africa
| | - Johan Burger
- Department of Genetics, Faculty of Agrisciences, Stellenbosch University, Matieland, 7602, South Africa
| | - Uzoma Nobel Akwuruoha
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Stellenbosch University, Matieland, 7602, South Africa
| | - Ndubuisi Johnkennedy Madufor
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Stellenbosch University, Matieland, 7602, South Africa
| | - Willem Perold
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Stellenbosch University, Matieland, 7602, South Africa
| | - Umezuruike Linus Opara
- SARChI Postharvest Technology Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Matieland, 7602, South Africa
| | - Altus Viljoen
- Department of Plant Pathology, Faculty of Agrisciences, Stellenbosch University, Matieland, 7602, South Africa
| | - Diane Mostert
- Department of Plant Pathology, Faculty of Agrisciences, Stellenbosch University, Matieland, 7602, South Africa.
| |
Collapse
|
6
|
Shaizadinova A, Amanzholova M, Rukavitsina I, Abeldenov S, Zhumakayev AR. CRISPR/Cas12a-based method coupled with isothermal amplification to identify Alternaria spp. isolated from wheat grain samples. Front Microbiol 2025; 15:1468336. [PMID: 39881979 PMCID: PMC11775006 DOI: 10.3389/fmicb.2024.1468336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Alternaria fungal species are considered major plant pathogens, infecting various crops and resulting in significant agricultural losses. Additionally, these species can contaminate grain with multiple mycotoxins that are harmful to humans and animals. Efficient pest management relies on timely detection and identification of phytopathogens in plant and grain samples, facilitating prompt selection of a crop protection strategy. Conventional identification tools, such as morphological characterization and identification based on polymerase chain reaction (PCR)-based methods, are time-consuming and laboratory-bound, limiting their implementation for on-site diagnostics essential in the agricultural industry. Isothermal amplification methods, including nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP), and recombinase polymerase amplification (RPA), enable nucleic acid amplification at constant temperatures, making them ideal for point-of-care diagnostics without the need for thermal cycling equipment. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 12a (Cas12a)-based identification, coupled with such isothermal amplification methods, represents an emerging nucleic acid-based technology for detecting plant pathogens at high accuracy and sensitivity. This study aimed to develop a CRISPR/Cas12a-based method integrated with RPA amplification for specific detection of Alternaria spp. isolated from wheat grain samples. The developed method targeted the β-tubulin gene was successfully identified Alternaria strains within a 20-min RPA amplification followed by a 30-min CRISPR/Cas12a reaction and visualization of results. Specificity test included pathogenic fungal species commonly hosted wheat grain, such as Fusarium spp. Bipolaris sorokiniana, and Nigrospora oryzae revealed high specificity of the method for Alternaria species. Furthermore, the method exhibited high sensitivity, detecting Alternaria DNA down to 100 copies, validated by real-time fluorescence readout. A fluorescence assay was employed to visualize the results of RPA and CRISPR/Cas12a reaction, demonstrating substantial implementation potential of the method in point-of-care detection of Alternaria spp. In conclusion, we present the CRISPR/Cas12a-based method as a potentially sustainable approach for the rapid, precise, and specific nucleic-acid-based identification of Alternaria species in grain samples.
Collapse
Affiliation(s)
- Aisha Shaizadinova
- Laboratory of Molecular Biotechnology, National Center for Biotechnology, Astana, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Meruyert Amanzholova
- Laboratory of Molecular Biotechnology, National Center for Biotechnology, Astana, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Irina Rukavitsina
- Laboratory of Microbiology, A.I. Barayev Research and Production Centre for Grain Farming, Shortandy-1, Kazakhstan
| | - Sailau Abeldenov
- Laboratory of Molecular Biotechnology, National Center for Biotechnology, Astana, Kazakhstan
| | | |
Collapse
|
7
|
Pham NQ, Wingfield BD, Barnes I, Gazis R, Wingfield MJ. Elsinoe species: The rise of scab diseases. PLANT PATHOLOGY 2025; 74:39-58. [DOI: 10.1111/ppa.14015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/11/2024] [Indexed: 01/05/2025]
Abstract
AbstractThe genus Elsinoe contains many aggressive pathogens of a wide range of plants, many of which are economically important. These fungal pathogens cause serious scab diseases affecting various plant parts, impacting plant vigour, yield and market value. While studies on Elsinoe species have predominantly focused on their taxonomy, there is a conspicuous gap in knowledge of these fungi from a plant pathology perspective. In this review, we draw together and critically evaluate the existing, but rather fragmented, research on the taxonomic status, phylogenetic relationships, host range, as well as the biology and epidemiology of Elsinoe species. Our aim is primarily to augment the existing understanding of the global significance of Elsinoe species, and furthermore, to shed light on the escalating prominence of scab diseases caused by species in a fungal genus that has been known for over 100 years but remains relatively poorly understood and somewhat enigmatic.
Collapse
Affiliation(s)
- Nam Q. Pham
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI) University of Pretoria Pretoria South Africa
| | - Brenda D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI) University of Pretoria Pretoria South Africa
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI) University of Pretoria Pretoria South Africa
| | - Romina Gazis
- Department of Plant Pathology University of Florida, Tropical Research and Education Center (TREC) Homestead Florida USA
| | - Michael J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI) University of Pretoria Pretoria South Africa
| |
Collapse
|
8
|
Xu T, Cao F, Dai T, Liu T. RPA-CRISPR/Cas12a-Mediated Isothermal Amplification for Rapid Detection of Phytopythium helicoides. PLANT DISEASE 2024; 108:3463-3472. [PMID: 39051993 DOI: 10.1094/pdis-06-24-1300-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Phytopythium helicoides, which belongs to algae (Chromista), Oomycota, Pythiales, Pythiaceae, and Phytophthora, is a quarantine pathogen that causes brown rot of fruits, stem rot and root rot, and other symptoms that can damage several tree species in urban landscaping. Therefore, disease management requires rapid and accurate diagnosis. The present study used recombinase polymerase amplification (RPA) in conjunction with the CRISPR/CRISPR-associated protein 12a (Cas12a) system to identify P. helicoides. The test exhibited high specificity and sensitivity and could detect 10 pg.μl-1 of P. helicoides genomic DNA at 37°C within 20 min. The test results were visible by excitation of fluorophores by blue light. This groundbreaking test is able to detect P. helicoides in artificially inoculated rhododendron leaves. The RPA-CRISPR/Cas12a detection assay developed in this study is characterized by its sensitivity, efficiency, and convenience. Early detection and control of P. helicoides is crucial for the protection of urban green cover species.
Collapse
Affiliation(s)
- Tingyan Xu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Fuliang Cao
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Tingting Dai
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Tingli Liu
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| |
Collapse
|
9
|
Li Y, Zhao L, Ma L, Bai Y, Feng F. CRISPR/Cas and Argonaute-powered lateral flow assay for pathogens detection. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39434421 DOI: 10.1080/10408398.2024.2416473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Pathogens contamination is a pressing global public issue that has garnered significant attention worldwide, especially in light of recent outbreaks of foodborne illnesses. Programmable nucleases like CRISPR/Cas and Argonaute hold promise as tools for nucleic acid testing owning to programmability and the precise target sequence specificity, which has been utilized for the development pathogens detection. At present, fluorescence, as the main signal output method, provides a simple response mode for sensing analysis. However, the dependence of fluorescence output on large instruments and correct analysis of output data limited its use in remote areas. Lateral flow strips (LFS), emerging as a novel flexible substrate, offer a plethora of advantages, encompassing easy-to-use, rapidity, visualization, low-cost, portability, etc. The integration of CRISPR/Cas and Argonaute with LFS, lateral flow assay (LFA), rendered a new and on-site mode for pathogens detection. In the review, we introduced two programmable nucleases CRISPR/Cas and Argonaute, followed by the structure, principle and advantages of LFA. Then diversified engineering detection pattens for viruses, bacteria, parasites, and fungi based on CRISPR/Cas and Argonaute were introduced and summarized. Finally, the challenge and perspectives involved in on-site diagnostic assays were discussed.
Collapse
Affiliation(s)
- Yaru Li
- School of Agriculture and Life Science, Shanxi Datong University, Datong, China
| | - Lu Zhao
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, P. R. China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yunfeng Bai
- School of Agriculture and Life Science, Shanxi Datong University, Datong, China
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, P. R. China
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, P. R. China
| |
Collapse
|
10
|
Wang T, Li A, Zhao H, Wu Q, Guo J, Tian H, Wang J, Que Y, Xu L. A novel system with robust compatibility and stability for detecting Sugarcane yellow leaf virus based on CRISPR-Cas12a. Microbiol Spectr 2024; 12:e0114924. [PMID: 39120142 PMCID: PMC11370245 DOI: 10.1128/spectrum.01149-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/30/2024] [Indexed: 08/10/2024] Open
Abstract
Sugarcane yellow leaf virus (SCYLV) can reduce sugarcane productivity. A novel detection system based on reverse transcription-multienzyme isothermal rapid amplification (RT-MIRA) combined with CRISPR-Cas12a, named RT-MIRA-CRISPR-Cas12a, was developed. This innovative approach employs crude leaf extract directly as the reaction template, streamlining the extraction process for simplicity and speed. Combining RT-MIRA and CRISPR-Cas12a in one reaction tube increases the ease of operation while reducing the risk of aerosol contamination. In addition, it exhibits sensitivity equivalent to qPCR, boasting a lower detection limit of 25 copies. Remarkably, the entire process, from sample extraction to reaction completion, requires only 52-57 minutes, just a thermostat water bath. The result can be observed and judged by the naked eye.IMPORTANCESugarcane yellow leaf disease (SCYLD) is an important viral disease that affects sugarcane yield. There is an urgent need for rapid, sensitive, and stable detection methods. The reverse transcription-multienzyme isothermal rapid amplification combined with CRISPR-Cas12a (RT-MIRA-CRISPR-Cas12a) method established in this study has good specificity and high sensitivity. In addition, the system showed good compatibility and stability with the crude leaf extract, as shown by the fact that the crude extract of the positive sample could still be stably detected after 1 week when placed at 4°C. RT-MIRA-CRISPR-Cas12a, reverse transcription polymerase chain reaction (RT-PCR), and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to detect SCYLV on 33 sugarcane leaf samples collected from the field, and it was found that the three methods reached consistent conclusions. This Cas12a-based detection method proves highly suitable for the rapid on-site detection of the SCYLV.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Anzhen Li
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong Zhao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qibin Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Helei Tian
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jingwen Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
11
|
Lee HJ, Kim HJ, Cho IS, Jeong RD. Identification of Viruses Infecting Phalaenopsis Orchids Using Nanopore Sequencing and Development of an RT-RPA-CRISPR/Cas12a for Rapid Visual Detection of Nerine Latent Virus. Int J Mol Sci 2024; 25:2666. [PMID: 38473916 DOI: 10.3390/ijms25052666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Phalaenopsis orchids are one of the most popular ornamental plants. More than thirty orchid viruses have been reported, and virus-infected Phalaenopsis orchids significantly lose their commercial value. Therefore, the development of improved viral disease detection methods could be useful for quality control in orchid cultivation. In this study, we first utilized the MinION, a portable sequencing device based on Oxford Nanopore Technologies (ONT) to rapidly detect plant viruses in Phalaenopsis orchids. Nanopore sequencing revealed the presence of three plant viruses in Phalaenopsis orchids: odontoglossum ringspot virus, cymbidium mosaic virus, and nerine latent virus (NeLV). Furthermore, for the first time, we detected NeLV infection in Phalaenopsis orchids using nanopore sequencing and developed the reverse transcription-recombinase polymerase amplification (RT-RPA)-CRISPR/Cas12a method for rapid, instrument-flexible, and accurate diagnosis. The developed RT-RPA-CRISPR/Cas12a technique can confirm NeLV infection in less than 20 min and exhibits no cross-reactivity with other viruses. To determine the sensitivity of RT-RPA-CRISPR/Cas12a for NeLV, we compared it with RT-PCR using serially diluted transcripts and found a detection limit of 10 zg/μL, which is approximately 1000-fold more sensitive. Taken together, the ONT platform offers an efficient strategy for monitoring plant viral pathogens, and the RT-RPA-CRISPR/Cas12a method has great potential as a useful tool for the rapid and sensitive diagnosis of NeLV.
Collapse
Affiliation(s)
- Hyo-Jeong Lee
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 61185, Republic of Korea
| | - Hae-Jun Kim
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 61185, Republic of Korea
| | - In-Sook Cho
- Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Rae-Dong Jeong
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 61185, Republic of Korea
| |
Collapse
|
12
|
Tanny T, Sallam M, Soda N, Nguyen NT, Alam M, Shiddiky MJA. CRISPR/Cas-Based Diagnostics in Agricultural Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11765-11788. [PMID: 37506507 DOI: 10.1021/acs.jafc.3c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Pests and disease-causing pathogens frequently impede agricultural production. An early and efficient diagnostic tool is crucial for effective disease management. Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated protein (Cas) have recently been harnessed to develop diagnostic tools. The CRISPR/Cas system, composed of the Cas endonuclease and guide RNA, enables precise identification and cleavage of the target nucleic acids. The inherent sensitivity, high specificity, and rapid assay time of the CRISPR/Cas system make it an effective alternative for diagnosing plant pathogens and identifying genetically modified crops. Furthermore, its potential for multiplexing and suitability for point-of-care testing at the field level provide advantages over traditional diagnostic systems such as RT-PCR, LAMP, and NGS. In this review, we discuss the recent developments in CRISPR/Cas based diagnostics and their implications in various agricultural applications. We have also emphasized the major challenges with possible solutions and provided insights into future perspectives and potential applications of the CRISPR/Cas system in agriculture.
Collapse
Affiliation(s)
- Tanzena Tanny
- School of Environment and Science (ESC), Griffith University, Nathan, QLD 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
| | - Mohamed Sallam
- School of Environment and Science (ESC), Griffith University, Nathan, QLD 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
| | - Narshone Soda
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
| | - Mobashwer Alam
- Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, Mayers Road, Nambour, QLD 4560, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science (ESC), Griffith University, Nathan, QLD 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
- Rural Health Research Institute, Charles Sturt University, Orange, NSW 2800, Australia
| |
Collapse
|
13
|
Guo Y, Xia H, Dai T, Liu T, Shamoun SF, CuiPing W. CRISPR/Cas12a-based approaches for efficient and accurate detection of Phytophthora ramorum. Front Cell Infect Microbiol 2023; 13:1218105. [PMID: 37441240 PMCID: PMC10333691 DOI: 10.3389/fcimb.2023.1218105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction Phytophthora ramorum is a quarantine pathogen that causes leaf blight and shoot dieback of the crown, bark cankers and death on a number of both ornamental and forest trees, especially in North America and northern Europe, where it has produced severe outbreaks. Symptoms caused by P. ramorum can be confused with those by other Phytophthora and fungal species. Early and accurate detection of the causal pathogen P. ramorum is crucial for effective prevention and control of Sudden Oak Death. Methods In this study, we developed a P. ramorum detection technique based on a combination of recombinase polymerase amplification (RPA) with CRISPR/Cas12a technology (termed RPACRISPR/ Cas12a). Results This novel method can be utilized for the molecular identification of P. ramorum under UV light and readout coming from fluorophores, and can specifically detect P. ramorum at DNA concentrations as low as 100 pg within 25 min at 37°C. Discussion We have developed a simple, rapid, sensitive, unaided-eye visualization, RPA CRISPR/Cas12a-based detection system for the molecular identification of P. ramorum that does not require technical expertise or expensive ancillary equipment. And this system is sensitive for both standard laboratory samples and samples from the field.
Collapse
Affiliation(s)
- Yufang Guo
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Hongming Xia
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Tingting Dai
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Tingli Liu
- Jiangsu Provincial Key Construction Laboratory of Special Biomass Resource Utilization, Nanjing Xiaozhuang University, Nanjing, China
| | - Simon Francis Shamoun
- Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, BC, Canada
| | - Wu CuiPing
- Animal, Plant and Food Inspection Center, Nanjing Customs, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Chen Z, Yang X, Xia H, Wu C, Yang J, Dai T. A Frontline, Rapid, Nucleic Acid-Based Fusarium circinatum Detection System Using CRISPR/Cas12a Combined with Recombinase Polymerase Amplification. PLANT DISEASE 2023:PDIS05221234RE. [PMID: 36480733 DOI: 10.1094/pdis-05-22-1234-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pitch canker caused by the fungus Fusarium circinatum is a damaging disease that affects pines in Europe, South Africa, and North America in both the southeast and west coast of the United States. Several countries, including China, have listed F. circinatum as a quarantine pathogen. Timely detection, an important pillar of the quarantine effort, can efficiently prevent the introduction of F. circinatum into new areas or facilitate management and eradication strategies in already infested sites. In this study, we developed an F. circinatum detection technique based on a combination of recombinase polymerase amplification (RPA) with CRISPR/Cas12a technology (termed RPA-CRISPR/Cas12a). After obtaining DNA, this novel method can be utilized for the molecular identification of F. circinatum using the naked eye and can specifically detect F. circinatum at DNA concentrations as low as 200 fg within 30 min at 37°C. The system is sensitive for both standard laboratory samples and samples from the field. In summary, we have developed a simple, rapid, sensitive, unaided-eye visualization, RPA-CRISPR/Cas12a-based detection system for the molecular identification of F. circinatum that does not require technical expertise or expensive ancillary equipment.
Collapse
Affiliation(s)
- Zhenpeng Chen
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Xiao Yang
- Plant and Pest Diagnostic Clinic, Department of Plant Industry, Clemson University, Pendleton, SC, U.S.A
| | - Hongming Xia
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Cuiping Wu
- Animal, Plant, and Food Inspection Center, Nanjing Customs, Nanjing, Jiangsu, China
| | - Jing Yang
- Animal, Plant, and Food Inspection Center, Nanjing Customs, Nanjing, Jiangsu, China
| | - Tingting Dai
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Guo Y, Xia H, Dai T, Liu T. RPA-CRISPR/Cas12a mediated isothermal amplification for visual detection of Phytophthora sojae. Front Cell Infect Microbiol 2023; 13:1208837. [PMID: 37305413 PMCID: PMC10250720 DOI: 10.3389/fcimb.2023.1208837] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Phytophthora sojae is among the most devastating pathogens of soybean (Glycine max) and severely impacts soybean production in several countries. The resulting disease can be difficult to diagnose and other Phytophthora species can also infect soybean. Accurate diagnosis is important for management of the disease caused by P. sojae. Methods In this study, recombinase polymerase amplification (RPA) in combination with the CRISPR/Cas12a system were used for detection of P. sojae. The assay was highly specific to P. sojae. Results The test results were positive for 29 isolates of P. sojae, but negative for 64 isolates of 29 Phytophthora species, 7 Phytopythium and Pythium species, 32 fungal species, and 2 Bursaphelenchus species. The method was highly sensitive, detecting as little as 10 pg.µL-1 of P. sojae genomic DNA at 37°C in 20 min. The test results were visible under UV light and readout coming from fluorophores. In addition, P. sojae was detected from natural inoculated hypocotyls of soybean seedlings using this novel assay. The rapidity and accuracy of the method were verified using 30 soybean rhizosphere samples. Discussion In conclusion, the RPA-CRISPR/Cas12a detection assay developed here is sensitive, efficient, and convenient, and has potential for further development as a kit for monitoring root rot of soybean in the field.
Collapse
Affiliation(s)
- Yufang Guo
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Hongming Xia
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Tingting Dai
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Tingli Liu
- Jiangsu Provincial Key Construction Laboratory of Special Biomass Resource Utilization, Nanjing Xiaozhuang University, Nanjing, China
| |
Collapse
|
16
|
Yang H, Ledesma-Amaro R, Gao H, Ren Y, Deng R. CRISPR-based biosensors for pathogenic biosafety. Biosens Bioelectron 2023; 228:115189. [PMID: 36893718 DOI: 10.1016/j.bios.2023.115189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/30/2022] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Pathogenic biosafety is a worldwide concern. Tools for analyzing pathogenic biosafety, that are precise, rapid and field-deployable, are highly demanded. Recently developed biotechnological tools, especially those utilizing CRISPR/Cas systems which can couple with nanotechnologies, have enormous potential to achieve point-of-care (POC) testing for pathogen infection. In this review, we first introduce the working principle of class II CRISPR/Cas system for detecting nucleic acid and non-nucleic acid biomarkers, and highlight the molecular assays that leverage CRISPR technologies for POC detection. We summarize the application of CRISPR tools in detecting pathogens, including pathogenic bacteria, viruses, fungi and parasites and their variants, and highlight the profiling of pathogens' genotypes or phenotypes, such as the viability, and drug-resistance. In addition, we discuss the challenges and opportunities of CRISPR-based biosensors in pathogenic biosafety analysis.
Collapse
Affiliation(s)
- Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Hong Gao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Yao Ren
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China.
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
17
|
Liu Y, Ma L, Liu W, Xie L, Wu Q, Wang Y, Zhou Y, Zhang Y, Jiao B, He Y. RPA-CRISPR/Cas12a Combined with Rolling Circle Amplification-Enriched DNAzyme: A Homogeneous Photothermal Sensing Strategy for Plant Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4736-4744. [PMID: 36893726 DOI: 10.1021/acs.jafc.2c07965] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Alternaria is an endemic fungus associated with brown spot disease, which is one of the most serious citrus diseases. In addition, the mycotoxins metabolized by Alternaria threaten human health seriously. Herein, a novel homogeneous and portable qualitative photothermal method based on recombinase polymerase amplification (RPA), CRISPR/Cas12a, and rolling circle amplification (RCA) for the detection of Alternaria is described. Using RCA primers as substrates for CRISPR/Cas12a trans-cleavage, the two systems, RPA-CRISPR/Cas12a and RCA-enriched G-quadruplex/hemin DNAzyme, are intelligently combined. Target DNA at fg/μL levels can be detected with high specificity. Additionally, the practicability of the proposed method is demonstrated by analyzing cultured Alternaria from different fruit and vegetable samples, as well as citrus fruit samples collected in the field. Furthermore, the implementation of this method does not require any sophisticated equipment and complicated washing steps. Therefore, it has great potential to screen Alternaria in poor laboratories.
Collapse
Affiliation(s)
- Yanlin Liu
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, P. R. China
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
| | - Lanrui Ma
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, P. R. China
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
| | - Wenjing Liu
- Institute of Agricultural Quality Standards and Testing Technology Research, Fujian Academy of Agricultural Sciences, Fujian Key Laboratory of Agro-products Qualitiy & Safety, Fuzhou 350003, P. R. China
| | - Longyingzi Xie
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, P. R. China
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
| | - Qi Wu
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, P. R. China
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
| | - Yiwen Wang
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, P. R. China
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
| | - Yan Zhou
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, P. R. China
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
| | - Yaohai Zhang
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, P. R. China
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
| | - Bining Jiao
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, P. R. China
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
| | - Yue He
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, P. R. China
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
| |
Collapse
|
18
|
Yang H, Zhang Y, Teng X, Hou H, Deng R, Li J. CRISPR-based nucleic acid diagnostics for pathogens. Trends Analyt Chem 2023; 160:116980. [PMID: 36818498 PMCID: PMC9922438 DOI: 10.1016/j.trac.2023.116980] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/28/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Pathogenic infection remains the primary threat to human health, such as the global COVID-19 pandemic. It is important to develop rapid, sensitive and multiplexed tools for detecting pathogens and their mutated variants, particularly the tailor-made strategies for point-of-care diagnosis allowing for use in resource-constrained settings. The rapidly evolving CRISPR/Cas systems have provided a powerful toolbox for pathogenic diagnostics via nucleic acid tests. In this review, we firstly describe the resultant promising class 2 (single, multidomain effector) and recently explored class 1 (multisubunit effector complexes) CRISPR tools. We present diverse engineering nucleic acid diagnostics based on CRISPR/Cas systems for pathogenic viruses, bacteria and fungi, and highlight the application for detecting viral variants and drug-resistant bacteria enabled by CRISPR-based mutation profiling. Finally, we discuss the challenges involved in on-site diagnostic assays and present emerging CRISPR systems and CRISPR cascade that potentially enable multiplexed and preamplification-free pathogenic diagnostics.
Collapse
Affiliation(s)
- Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, 610065, China,Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Yong Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xucong Teng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450003, China,Beijing Institute of Life Science and Technology, Beijing, 102206, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, 610065, China,Corresponding author
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China,Corresponding author
| |
Collapse
|
19
|
Molecular Approaches for Detection of Trichoderma Green Mold Disease in Edible Mushroom Production. BIOLOGY 2023; 12:biology12020299. [PMID: 36829575 PMCID: PMC9953464 DOI: 10.3390/biology12020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/16/2023]
Abstract
Due to the evident aggressive nature of green mold and the consequently huge economic damage it causes for producers of edible mushrooms, there is an urgent need for prevention and infection control measures, which should be based on the early detection of various Trichoderma spp. as green mold causative agents. The most promising current diagnostic tools are based on molecular methods, although additional optimization for real-time, in-field detection is still required. In the first part of this review, we briefly discuss cultivation-based methods and continue with the secondary metabolite-based methods. Furthermore, we present an overview of the commonly used molecular methods for Trichoderma species/strain detection. Additionally, we also comment on the potential of genomic approaches for green mold detection. In the last part, we discuss fast screening molecular methods for the early detection of Trichoderma infestation with the potential for in-field, point-of-need (PON) application, focusing on isothermal amplification methods. Finally, current challenges and future perspectives in Trichoderma diagnostics are summarized in the conclusions.
Collapse
|
20
|
Lateral flow biosensor based on LAMP-CRISPR/Cas12a for sensitive and visualized detection of Salmonella spp. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Botella JR. Point-of-Care DNA Amplification for Disease Diagnosis and Management. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:1-20. [PMID: 36027938 DOI: 10.1146/annurev-phyto-021621-115027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Early detection of pests and pathogens is of paramount importance in reducing agricultural losses. One approach to early detection is point-of-care (POC) diagnostics, which can provide early warning and therefore allow fast deployment of preventive measures to slow down the establishment of crop diseases. Among the available diagnostic technologies, nucleic acid amplification-based diagnostics provide the highest sensitivity and specificity, and those technologies that forego the requirement for thermocycling show the most potential for use at POC. In this review, I discuss the progress, advantages, and disadvantages of the established and most promising POC amplification technologies. The success and usefulness of POC amplification are ultimately dependent on the availability of POC-friendly nucleic acid extraction methods and amplification readouts, which are also briefly discussed in the review.
Collapse
Affiliation(s)
- José R Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia;
| |
Collapse
|
22
|
Marqués MC, Sánchez-Vicente J, Ruiz R, Montagud-Martínez R, Márquez-Costa R, Gómez G, Carbonell A, Daròs JA, Rodrigo G. Diagnostics of Infections Produced by the Plant Viruses TMV, TEV, and PVX with CRISPR-Cas12 and CRISPR-Cas13. ACS Synth Biol 2022; 11:2384-2393. [PMID: 35793201 PMCID: PMC9295153 DOI: 10.1021/acssynbio.2c00090] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Viral infections in plants threaten food security. Thus, simple and effective methods for virus detection are required to adopt early measures that can prevent virus spread. However, current methods based on the amplification of the viral genome by polymerase chain reaction (PCR) require laboratory conditions. Here, we exploited the CRISPR-Cas12a and CRISPR-Cas13a/d systems to detect three RNA viruses, namely, Tobacco mosaic virus, Tobacco etch virus, and Potato virus X, in Nicotiana benthamiana plants. We applied the CRISPR-Cas12a system to detect viral DNA amplicons generated by PCR or isothermal amplification, and we also performed a multiplexed detection in plants with mixed infections. In addition, we adapted the detection system to bypass the costly RNA purification step and to get a visible readout with lateral flow strips. Finally, we applied the CRISPR-Cas13a/d system to directly detect viral RNA, thereby avoiding the necessity of a preamplification step and obtaining a readout that scales with the viral load. These approaches allow for the performance of viral diagnostics within half an hour of leaf harvest and are hence potentially relevant for field-deployable applications.
Collapse
Affiliation(s)
- María-Carmen Marqués
- Institute
for Integrative Systems Biology (I2SysBio), CSIC—Universitat de València, Paterna 46980, Spain
| | - Javier Sánchez-Vicente
- Instituto
de Biología Molecular y Celular de Plantas, CSIC—Universitat Politècnica de València, València 46022, Spain
| | - Raúl Ruiz
- Institute
for Integrative Systems Biology (I2SysBio), CSIC—Universitat de València, Paterna 46980, Spain
| | - Roser Montagud-Martínez
- Institute
for Integrative Systems Biology (I2SysBio), CSIC—Universitat de València, Paterna 46980, Spain
| | - Rosa Márquez-Costa
- Institute
for Integrative Systems Biology (I2SysBio), CSIC—Universitat de València, Paterna 46980, Spain
| | - Gustavo Gómez
- Institute
for Integrative Systems Biology (I2SysBio), CSIC—Universitat de València, Paterna 46980, Spain
| | - Alberto Carbonell
- Instituto
de Biología Molecular y Celular de Plantas, CSIC—Universitat Politècnica de València, València 46022, Spain
| | - José-Antonio Daròs
- Instituto
de Biología Molecular y Celular de Plantas, CSIC—Universitat Politècnica de València, València 46022, Spain
| | - Guillermo Rodrigo
- Institute
for Integrative Systems Biology (I2SysBio), CSIC—Universitat de València, Paterna 46980, Spain
| |
Collapse
|
23
|
Li F, Xiao J, Yang H, Yao Y, Li J, Zheng H, Guo Q, Wang X, Chen Y, Guo Y, Wang Y, Shen C. Development of a Rapid and Efficient RPA-CRISPR/Cas12a Assay for Mycoplasma pneumoniae Detection. Front Microbiol 2022; 13:858806. [PMID: 35369478 PMCID: PMC8965353 DOI: 10.3389/fmicb.2022.858806] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/08/2022] [Indexed: 12/26/2022] Open
Abstract
Mycoplasma pneumoniae (MP) is a one of most common pathogen in causing respiratory infection in children and adolescents. Rapid and efficient diagnostic methods are crucial for control and treatment of MP infections. Herein, we present an operationally simple, rapid and efficient molecular method for MP identification, which eliminates expensive instruments and specialized personnel. The method combines recombinase polymerase amplification (RPA) with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated proteins (Cas) 12a-based detection, with an optimal procedure less than 1 h from sample to result including DNA extraction (25 min), RPA reaction (39°C for 15-20 min), CRISPR/Cas12a detection (37°C for 10 min) and visual detection by naked eyes (2 min). This diagnostic method shows high sensitivity (two copies per reaction) and no cross-reactivity against other common pathogenic bacteria. Preliminary evaluation using 201 clinical samples shows sensitivity of 99.1% (107/108), specificity of 100% (93/93) and consistency of 99.5% (200/201), compared with real-time PCR method. The above data demonstrate that our developed method is reliable for rapid diagnosis of MP. In conclusion, the RPA-CRISPR/Cas12a has a great potential to be as a useful tool for reliable and quick diagnosis of MP infection, especially in primary hospitals with limited conditions.
Collapse
Affiliation(s)
- Feina Li
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Jing Xiao
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Haiming Yang
- Department of Respiratory Diseases II, Beijing Children's Hospital, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Yao Yao
- Department of Respiratory Diseases I, Beijing Children's Hospital, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Jieqiong Li
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Huiwen Zheng
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Qian Guo
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Xiaotong Wang
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Yuying Chen
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Yajie Guo
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Yonghong Wang
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Chen Shen
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| |
Collapse
|