1
|
El-Demerdash FM, Al Mhanna AB, El-Sayed RA, Mohamed TM, Salem MM. Use of Nigella sativa silver nanocomposite as an alternative therapy against thioacetamide nephrotoxicity. GENES & NUTRITION 2025; 20:6. [PMID: 40087564 PMCID: PMC11909921 DOI: 10.1186/s12263-025-00766-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/19/2025] [Indexed: 03/17/2025]
Abstract
Nigella sativa (N. sativa) L. (Ranunculaceae), commonly referred to as black cumin, has a long history of usage as an herbal remedy. It has been utilized conventionally and in clinical settings to treat various illnesses. Six groups of male Wister rats were randomly selected as Gp I, represented as control; Gp II administered N. sativa aqueous extract (NSAE); 200 mg/kg/d, Gp III received N. sativa silver nanocomposite (NS-Ag-NC); 0.25 mg/kg/d; Gp IV administered thioacetamide (TAA);100 mg/kg; thrice weekly and Gps V and VI administered NSAE and NS-Ag-NC with TAA for six weeks, respectively. Findings showed that GC-MS analysis of NSAE has a high concentration of phytochemicals with strong antioxidant activity. Results revealed that TAA administration elevated TBARS, H2O2, PCC, NO levels, kidney function parameters, LDH activity, and up-regulated TNF-α, IL-1β, NF-kβ, and COX-2 gene expressions. In contrast, enzymatic and non-enzymatic antioxidants and ALP activity were extensively diminished. Also, severe abnormalities in lipid profile, hematological parameters, and histopathological features were noted. On the other hand, the administration of NSAE or NS-Ag-NC followed by TAA intoxication reduces renal impairment, restores the antioxidant system, and downregulates the expression of TNF-α, IL-1β, NF-kβ, and COX-2 genes in rats' renal tissues. Collectively, NS-Ag-NC has more prevalent nephroprotective impacts than NSAE and can adjust the oxidant/antioxidant pathways besides their anti-inflammatory efficacy against TAA toxicity.
Collapse
Affiliation(s)
- Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt.
| | - Ansam B Al Mhanna
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Raghda A El-Sayed
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Department of Chemistry, Tanta University, Tanta, 31527, Egypt
| | - Maha M Salem
- Biochemistry Division, Department of Chemistry, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
2
|
Uzunkaya Ç, Gökkaya İ, Akkaya D, Šoral M, Seyhan G, Barut B, Abdullah Yilmaz M, Renda G. Phytochemical Analysis and Assessment of Antioxidant and Enzyme Inhibitory Activity of Alchemilla pseudocartalinica Juz. Chem Biodivers 2025; 22:e202401217. [PMID: 39344428 DOI: 10.1002/cbdv.202401217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/05/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024]
Abstract
This study aimed to evaluate and compare the antioxidant capacity and enzyme inhibitory activity of extracts, sub-extracts, and fractions prepared from the aerial parts and roots of A. pseudocartalinica. The phytochemical content of the active extracts was also analyzed. According to the results, ellagic acid (38.42 mg/g) was the major compound in the aerial part methanol extract and catechin (185.30 mg/g) in the root methanol extract. The DPPH inhibition activity of all fractions was monitored, with the most active one (Fr B) reaching an IC50 value of (4.92±0.59 μg/mL). All the fractions prepared from the aerial parts' water sub-extract showed higher a-glucosidase inhibitory activity than the positive control acarbose. In the tyrosinase assay, Fr B (58.81±7.50 μg/mL) exhibited the highest inhibitory actions among all fractions. The structure of the major substances of the most active fraction were elucidated as quercetin 7-O-β-glucopyranosyl-3-O-β-glucuronopyranoside- (1), and α-[(2-formyl-5-hydroxymethyl)pyrrol-1-yl]aspartic acid (2).
Collapse
Affiliation(s)
- Çağla Uzunkaya
- Karadeniz Technical University, Faculty of Pharmacy, Department of Pharmacognosy, 61080, Trabzon, Türkiye
| | - İçim Gökkaya
- Karadeniz Technical University, Faculty of Pharmacy, Department of Pharmacognosy, 61080, Trabzon, Türkiye
| | - Didem Akkaya
- Karadeniz Technical University, Faculty of Pharmacy, Department of Biochemistry, 61080, Trabzon, Türkiye
| | - Michal Šoral
- Slovak Academy of Sciences, Institute of Chemistry, Analytical Department, Dúbravská cesta 9, SK, 845 38, Slovak Republic
| | - Gökçe Seyhan
- Karadeniz Technical University, Faculty of Pharmacy, Department of Biochemistry, 61080, Trabzon, Türkiye
| | - Burak Barut
- Karadeniz Technical University, Faculty of Pharmacy, Department of Biochemistry, 61080, Trabzon, Türkiye
| | - Mustafa Abdullah Yilmaz
- Dicle University, Science and Technology Research and Application Center, Diyarbakır, Türkiye
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakır, Türkiye
| | - Gülin Renda
- Karadeniz Technical University, Faculty of Pharmacy, Department of Pharmacognosy, 61080, Trabzon, Türkiye
| |
Collapse
|
3
|
Rusli RK, Hilmi M, Mahata ME, Yuniza A, Zurmiati Z, Reski S, mutia R, Hidayat C. Green synthesis of zinc oxide nanoparticles utilizing extract from Garcinia mangostana leaves: Characterization and optimization of calcination temperature. J Adv Vet Anim Res 2024; 11:573-582. [PMID: 39605758 PMCID: PMC11590589 DOI: 10.5455/javar.2024.k807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 11/29/2024] Open
Abstract
Objective This study aims to synthesize eco-friendly zinc oxide nanoparticles (ZnO NPs) by utilizing Garcinia mangostana leaf extract and assess the characteristics of ZnO NPs produced throughout different calcination temperatures (300°C, 400°C, 500°C, and 600°C). Materials and Methods An evaluation was conducted to analyze ZnO NPs using an aqueous extract of G. mangostana leaf bioreductor at different calcination temperatures. The analysis involved the use of a particle size analyzer (PSA), a scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Results The PSA and SEM indicated that the ZnO NPs had an average particle size ranging from 641.97 nm to 915.94 nm. Furthermore, the nanoparticles were found in both individual nanoforms and agglomerated forms. The EDX study indicated that the primary constituents of the ZnO NPs were zinc and oxygen. Additionally, the XRD examination demonstrated a distinct peak at 2θ = 36.25°, confirming the presence of a crystalline ZnO structure. The crystal size was determined to be between 40.98 nm and 46.92 nm. An FTIR spectroscopic study verified the existence of ZnO vibrations at distinct wavelengths as well as the absorption peak of the -OH functional group within the range of 3330.58 nm-3415.04 nm. Conclusion The findings suggest that ZnO NPs produced utilizing the aqueous extract of G. mangostana leaves as a bioreductor can be synthesized at a temperature of 300°C, resulting in a lower particle size compared to those generated at 600°C.
Collapse
Affiliation(s)
- Ridho Kurniawan Rusli
- Department of Nutrition and Feed Technology, Faculty of Animal Science, Universitas Andalas, Padang, Indonesia
| | - Mustofa Hilmi
- Study Program of Livestock Product Processing Tecnology, Politeknik Negeri Banyuwangi, Banyuwangi, Indonesia
| | - Maria Endo Mahata
- Department of Nutrition and Feed Technology, Faculty of Animal Science, Universitas Andalas, Padang, Indonesia
| | - Ahadyah Yuniza
- Department of Nutrition and Feed Technology, Faculty of Animal Science, Universitas Andalas, Padang, Indonesia
| | - Zurmiati Zurmiati
- Department of Nutrition and Feed Technology, Faculty of Animal Science, Universitas Andalas, Padang, Indonesia
| | - Sepri Reski
- Department of Nutrition and Feed Technology, Faculty of Animal Science, Universitas Andalas, Padang, Indonesia
| | - Rita mutia
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor, Indonesia
| | - Cecep Hidayat
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, The National Research and Innovation Agency of The Republic Indonesia, Bogor, Indonesia
| |
Collapse
|
4
|
Alfeqy MM, El-Hawary SS, El-Halawany AM, Rabeh MA, Alshehri SA, Abdelmohsen UR, Safwat NA, Serry AM, Fahmy HA, Ezzat MI. Biosynthesis and Characterization of Aeonium arboreum-Derived Silver Nanoparticles: Antimicrobial Activity, Biofilm Inhibition, Antihemolytic Activity, and In Silico Studies. Int J Mol Sci 2024; 25:8039. [PMID: 39125609 PMCID: PMC11312205 DOI: 10.3390/ijms25158039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Environmentally friendly biosynthesis of silver nanoparticles (AgNPs) from Aeonium arboreum (L.) Webb & Berthel is reported for the first time. The synthesized AgNPs were characterized using UV-Vis, FTIR, TEM, Zeta potential, and XRD analysis, revealing high stability (-29.1 mV), spherical shape, and an average size of 100 nm. The antimicrobial activity levels of both A. arboreum extract and biosynthesized AgNPs were evaluated against five uropathogens (Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans). Both the extract and the AgNPs exhibited significant efficacy, particularly against E. coli, with inhibition zones of 27 mm and 30 mm, respectively. LC-MS analysis tentatively identified 11 secondary metabolites in the extract, including quercetin-3-O-glucoside, quercetin-3-O-rhamnoside, myricetin 3-glucoside, and daphneresinol. In silico docking studies revealed promising binding affinities of these metabolites in relation to key enzymes involved in bacterial folate synthesis (dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS)) and DNA replication (DNA gyrase). These findings demonstrate the potential of A. arboreum-based AgNPs and their associated metabolites as a novel therapeutic approach for combating urinary tract infections. Their antimicrobial, antihemolytic, and antibiofilm properties warrant further investigation.
Collapse
Affiliation(s)
- Marwah M. Alfeqy
- Pharmacognosy Department, Faculty of Pharmacy, Modern University for Technology & Information, Cairo 11571, Egypt;
| | - Seham S. El-Hawary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo 11562, Egypt; (S.S.E.-H.); (A.M.E.-H.)
| | - Ali M. El-Halawany
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo 11562, Egypt; (S.S.E.-H.); (A.M.E.-H.)
| | - Mohamed A. Rabeh
- Pharmacognosy Department, College of Pharmacy, King Khalid University, Abha 62251, Saudi Arabia; (M.A.R.); (S.A.A.)
| | - Saad A. Alshehri
- Pharmacognosy Department, College of Pharmacy, King Khalid University, Abha 62251, Saudi Arabia; (M.A.R.); (S.A.A.)
| | - Usama Ramadan Abdelmohsen
- Deraya Center for Scientific Research, Deraya University, New Minia 61111, Egypt;
- Pharmacognosy Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Nesreen A. Safwat
- Microbiology & Immunology Department, Faculty of Pharmacy, Modern University for Technology & Information, Cairo 11571, Egypt;
| | - Aya M. Serry
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology & Information, Cairo 11571, Egypt;
| | - Heba A. Fahmy
- Pharmacognosy Department, Faculty of Pharmacy, Modern University for Technology & Information, Cairo 11571, Egypt;
| | - Marwa I. Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo 11562, Egypt; (S.S.E.-H.); (A.M.E.-H.)
| |
Collapse
|
5
|
Melk MM, El-Sayed AF. Phytochemical profiling, antiviral activities, molecular docking, and dynamic simulations of selected Ruellia species extracts. Sci Rep 2024; 14:15381. [PMID: 38965294 PMCID: PMC11224336 DOI: 10.1038/s41598-024-65387-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Abstract
The antiviral properties of the flowering aerial extracts of Ruellia tuberosa and Ruellia patula were investigated through phytochemical profiling via LC-MS/MS and HPLC techniques. Qualitative LC-MS/MS analyses identified seventy-seven metabolites from both Ruellia species. R. tuberosa had the highest phenolic content (49.3%), whereas R. patula had the highest flavonoid content (57.8%). Additionally, quantitative HPLC investigations of the compounds identified by LC-MS/MS were performed using the available standard compounds. The main constituents in the R. tuberosa extract was found to be catechin (5321.63 µg/g), gallic acid (2878.71 µg/g), and ellagic acid (2530.79 µg/g), whereas the major compounds in the R. patula extract was found to be rutin (11,074.19 µg/g) and chlorogenic acid (3157.35 µg/g). Furthermore, the antiviral activities of both Ruellia species against HAdV-40, herpes simplex type 2 and H1N1 were evaluated. These findings demonstrated that R. tuberosa was more active than R. patula against all tested viruses, except for the HSV-2 virus, against which R. patula showed greater activity than R. tuberosa, with IC50 values of 20, 65, 22.59, and 13.13 µg/ml for R. tuberosa flowering aerial parts and 32.26, 11.66, and 23.03 µg/ml for R. patula flowering aerial parts, respectively for HAdV-40, herpes simplex type 2, and H1N1. Additionally, computational docking and molecular dynamics simulations were used to assess the molecular interactions between the bioactive compounds and specific viral targets. The combined findings from the in-vitro and in-silico experiments comprehensively evaluated the antiviral activities of both Ruellia species extracts.
Collapse
Affiliation(s)
- Mina Michael Melk
- Pharmacognosy Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt.
| | - Ahmed F El-Sayed
- Microbial Genetics Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| |
Collapse
|
6
|
Mozhiarasi V, Karunakaran R, Raja P, Radhakrishnan L. Effects of Zinc Oxide Nanoparticles Supplementation on Growth Performance, Meat Quality and Serum Biochemical Parameters in Broiler Chicks. Biol Trace Elem Res 2024; 202:1683-1698. [PMID: 37460779 DOI: 10.1007/s12011-023-03759-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/28/2023] [Indexed: 02/13/2024]
Abstract
The zinc oxide nanoparticles (ZnONPs) have attracted exhilarating research interest due to their novel distinguishing characteristics such as size, shape, high surface activity, large surface area and biocompatibility. Being highly bioavailable and exerting a superior efficacy than conventional zinc sources, ZnONPs is emerging as an alternative feed supplement for poultry. The present study involves the synthesis of ZnONPs through a cost effective and eco-friendly method using planetary ball milling technique and characterized for its size, shape, optical property, functional group and elemental concentration using particle size analyzer, Transmission Electron Microscopy, X-Ray Diffraction analysis, Fourier Transform Infra-Red spectroscopy, UV-Vis spectroscopy and Inductively Coupled Plasma-Mass Spectroscopy. In vitro cytotoxicity study using Baby Hamster kidney (BHK-21) cells, Vero cells and primary chick liver culture cells revealed that ZnONPs can be safely incorporated in the broiler chick's feed up to the concentration of 100 mg/kg. To investigate the effects of ZnONPs on production performances in broiler chicks, a feeding trial was carried out using 150-day-old broiler chicks randomly allotted in five treatment groups. The dietary treatment groups were: T1 (80 mg/kg of zinc oxide), T2 (60 mg/kg of zinc methionine) and T3, T4 and T5 received 60, 40 and 20 mg/kg of ZnONPs respectively. The results showed a significant improvement (p < 0.05) in the body weight gain and feed conversion ratio of broiler chicks supplemented with 20 and 40 mg/kg of ZnONPs. The ZnONPs supplementation significantly (p < 0.05) increased the dressing percentage in addition to significant (p < 0.05) reduction in the meat pH compared to inorganic and organic zinc supplementation. Overall, an eco-friendly method for ZnONPs synthesis was demonstrated and the optimum dietary level (20 mg/kg) of ZnONPs could enhance the growth, the meat quality and Zn uptake without any negative effects on selected serum biochemical parameters in the broiler chicks.
Collapse
Affiliation(s)
- V Mozhiarasi
- Department of Animal Nutrition, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, 600 007, India
| | - R Karunakaran
- Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, 600 007, India.
| | - P Raja
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, 600 007, India
| | - L Radhakrishnan
- Institute of Animal Nutrition, Kattupakkam, Potheri, Tamil Nadu, 603 203, India
| |
Collapse
|
7
|
Khumalo GP, Loa-Kum-Cheung W, Van Wyk BE, Feng Y, Cock IE. Leaf extracts of eight selected southern African medicinal plants modulate pro-inflammatory cytokine secretion in LPS-stimulated RAW 264.7 macrophages. Inflammopharmacology 2024; 32:1607-1620. [PMID: 38310564 PMCID: PMC11006729 DOI: 10.1007/s10787-023-01420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 02/06/2024]
Abstract
This study investigates the anti-inflammatory properties of extracts prepared from the leaves of eight southern African medicinal plants used traditionally to treat inflammation and pain. The inhibitory effect of aqueous and ethanol extracts on the release of pro-inflammatory cytokines was determined in lipopolysaccharide (LPS) stimulated and unstimulated RAW 264.7 murine macrophage cells. The levels of interleukin (IL)-1β, IL-6, tumour necrosis factor-α (TNF-α), interferon-gamma (IFN-γ), monocyte chemoattractant protein 1 (MCP-1) and macrophage inflammatory protein (MIP)-2 release were determined using cytokine multiplex-bead assays. The ethanol extracts of Melianthus comosus Vahl (commonly known as honey flower), Tetradenia riparia (Hochst.) Codd (misty plume bush) and Warburgia salutaris (G. Bertol.) Chiov. (pepper-bark tree), demonstrated the most significant inhibitory activity, with over 50-fold inhibition of IL-1β, IL-6 and TNF-α levels in LPS-stimulated RAW 264.7 macrophages. The aqueous extract of M. comosus also significantly inhibited the secretion of all the tested cytokines and chemokines. Phytochemical investigation of M. comosus ethanol leaf extract using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS) led to the detection of crassolide, deoxylimonoic acid D-ring-lactone, 2-hydroxynonanoic acid and 5-noniloxytryptamine. To the best of our knowledge, the cytokine inhibition properties of most of the medicinal plants screened in this study are reported for the first time. Our results support the use of southern African medicinal plants as anti-inflammatory remedies and provide an insight into the immunomodulatory mechanisms of action.
Collapse
Affiliation(s)
- Gugulethu P Khumalo
- Centre for Planetary Health and Food Security, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, QLD, 4111, Australia
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, QLD, 4111, Australia
| | - Wendy Loa-Kum-Cheung
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Nathan, QLD, 4111, Australia
| | - Ben-Erik Van Wyk
- Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg, 2006, South Africa
| | - Yunjiang Feng
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, QLD, 4111, Australia
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Nathan, QLD, 4111, Australia
| | - Ian E Cock
- Centre for Planetary Health and Food Security, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, QLD, 4111, Australia.
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, QLD, 4111, Australia.
| |
Collapse
|
8
|
Abdelgawad FAM, El-Hawary SS, Abd El-Kader EM, Alshehri SA, Rabeh MA, El-Mosallamy AEMK, El Raey MA, El Gedaily RA. Phytochemical Profiling and Antiviral Activity of Green Sustainable Nanoparticles Derived from Maesa indica (Roxb.) Sweet against Human Coronavirus 229E. PLANTS (BASEL, SWITZERLAND) 2023; 12:2813. [PMID: 37570967 PMCID: PMC10420985 DOI: 10.3390/plants12152813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Plant secondary metabolites are key components for new, safe and effective drugs. Ethanolic extract of Maesa indica Roxb. Sweet (ME) aerial parts were used for biosynthesis of sustainable green zinc oxide nanoparticles (ZnO NPs) with an average particle size 6.80 ± 1.47 nm and zeta potential -19.7 mV. Both transmission electron microscopy and X-ray diffraction assay confirmed the hexagonal shape of ZnO NPs. Phenolic ingredients in ME were identified using LC-ESI-MS/MS-MRM revealing the identification of chlorogenic acid, gallic acid, caffeic acid, rutin, coumaric acid, vanillin, naringenin, quercetin, ellagic acid, 3.4-dihydroxybenzoic acid, methyl gallate, kaempferol, ferulic acid, syringic acid, and luteolin. The major compound was chlorogenic acid at concentration of 1803.84 μg/g. The antiviral activity of ME, ZnO NPs, and combination of ME with ZnO NPs against coronavirus 229E were investigated. ZnO NPs had superior antiviral effect against coronavirus 229E than ME while their combination showed the highest anti-coronavirus 229E effect, with 50% inhibition concentration (IC50) of 5.23 ± 0.18 µg/mL and 50% cytotoxic concentration (CC50) of 138.49 ± 0.26 µg/mL while the selectivity index (SI) was 26.47. The current study highlighted the possible novel anti-coronavirus 229E activity of green ZnO NPs synthesized from Maesa indica. More studies are needed to further investigate this antiviral activity to be utilized in future biomedical and environmental applications.
Collapse
Affiliation(s)
| | - Seham S. El-Hawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt;
| | - Essam M. Abd El-Kader
- Department of Timber Trees Research, Horticultural Research Institute (ARC), Giza 12619, Egypt;
| | - Saad Ali Alshehri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62251, Saudi Arabia; (S.A.A.); (M.A.R.)
| | - Mohamed Abdelaaty Rabeh
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62251, Saudi Arabia; (S.A.A.); (M.A.R.)
| | | | - Mohamed A. El Raey
- Department of Phytochemistry and Plant Systematics, Pharmaceutical Division, National Research Centre, 33 El Bohouth Street, Cairo 12622, Egypt;
| | - Rania A. El Gedaily
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt;
| |
Collapse
|
9
|
Lail NU, Sattar A, Omer MO, Hafeez MA, Khalid AR, Mahmood S, Shabbir MA, Ahmed W, Aleem MT, Alouffi A, Almutairi MM. Biosynthesis and characterization of zinc oxide nanoparticles using Nigella sativa against coccidiosis in commercial poultry. Sci Rep 2023; 13:6568. [PMID: 37085577 PMCID: PMC10121593 DOI: 10.1038/s41598-023-33416-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/12/2023] [Indexed: 04/23/2023] Open
Abstract
Coccidiosis causes huge economic losses worldwide. Current study evaluated the effect of biosynthesized Zinc oxide nanoparticles (ZnONPs) using Nigella sativa, on Eimeria tenella infected broilers. Scanning electron microscopy showed spherical ZnONPs with 50-100 nm diameter, Fourier transforms infrared spectroscopy revealed the functional groups involved in the reduction of zinc acetate dihydrate to ZnONPs, UV-vis spectroscopy showed a peak at 354 nm, and Zeta potential exhibited stability at - 30 mV. A total of 150, a day-old broiler chicks were divided into 5 equal groups. Control negative: uninfected and untreated; Control positive: Infected and untreated; 3rd, 4th and 5th group were infected orally with 5 × 104 sporulated oocysts of Eimeria tenella and treated with 60 mg/kg ZnONPs, 1% Nigella sativa seeds and amprolium 125 ppm, respectively. ZnONPs significantly (p < 0.05) improved the growth performance in the infected birds and decreased the oocyst shedding and anti-coccidial index. A significant (p < 0.05) decrease in the level of aspartate transferase and alanine transferase, whereas, a significantly higher amount of antioxidants like catalase and superoxide dismutase in ZnONPs treated group was observed. Pro-inflammatory cytokines like IL-2 and TNF-α were significantly decreased by ZnONPs (p < 0.05). In conclusion, biogenic ZnONPs with Nigella sativa might have enhanced anticoccidial, antioxidant, and anti-inflammatory effects with improved growth performance.
Collapse
Affiliation(s)
- Najam-Ul Lail
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Adeel Sattar
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Muhammad Ovais Omer
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mian Abdul Hafeez
- Department of Parasitology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Abdur Rauf Khalid
- Deparment of Livestock and Poultry Production, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, 60000, Pakistan
| | - Sammina Mahmood
- Division of Science and Technology, Department of Botany, University of Education, Lahore, Pakistan
| | - Muhammad Abubakr Shabbir
- Institute of Microbiology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Waqas Ahmed
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, USA
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, 12354, Saudi Arabia.
| | - Mashal M Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
10
|
Green Synthesized Zinc Oxide Nanoparticles Based on Cestrum diurnum L. of Potential Antiviral Activity against Human Corona 229-E Virus. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010266. [PMID: 36615461 PMCID: PMC9822259 DOI: 10.3390/molecules28010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/30/2022]
Abstract
SARS-CoV-2 has caused more than 596 million infections and 6 million fatalities globally. Looking for urgent medication for prevention, treatment, and rehabilitation is obligatory. Plant extracts and green synthesized nanoparticles have numerous biological activities, including antiviral activity. HPLC analysis of C. dirnum L. leaf extract showed that catechin, ferulic acid, chlorogenic acid, and syringic acid were the most major compounds, with concentrations of 1425.16, 1004.68, 207.46, and 158.95 µg/g, respectively. Zinc nanoparticles were biosynthesized using zinc acetate and C. dirnum extract. TEM analysis revealed that the particle size of ZnO-NPs varied between 3.406 and 4.857 nm. An XRD study showed the existence of hexagonal crystals of ZnO-NPs with an average size of 12.11 nm. Both ZnO-NPs (IC50 = 7.01 and CC50 = 145.77) and C. dirnum L. extract (IC50 = 61.15 and CC50 = 145.87 µg/mL) showed antiviral activity against HCOV-229E, but their combination (IC50 = 2.41 and CC50 = 179.23) showed higher activity than both. Molecular docking was used to investigate the affinity of some metabolites against the HCOV-229E main protease. Chlorogenic acid, solanidine, and catchin showed high affinity (-7.13, -6.95, and -6.52), compared to the ligand MDP (-5.66 Kcal/mol). Cestrum dinurum extract and ZnO-NPs combination should be subjected to further studies to be used as an antiviral drug.
Collapse
|
11
|
Mutukwa D, Taziwa R, Khotseng LE. A Review of the Green Synthesis of ZnO Nanoparticles Utilising Southern African Indigenous Medicinal Plants. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3456. [PMID: 36234584 PMCID: PMC9565575 DOI: 10.3390/nano12193456] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Metal oxide nanoparticles (NPs), such as zinc oxide (ZnO), have been researched extensively for applications in biotechnology, photovoltaics, photocatalysis, sensors, cosmetics, and pharmaceuticals due to their unique properties at the nanoscale. ZnO NPs have been fabricated using conventional physical and chemical processes, but these techniques are limited due to the use of hazardous chemicals that are bad for the environment and high energy consumption. Plant-mediated synthesis of ZnO NPs has piqued the interest of researchers owing to secondary metabolites found in plants that can reduce Zn precursors and stabilise ZnO NPs. Thus, plant-mediated synthesis of ZnO NPs has become one of the alternative green synthesis routes for the fabrication of ZnO NPs. This is attributable to its environmental friendliness, simplicity, and the potential for industrial-scale expansion. Southern Africa is home to a large and diverse indigenous medicinal plant population. However, the use of these indigenous medicinal plants for the preparation of ZnO NPs is understudied. This review looks at the indigenous medicinal plants of southern Africa that have been used to synthesise ZnO NPs for a variety of applications. In conclusion, there is a need for more exploration of southern African indigenous plants for green synthesis of ZnO NPs.
Collapse
Affiliation(s)
- Dorcas Mutukwa
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Rd., Private Bag X17, Bellville 7535, South Africa
| | - Raymond Taziwa
- Department of Applied Science, Faculty of Science Engineering and Technology, Walter Sisulu University, Old King William Town Road, Potsdam Site, East London 5200, South Africa
| | - Lindiwe Eudora Khotseng
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Rd., Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
12
|
Attia HG, Albarqi HA, Said IG, Alqahtani O, Raey MAEI. Synergistic Effect between Amoxicillin and Zinc Oxide Nanoparticles Reduced by Oak Gall Extract against Helicobacter pylori. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144559. [PMID: 35889432 PMCID: PMC9320066 DOI: 10.3390/molecules27144559] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/28/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022]
Abstract
Helicobacter pylori (H. pylori) is a global health threat, and the World Health Organization has included H. pylori among 12 bacterial species that require high priority future strategies for the development of new antibiotics due mainly to its high rates of resistance. Metallic nanoparticles are known for their antimicrobial properties. The FDA (Food and Drug Administration) has approved zinc oxide nanoparticles (ZnONPs) as biocompatible antimicrobials. Green synthesis of ZnONPs was performed based on Oak galls extract (OGE) and was characterized by UV, IR, DLS, TEM, and SEM measurements. In addition, LC-MS/MS was used for the identification of OGE constituents. A checkerboard assay was used to evaluate the activity of synthesized Qi-ZnONPs and OGE against H. pylori, and their synergistic effects with amoxicillin were evaluated. LC-MS/MS analyses identified 20 compounds as major gallic acid conjugates. The ZnONPs had average particle sizes of 5.5 nm (DLS) and 7.99 nm (TEM). Both OGE and Qi-ZnONPs exhibited moderate activity against H. pylori. Amoxicillin and Qi-ZnONPs combinations (1:2 and 1:4 amoxicillin:/Qi-ZnONPs) significantly decreased the MIC90 by two-fold and four-fold, respectively, and FIC values for the combinations were more significant than with OGE alone. OGE is rich in phenolics. The synergism between Qi-ZnONPs and amoxicillin can provide an alternative safe agent of low cost to combat H. Pylori infections.
Collapse
Affiliation(s)
- Hany G. Attia
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran 1988, Saudi Arabia;
- Correspondence: (H.G.A.); (M.A.E.R.)
| | - Hassan A. Albarqi
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 1988, Saudi Arabia;
| | - Ismail G. Said
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Dokki, Cairo 12311, Egypt;
| | - Omaish Alqahtani
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran 1988, Saudi Arabia;
| | - Mohamed A. EI Raey
- Department of Phytochemistry and Plant Systematics, National Research Centre, Dokki, Cairo 12311, Egypt
- Correspondence: (H.G.A.); (M.A.E.R.)
| |
Collapse
|
13
|
Selim NM, Melk MM, Melek FR, Saleh DO, Sobeh M, El-Hawary SS. Phytochemical profiling and anti-fibrotic activities of Plumbago indica L. and Plumbago auriculata Lam. in thioacetamide-induced liver fibrosis in rats. Sci Rep 2022; 12:9864. [PMID: 35701526 PMCID: PMC9197831 DOI: 10.1038/s41598-022-13718-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/26/2022] [Indexed: 11/09/2022] Open
Abstract
This study aimed at investigating the chemical composition and the hepatoprotective activities of Plumbago indica L. and P. auriculata Lam. LC-MS/MS analyses for the hydroalcoholic extracts of the aerial parts of the two Plumbago species allowed the tentative identification of thirty and twenty-five compounds from P. indica and P. auriculata, respectively. The biochemical and histopathological alterations associated with thioacetamide (TAA)-induced liver fibrosis in rats were evaluated in vivo where rats received the two extracts at three different dose levels (100, 200 and 400 mg/kg p.o, daily) for 15 consecutive days with induction of hepatotoxicity by TAA (200 mg/kg/day, i.p.) at 14th and 15th days. Results of the present study showed a significant restoration in liver function biomarkers viz. alanine transaminase (ALT), aspartate transaminase (AST), gamma glutamyl transferase and total bilirubin. The liver homogenates exhibited increased levels of antioxidant biomarkers: reduced glutathione (GSH) and catalase (CAT), accompanied with decline in malondialdehyde (MDA). Furthermore, treated groups exhibited a significant suppression in liver inflammatory cytokines: tumor necrosis factor-α (TNF-α) and interlukin-6 (IL-6), and fibrotic biomarker: alpha smooth muscle relaxant. Histopathological examination of the liver showed normality of hepatocytes. Noteworthy, P. indica extract showed better hepatoprotective activity than P. auriculata, particularly at 200 mg/kg. To sum up, all these results indicated the hepatoprotective properties of both extracts, as well as their antifibrotic effect was evidenced by reduction in hepatic collagen deposition. However, additional experiments are required to isolate their individual secondary metabolites, assess the toxicity of the extracts and explore the involved mechanism of action.
Collapse
Affiliation(s)
- Nabil Mohamed Selim
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza, 12613, Egypt.
| | - Mina Michael Melk
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza, 12613, Egypt
| | - Farouk Rasmy Melek
- Chemistry of Natural Compounds Department, National Research Centre, Giza, 12622, Egypt
| | - Dalia Osama Saleh
- Pharmacology Department, National Research Centre, Giza, 12622, Egypt
| | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University, Lot 660-Hay MoulayRachid, 43150, Benguerir, Morocco
| | - Seham S El-Hawary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
14
|
Shabatina T, Vernaya O, Shumilkin A, Semenov A, Melnikov M. Nanoparticles of Bioactive Metals/Metal Oxides and Their Nanocomposites with Antibacterial Drugs for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3602. [PMID: 35629629 PMCID: PMC9147160 DOI: 10.3390/ma15103602] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
The increasing appearance of new strains of microorganisms resistant to the action of existing antibiotics is a modern problem that requires urgent decision. A promising potential solution is the use of nanoparticles of bioactive metals and their oxides as new antibacterial agents, since they are capable of affecting pathogenic microorganisms by mechanisms different from the mechanisms of action of antibiotics. Inorganic nanoparticles possess a wide spectrum of antibacterial activity. These particles can be easily conjugated with drug molecules and become carriers in targeted drug-delivery systems. This paper discusses the benefits and prospects of the application of nanoparticles from metals and metal oxides and their nanocomposites with antibacterial drugs.
Collapse
Affiliation(s)
- Tatyana Shabatina
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
- Department of Natural Sciences, N.E. Bauman Moscow State Technical University, Moscow 105005, Russia
| | - Olga Vernaya
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
| | - Aleksei Shumilkin
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
| | - Alexander Semenov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
- Department of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Mikhail Melnikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
| |
Collapse
|
15
|
Melk MM, El-Hawary SS, Melek FR, Saleh DO, Ali OM, El Raey MA, Selim NM. Antiviral Activity of Zinc Oxide Nanoparticles Mediated by Plumbago indica L. Extract Against Herpes Simplex Virus Type 1 (HSV-1). Int J Nanomedicine 2021; 16:8221-8233. [PMID: 34955639 PMCID: PMC8694278 DOI: 10.2147/ijn.s339404] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/05/2021] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Plumbago indica L. is considered a valuable source in the Plumbaginaceae family for various types of active compound such as alkaloids, phenolics and saponins. To promote the usage of P. indica in the bionanotechnology field, zinc oxide nanoparticles (ZnONPs) were biosynthesized by using its alcoholic extract. The inhibitory effects of ZnONPs and the plant extract were also evaluated against HSV-1. METHODS ZnONPs were described by the following techniques, UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), zeta potential, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction (XRD). The phenolic and flavonoid contents of P. indica extract, which are accountable for bioreduction, formation and stabilization of the nanoparticles, were analyzed by HPLC technique. The antiviral assessment was implemented on both agents by using Vero cell lines. RESULTS DLS revealed that the average size of ZnONPs was 32.58 ± 7.98 nm and the zeta potential was -20.8 mV. The observation of TEM analysis revealed that the particle size of ZnONPs varied from 2.56 to 8.83 nm. The XRD analysis verified the existence of pure crystals of hexagonal shapes of nanoparticles of ZnO with a main average size of 35.28 nm that is approximating to the values of particle size acquired by SEM analysis (19.64 and 23.21 nm). The HPLC analysis of P. indica ethanolic extract showed that gallic acid, chlorogenic acid and rutin were the major compounds, with concentrations equal to 8203.99, 2965.95 and 1144.99 µg/g, respectively. Regarding the antiviral assessment, the synthesized uncalcinated ZnONPs were found to exhibit a promising activity against HSV-1, with CC50 and IC50 values equal to 43.96 ± 1.39 and 23.17 ± 2.29 µg/mL, respectively. CONCLUSION The green synthesized ZnONPs are considered promising adjuvants to enhance the efficacy of HSV-1 drugs.
Collapse
Affiliation(s)
- Mina Michael Melk
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Seham S El-Hawary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Farouk Rasmy Melek
- Chemistry of Natural Compounds Department, National Research Centre, Giza, Egypt
| | | | - Omar M Ali
- Department of Chemistry, Turabah University College, Turabah Branch, Taif University, Taif, 21944, Saudi Arabia
| | - Mohamed A El Raey
- Department of Phytochemistry and Plant Systematics, Pharmaceutical Division, National Research Centre, Dokki, Cairo, Egypt
| | - Nabil Mohamed Selim
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza, Egypt
| |
Collapse
|