1
|
Nazar N, Saxena A, Sebastian A, Slater A, Sundaresan V, Sgamma T. Integrating DNA Barcoding Within an Orthogonal Approach for Herbal Product Authentication: A Narrative Review. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:7-29. [PMID: 39532481 PMCID: PMC11743069 DOI: 10.1002/pca.3466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Existing methods for morphological, organoleptic, and chemical authentication may not adequately ensure the accurate identification of plant species or guarantee safety. Herbal raw material authentication remains a major challenge in herbal medicine. Over the past decade, DNA barcoding, combined with an orthogonal approach integrating various testing methods for quality assurance, has emerged as a new trend in plant authentication. OBJECTIVE The review evaluates DNA barcoding and common alternative testing in plant-related sectors to enhance quality assurance and accurate authentication. METHOD Studies were selected based on their relevance to the identification, quality assurance, and safety of herbal products. Inclusion criteria were peer-reviewed articles, systematic reviews, and relevant case studies from the last two decades focused on DNA barcoding, identification methods, and their applications. Exclusion criteria involved studies lacking empirical data, those not peer-reviewed, or those unrelated to the main focus. This ensured the inclusion of high-quality, pertinent sources while excluding less relevant studies. RESULTS An orthogonal approach refers to the use of multiple, independent methods that provide complementary information for more accurate plant identification and quality assurance. This reduces false positives or negatives by confirming results through different techniques, combining DNA barcoding with morphological analysis or chemical profiling. It enhances confidence in results, particularly in cases of potential adulteration or misidentification of plant materials. CONCLUSION This study highlights the persistent challenges in assuring the quality, purity, and safety of plant materials. Additionally, it stresses the importance of incorporating DNA-based authentication alongside traditional methods, to enhance plant material identification.
Collapse
Affiliation(s)
- Nazia Nazar
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life SciencesDe Montfort UniversityLeicesterUK
| | - Akanksha Saxena
- Plant Biology and SystematicsCSIR—Central Institute of Medicinal and Aromatic Plants, Research CentreBengaluruIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Anu Sebastian
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life SciencesDe Montfort UniversityLeicesterUK
| | - Adrian Slater
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life SciencesDe Montfort UniversityLeicesterUK
| | - Velusamy Sundaresan
- Plant Biology and SystematicsCSIR—Central Institute of Medicinal and Aromatic Plants, Research CentreBengaluruIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Tiziana Sgamma
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life SciencesDe Montfort UniversityLeicesterUK
| |
Collapse
|
2
|
Hladnik M, Baruca Arbeiter A, Gabrovšek P, Tomi F, Gibernau M, Brana S, Bandelj D. New Chloroplast Microsatellites in Helichrysum italicum (Roth) G. Don: Their Characterization and Application for the Evaluation of Genetic Resources. PLANTS (BASEL, SWITZERLAND) 2024; 13:2740. [PMID: 39409608 PMCID: PMC11479114 DOI: 10.3390/plants13192740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Helichrysum italicum (Roth) G. Don is a Mediterranean medicinal plant with great potential in the cosmetics, culinary and pharmaceutical fields due to its unique bioactive compounds. Its recent introduction into agroecosystems has enhanced the exploitation of genetic diversity in natural populations, although limited molecular markers have made this challenging. In the present study, primers were designed for all 43 SSRs (72.1% mononucleotide, 21% dinucleotide and 6.9% trinucleotide repeats) identified in the chloroplast genome. Populations from Cape Kamenjak (Croatia) and Corsica (France) were analyzed with ten carefully selected cpSSR markers. From the initial set of 16 cpSSRs amplified in all samples, 6 cpSSR markers were removed due to low-length polymorphisms, size homoplasy and nucleotide polymorphisms that could not be detected with allele length. Of the 38 haplotypes detected, 32 were unique to their geographic origin. The highest number of private haplotypes was observed in the Cape Kamenjak population (seven out of nine detected). Based on clustering analyses, the Kamenjak population was the most similar to the Capo Pertusato (south Corsica) population, although only one sub-haplotype was shared. Other Corsican populations were more similar to each other. A cross-species transferability test with Helichrysum litoreum Guss. and Helichrysum arenarium (L.) Moench was successfully conducted and private alleles were identified.
Collapse
Affiliation(s)
- Matjaž Hladnik
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia; (M.H.); (A.B.A.); (P.G.)
| | - Alenka Baruca Arbeiter
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia; (M.H.); (A.B.A.); (P.G.)
| | - Petra Gabrovšek
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia; (M.H.); (A.B.A.); (P.G.)
| | - Félix Tomi
- Laboratoire Sciences Pour l’Environnement, Université de Corse-CNRS, UMR 6134 SPE, Route des Sanguinaires, 20000 Ajaccio, France; (F.T.); (M.G.)
| | - Marc Gibernau
- Laboratoire Sciences Pour l’Environnement, Université de Corse-CNRS, UMR 6134 SPE, Route des Sanguinaires, 20000 Ajaccio, France; (F.T.); (M.G.)
| | - Slavko Brana
- Istrian Botanical Society, Trgovačka 45, HR-52215 Vodnjan, Croatia;
| | - Dunja Bandelj
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia; (M.H.); (A.B.A.); (P.G.)
| |
Collapse
|
3
|
Jariani P, Sabokdast M, Moghadam TK, Nabati F, Dedicova B. Modulation of Phytochemical Pathways and Antioxidant Activity in Peppermint by Salicylic Acid and GR24: A Molecular Approach. Cells 2024; 13:1360. [PMID: 39195251 PMCID: PMC11353152 DOI: 10.3390/cells13161360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
This study uncovers the potential of salicylic acid (SA) and synthetic Strigolactone (GR24) in enhancing menthol biosynthesis and antioxidant defense mechanisms in Mentha piperita L. Our comprehensive analysis, which included a series of controlled experiments and data analysis of the effects of these phytohormones on enzymatic antioxidants catalase (CAT) and ascorbate peroxidase (APX) and non-enzymatic antioxidants, including carotenoids and proline, revealed promising results. The study also examined their impact on lipid peroxidation, hydrogen peroxide levels, and the expression of genes critical to menthol and menthofuran synthesis. The results indicated that SA and GR24 significantly increased menthol production and reduced the levels of menthofuran and pulegone, suggesting upregulation in the plant's innate defense systems. Furthermore, the activities of CAT and APX were elevated, reflecting a strengthened antioxidant response. Interestingly, the menthofuran synthase (MFS) was higher in the control group. At the same time, pulegone reductase (PR) genes and menthol dehydrogenase (MDH) gene expression were upregulated, highlighting the protective effects of SA and GR24. These findings underscore the potential of SA and GR24 to serve as effective bio-stimulants, improving the quality and resilience of peppermint plants and thereby contributing to eco-friendly agricultural practices in pollution-stressed environments.
Collapse
Affiliation(s)
- Parisa Jariani
- Department of Agriculture and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Tehran, P.O. Box 4111, Karaj 77871-31587, Iran; (P.J.); (T.K.M.)
| | - Manijeh Sabokdast
- Department of Agriculture and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Tehran, P.O. Box 4111, Karaj 77871-31587, Iran; (P.J.); (T.K.M.)
| | - Taraneh Karami Moghadam
- Department of Agriculture and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Tehran, P.O. Box 4111, Karaj 77871-31587, Iran; (P.J.); (T.K.M.)
| | - Farzaneh Nabati
- Medicinal Plants Research Center, Institute of Medicinal Plants, The Academic Center for Education, Culture and Research (ACECR), Karaj 33651-66571, Iran;
| | - Beata Dedicova
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU) Alnarp, Sundsvägen 10, P.O. Box 190, SE-234 22 Lomma, Sweden
| |
Collapse
|
4
|
Farruggia D, Di Miceli G, Licata M, Leto C, Salamone F, Novak J. Foliar application of various biostimulants produces contrasting response on yield, essential oil and chemical properties of organically grown sage ( Salvia officinalis L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1397489. [PMID: 39011298 PMCID: PMC11248988 DOI: 10.3389/fpls.2024.1397489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/10/2024] [Indexed: 07/17/2024]
Abstract
Sage (Salvia officinalis L.) is a medicinal and aromatic plant (MAP) belonging to the Lamiaceae family. Its morphological, productive and chemical characteristics are affected by abiotic and biotic factors. The use of biostimulants seems to be one of the most interesting innovative practices due to fact they can represent a promising approach for achieving sustainable and organic agriculture. Despite a large application in horticulture, the use of biostimulants on MAPs has been poorly investigated. On this basis, a field experiment in a 2-year study was done to assess the effect of foliar treatments with different types of biostimulants (containing seaweeds, fulvic acids and protein hydrolysates) and two frequencies of application on morphological, productive, and chemical characteristics of S. officinalis grown organically in Mediterranean environment. Morphological, productive, and chemical parameters were affected by the factors. The biostimulant application generated higher plant height, chlorophyll content, relative water content, biomass yield and essential oil yield compared to control plants. In addition, more frequent application of biostimulants produced higher biomass and essential oil yield. The application of fulvic acid and protein hydrolysates every week produced the highest total fresh yields (between 3.9 and 8.7 t ha-1) and total dry yields (between 1.3 and 2.5 t ha-1). The essential oil yield almost doubled (33.9 kg ha-1) with a higher frequency of protein hydrolysates application. In this study, 44 essential oil compounds were identified, and the frequency factor significantly influenced the percentage of 38 compounds. The highest percentage of some of the most representative monoterpenes, such as 1,8-cineole, α-thujone and camphor, were observed in biostimulated plants, with average increases between 6% and 35% compared to control plants. The highest values for total phenolics, rosmarinic acid, antioxidant activity were obtained in control plants and with a lower frequency of biostimulant applications. This study emphasizes how biostimulant applications may be used to improve sage production performance and essential oil parameters when produced in agricultural organic system. At the same time, biostimulants application caused a decrease in total phenolic, antioxidant activity and rosmarinic acid values.
Collapse
Affiliation(s)
- Davide Farruggia
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
| | - Giuseppe Di Miceli
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
| | - Mario Licata
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
| | - Claudio Leto
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
- Research Consortium for the Development of Innovative Agro-Environmental Systems (CoRiSSIA), Palermo, Italy
| | - Francesco Salamone
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
| | - Johannes Novak
- Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
5
|
Harris CM, Kim DY, Jordan CR, Miranda MI, Hellberg RS. DNA barcoding of herbal supplements on the US commercial market associated with the purported treatment of COVID-19. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:664-677. [PMID: 38225696 DOI: 10.1002/pca.3320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/17/2023] [Accepted: 12/17/2023] [Indexed: 01/17/2024]
Abstract
INTRODUCTION The COVID-19 pandemic was associated with an increased global use of traditional medicines, including Ayurvedic herbal preparations. Due to their growing demand, their processed nature, and the complexity of the global supply chain, there is an increased risk of adulteration in these products. OBJECTIVES The objective of this study was to assess the use of DNA barcoding for species identification in herbal supplements on the US market associated with the Ayurvedic treatment of respiratory symptoms. METHODS A total of 54 commercial products containing Ayurvedic herbs were tested with four DNA barcoding regions (i.e., rbcL, matK, ITS2, and mini-ITS2) using two composite samples per product. Nine categories of herbs were targeted: amla, ashwagandha, cinnamon, ginger, guduchi, tribulus, tulsi, turmeric, and vacha. RESULTS At least one species was identified in 64.8% of products and the expected species was detected in 38.9% of products. Undeclared plant species, including other Ayurvedic herbs, rice, and pepper, were detected in 19 products, and fungal species were identified in 12 products. The presence of undeclared plant species may be a result of intentional substitution or contamination during harvest or processing, while fungal DNA was likely associated with the plant material or the growing environment. The greatest sequencing success (42.6-46.3%) was obtained with the matK and rbcL primers. CONCLUSION The results of this study indicate that a combination of genetic loci should be used for DNA barcoding of herbal supplements. Due to the limitations of DNA barcoding in identification of these products, future research should incorporate chemical characterization techniques.
Collapse
Affiliation(s)
- Calin M Harris
- Chapman University, Schmid College of Science and Technology, Food Science Program, One University Drive, Orange, California, USA
| | - Diane Y Kim
- Chapman University, Schmid College of Science and Technology, Food Science Program, One University Drive, Orange, California, USA
| | - Chevon R Jordan
- Chapman University, Schmid College of Science and Technology, Food Science Program, One University Drive, Orange, California, USA
| | - Miranda I Miranda
- Chapman University, Schmid College of Science and Technology, Food Science Program, One University Drive, Orange, California, USA
| | - Rosalee S Hellberg
- Chapman University, Schmid College of Science and Technology, Food Science Program, One University Drive, Orange, California, USA
| |
Collapse
|
6
|
Paschalidis K, Fanourakis D, Tsaniklidis G, Tsichlas I, Tzanakakis VA, Bilias F, Samara E, Ipsilantis I, Grigoriadou K, Samartza I, Matsi T, Tsoktouridis G, Krigas N. DNA Barcoding and Fertilization Strategies in Sideritis syriaca subsp. syriaca, a Local Endemic Plant of Crete with High Medicinal Value. Int J Mol Sci 2024; 25:1891. [PMID: 38339166 PMCID: PMC10856587 DOI: 10.3390/ijms25031891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Herein, we applied DNA barcoding for the genetic characterization of Sideritis syriaca subsp. syriaca (Lamiaceae; threatened local Cretan endemic plant) using seven molecular markers of cpDNA. Five fertilization schemes were evaluated comparatively in a pilot cultivation in Crete. Conventional inorganic fertilizers (ChFs), integrated nutrient management (INM) fertilizers, and two biostimulants were utilized (foliar and soil application). Plant growth, leaf chlorophyll fluorescence, and color were assessed and leaf content of chlorophyll, key antioxidants (carotenoids, flavonoids, phenols), and nutrients were evaluated. Fertilization schemes induced distinct differences in leaf shape, altering quality characteristics. INM-foliar and ChF-soil application promoted yield, without affecting tissue water content or biomass partitioning to inflorescences. ChF-foliar application was the most stimulatory treatment when the primary target was enhanced antioxidant contents while INM-biostimulant was the least effective one. However, when the primary target is yield, INM, especially by foliar application, and ChF, by soil application, ought to be employed. New DNA sequence datasets for the plastid regions of petB/petD, rpoC1, psbK-psbI, and atpF/atpH were deposited in the GenBank for S. syriaca subsp. syriaca while the molecular markers rbcL, trnL/trnF, and psbA/trnH were compared to those of another 15 Sideritis species retrieved from the GenBank, constructing a phylogenetic tree to show their genetic relatedness.
Collapse
Affiliation(s)
- Konstantinos Paschalidis
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, 71410 Heraklion, Greece; (D.F.); (I.T.); (V.A.T.)
| | - Dimitrios Fanourakis
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, 71410 Heraklion, Greece; (D.F.); (I.T.); (V.A.T.)
| | - Georgios Tsaniklidis
- Hellenic Agricultural Organization (ELGO-DIMITRA), Institute of Olive Tree, Subtropical Crops and Viticulture, 73134 Chania, Greece;
| | - Ioannis Tsichlas
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, 71410 Heraklion, Greece; (D.F.); (I.T.); (V.A.T.)
| | - Vasileios A. Tzanakakis
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, 71410 Heraklion, Greece; (D.F.); (I.T.); (V.A.T.)
| | - Fotis Bilias
- Soil Science Laboratory, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.B.); (I.I.); (T.M.)
| | - Eftihia Samara
- Soil Science Laboratory, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.B.); (I.I.); (T.M.)
| | - Ioannis Ipsilantis
- Soil Science Laboratory, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.B.); (I.I.); (T.M.)
| | - Katerina Grigoriadou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, 57001 Thessaloniki, Greece; (K.G.); (I.S.); (N.K.)
| | - Ioulietta Samartza
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, 57001 Thessaloniki, Greece; (K.G.); (I.S.); (N.K.)
| | - Theodora Matsi
- Soil Science Laboratory, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.B.); (I.I.); (T.M.)
| | - Georgios Tsoktouridis
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, 57001 Thessaloniki, Greece; (K.G.); (I.S.); (N.K.)
- Theofrastos Fertilizers, Industrial Area of Korinthos, Irinis & Filias, Ikismos Arion, Examilia, 20100 Korinthos, Greece
| | - Nikos Krigas
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, 57001 Thessaloniki, Greece; (K.G.); (I.S.); (N.K.)
| |
Collapse
|
7
|
Patel DK, Singh GK, Husain GM, Prasad SK. Ethnomedicinal Importance of Patuletin in Medicine: Pharmacological Activities and Analytical Aspects. Endocr Metab Immune Disord Drug Targets 2024; 24:519-530. [PMID: 37584350 DOI: 10.2174/1871530323666230816141740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/05/2023] [Accepted: 07/06/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND Plant-derived bioactive molecules have been a major source of therapeutic agents for human and veterinarian purposes. Different traditional medicine system across the globe had relied on natural resources to meet their demand of healthcare. Still in modern world, pharmaceutical industries look for phytochemicals to develop new drugs. The current review explores patuletin, a flavonoid for its diverse reported pharmacological activities along with its analytical techniques. METHODS Scientific data published on patuletin was collected from Scopus, Science Direct, Pubmed, Google, and Google Scholar. The collected data were analyzed and arranged as per specific pharmacological activities performed using in-vitro or in-vivo methods. Analytical methods of patuletin have been presented next to pharmacological activities Results: Available scientific literature indicates patuletin has anti-inflammatory, cytotoxic, genotoxic, hepatoprotective, antiproliferative, antiplatelet, antinociceptive, and antioxidant activity. In addition to these activities, its biological potential on breast cancer, rheumatoid arthritis, aldose reductase, and different types of microorganisms has been also presented in this work. Analytical data on patuletin signified the importance of patuletin for the standardization of herbal products and derived medicine. CONCLUSION It may be concluded that patuletin with its diverse biological activities and readily available analytical methods, holds the potential to be translated into a new drug entity.
Collapse
Affiliation(s)
- Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India
| | - Gireesh Kumar Singh
- Department of Pharmacy, School of Health Science, Central University of South Bihar Gaya, 824236, India
| | - Gulam Mohammed Husain
- National Research Institute of Unani Medicine for Skin Disorders (Under CCRUM, Ministry of Ayush, Govt. of India), Opp. ESI Hospital, AG Colony Road, Erragadda, Hyderabad, 500 038, Telangana State, India
| | - Satyendra K Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India
| |
Collapse
|
8
|
Patil S, Imran M, Jaquline RSM, Aeri V. Standardization of Euphorbia tithymaloides (L.) Poit. (Root) by Conventional and DNA Barcoding Methods. ACS OMEGA 2023; 8:29324-29335. [PMID: 37599932 PMCID: PMC10433337 DOI: 10.1021/acsomega.3c02543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023]
Abstract
Adulteration and substitution of medicinal plants have become a matter of great concern in recent years. Euphorbia tithymaloides is one such medicinal plant that has gained importance but is often confused with other plants of the same species. In order to address this issue, this study aimed to conduct a conventional and molecular pharmacognostic study for the identification of the root of E. tithymaloides. The root of the plant was studied for the macroscopic observations, and then, the root was ground into coarse powder for microscopic studies and to determine the physiochemical properties. The powder was subjected to extraction with solvents such as ethanol, ethanol/water (1:1), hexane, and ethyl acetate. The extracts were then used for qualitative and quantitative (phenol, alkaloids, and flavonoids) phytochemical analysis. The molecular study was performed with the DNA barcoding technique. The DNA was extracted from the root of the plant, and its purity was examined by gel electrophoresis (1% w/v). The DNA was then amplified using an Applied Biosystems 2720 thermal cycler for the rbcL, matK, and ITS primers. The amplified primers were sequenced with a 3130 Genetic Analyzer, and the generated sequences were searched for similarity in the GenBank Database using the nucleotide BLAST analysis. The micro- and macroscopic studies revealed the morphological and organoleptic characters as well as the presence of medullary rays, fiber, cork, sclereids, parenchymal cells, and scalariform vessels. The physiochemical properties were found within the limit. The phytochemical analysis revealed the presence of terpenoids, flavonoids, saponins, and alkaloids. In addition, the alkaloidal content was high in the ethanol extract (63.04 ± 3.08 mg At E/g), while the phenol content was high in the hexane extract (10.26667 ± 1.77 mg At E/g), and the flavonoid content was high in the ethyl acetate extract (41.458 ± 1.33 mg At E/g). After the BLAST analysis from the GenBank database, the rbcL, ITS, and matK primers showed a similarity percentage of 99.83, 99.84, and 100. The phylogenetic tree for the species closest to each primer was generated using the MEGA 6 software. The matK loci had the highest percentage similar to the rbcL and ITS loci, indicating that the matK loci can be used to identify the root of E. tithymaloides as a standalone. The results from this study can be used to establish a quality standard for E. tithymaloides that will ensure its quality and purity.
Collapse
Affiliation(s)
- Shital Patil
- Department
of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education
and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Mohd Imran
- Department
of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education
and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - R. Sahaya Mercy Jaquline
- Department
of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education
and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Vidhu Aeri
- Department
of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education
and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| |
Collapse
|
9
|
Sharma P, Wajid MA, Fayaz M, Bhat S, Nautiyal AK, Jeet S, Yadav AK, Singh D, Shankar R, Gairola S, Misra P. Morphological, phytochemical, and transcriptome analyses provide insights into the biosynthesis of monoterpenes in Monarda citriodora. PLANTA 2023; 258:49. [PMID: 37480390 DOI: 10.1007/s00425-023-04207-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
MAIN CONCLUSION Morphological, phytochemical, and transcriptome analyses revealed candidate genes involved in the biosynthesis of volatile monoterpenes and development of glandular trichomes in Monarda citriodora. Monarda citriodora Cerv. ex Lag. is a valuable aromatic plant due to the presence of monoterpenes as major constituents in its essential oil (EO). Thus, it is of sheer importance to gain knowledge about the site of the biosynthesis of these terpenoid compounds in M. citriodora, as well as the genes involved in their biosynthesis. In this study, we studied different types of trichomes and their relative densities in three different developmental stages of leaves, early stage of leaf development (L1), mid-stage of leaf development (L2), and later stage of leaf development (L3) and the histochemistry of trichomes for the presence of lipid and terpenoid compounds. Further, the phytochemical analysis of this plant through GC-MS indicated a higher content of monoterpenes (thymol, thymoquinone, γ-terpinene, p-cymene, and carvacrol) in the L1 stage with a substantial decrease in the L3 stage of leaf development. This considerable decrease in the content of monoterpenes was attributed to the decrease in the trichome density from L1 to L3. Further, we developed a de novo transcriptome assembly by carrying out RNA sequencing of different plant parts of M. citriodora. The transcriptome data revealed several putative unigenes involved in the biosynthesis of specialized terpenoid compounds, as well as regulatory genes involved in glandular trichome development. The data generated in the present study build a strong foundation for further improvement of M. citriodora, in terms of quantity and quality of its essential oil, through genetic engineering.
Collapse
Affiliation(s)
- Priyanka Sharma
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mir Abdul Wajid
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohd Fayaz
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sheetal Bhat
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abhishek Kumar Nautiyal
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Sabha Jeet
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Arvind Kumar Yadav
- Quality Management and Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Deepika Singh
- Quality Management and Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Ravi Shankar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Sumeet Gairola
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prashant Misra
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Patel HK, Gomes EN, Wu Q, Patel N, Kobayashi DY, Wang C, Simon JE. Volatile metabolites from new cultivars of catnip and oregano as potential antibacterial and insect repellent agents. FRONTIERS IN PLANT SCIENCE 2023; 14:1124305. [PMID: 36909430 PMCID: PMC9995836 DOI: 10.3389/fpls.2023.1124305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Plant based natural products have been widely used as antibacterial and insect repellent agents globally. Because of growing resistance in bacterial plant pathogens and urban pests to current methods of control, combined with the long- and short-term negative impact of certain chemical controls in humans, non-target organisms, and the environment, finding alternative methods is necessary to prevent and/or mitigate losses caused by these pathogens and pests. The antibacterial and insect repellent activities of essential oils of novel cultivars of catnip (Nepeta cataria L. cv. CR9) and oregano (Origanum vulgare L. cv. Pierre) rich in the terpenes nepetalactone and carvacrol, respectively, were evaluated using the agar well diffusion assay and petri dish repellency assay. The essential oils exhibit moderate to high antibacterial activity against three plant pathogens, Pseudomonas cichorii, Pseudomonas syringae and Xanthomonas perforans of economic interest and the individual essential oils, their mixtures and carvacrol possess strong insect repellent activity against the common bed bug (Cimex lectularius L.), an urban pest of major significance to public health. In this study, the essential oils of catnip and oregano were determined to be promising candidates for further evaluation and development as antibacterial agents and plant-based insect repellents with applications in agriculture and urban pest management.
Collapse
Affiliation(s)
- Harna K. Patel
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| | - Erik Nunes Gomes
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
- Federal Agency for Support and Evaluation of Graduate Education (CAPES), Ministry of Education of Brazil, Brasilia, DF, Brazil
| | - Qingli Wu
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | - Nrupali Patel
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| | - Donald Y. Kobayashi
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| | - Changlu Wang
- Department of Entomology, Rutgers University, New Brunswick, NJ, United States
| | - James E. Simon
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Piscataway, NJ, United States
- Center for Agricultural Food Ecosystems, Institute of Food, Nutrition & Health, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
11
|
Cottenet G, Cavin C, Blancpain C, Chuah PF, Pellesi R, Suman M, Nogueira S, Gadanho M. A DNA Metabarcoding Workflow to Identify Species in Spices and Herbs. J AOAC Int 2022; 106:65-72. [PMID: 35980160 DOI: 10.1093/jaoacint/qsac099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Spices and herbs are food categories regularly cited as highly susceptible to be adulterated. To detect potential adulteration with undeclared species, DNA-based methods are considered the most suitable tools. OBJECTIVE In this study, the performance of the ready-to-use Thermo Scientific™ NGS Food Authenticity Workflow (Thermo Fisher Scientific)-a commercial DNA metabarcoding approach-is described. The tool was further applied to analyze 272 commercial samples of spices and herbs. METHOD Pure samples of spices and herbs were analyzed with the Thermo Scientific NGS Food Authenticity Workflow to assess its specificity, and spikings down to 1% (w/w) allowed evaluation of its sensitivity. Commercial samples, 62 and 210, were collected in Asian and European markets, respectively. RESULTS All tested species were correctly identified often down to the species level, while spikings at 1% (w/w) confirmed a limit of detection at this level, including in complex mixtures composed of five different spices and/or herbs. The analysis of 272 commercial samples showed that 78% were compliant with the declared content, whereas the rest were shown to contain undeclared species that were in a few cases allergenic or potentially toxic. CONCLUSIONS The Thermo Scientific NGS Food Authenticity Workflow was found to be suitable to identify food plant species in herbs and spices, not only when tested on pure samples, but also in mixtures down to 1% (w/w). The overall workflow is user-friendly and straightforward, which makes it simple to use and facilitates data interpretation. HIGHLIGHTS The Thermo Scientific NGS Food Authenticity Workflow was found to be suitable for species identification in herbs and spices, and it allowed the detection of undeclared species in commercial samples. Its ease of use facilitates its implementation in testing laboratories.
Collapse
Affiliation(s)
- Geoffrey Cottenet
- Institute of Food Safety and Analytical Sciences, Nestlé Research, Vers-chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Christophe Cavin
- Institute of Food Safety and Analytical Sciences, Nestlé Research, Vers-chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Carine Blancpain
- Institute of Food Safety and Analytical Sciences, Nestlé Research, Vers-chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Poh Fong Chuah
- Nestlé Quality Assurance Center, Quality Road, 618802 Singapore
| | - Roberta Pellesi
- Barilla Analytical Food Science, Research Development and Quality Group, Barilla G&R Fratelli, 43122 Parma, Italy
| | - Michele Suman
- Barilla Analytical Food Science, Research Development and Quality Group, Barilla G&R Fratelli, 43122 Parma, Italy
| | - Sofia Nogueira
- Jerónimo Martins Molecular Biology Laboratory, Jerónimo Martins SGPS, 1649-033 Lisbon, Portugal
| | - Mario Gadanho
- Thermo Fisher Scientific, Wade Road, Basingstoke, UK
| |
Collapse
|
12
|
Bhamra SK, Heinrich M, Johnson MRD, Howard C, Slater A. The Cultural and Commercial Value of Tulsi ( Ocimum tenuiflorum L.): Multidisciplinary Approaches Focusing on Species Authentication. PLANTS (BASEL, SWITZERLAND) 2022; 11:3160. [PMID: 36432888 PMCID: PMC9692689 DOI: 10.3390/plants11223160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/17/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Tulsi (Holy basil, Ocimum tenuiflorum L., Lamiaceae), native to Asia, has become globalised as the cultural, cosmetic, and medicinal uses of the herb have been popularised. DNA barcoding, a molecular technique used to identify species based on short regions of DNA, can discriminate between different species and identify contaminants and adulterants. This study aimed to explore the values associated with Tulsi in the United Kingdom (UK) and authenticate samples using DNA barcoding. A mixed methods approach was used, incorporating social research (i.e., structured interviews) and DNA barcoding of Ocimum samples using the ITS and trnH-psbA barcode regions. Interviews revealed the cultural significance of Tulsi: including origins, knowledge exchange, religious connotations, and medicinal uses. With migration, sharing of plants and seeds has been seen as Tulsi plants are widely grown in South Asian (SA) households across the UK. Vouchered Ocimum specimens (n = 33) were obtained to create reference DNA barcodes which were not available in databases. A potential species substitution of O. gratissimum instead of O. tenuiflorum amongst SA participants was uncovered. Commercial samples (n = 47) were difficult to authenticate, potentially due to DNA degradation during manufacturing processes. This study highlights the cultural significance of Tulsi, despite a potential species substitution, the plant holds a prestigious place amongst SA families in the UK. DNA barcoding was a reliable way to authenticate Ocimum species.
Collapse
Affiliation(s)
| | - Michael Heinrich
- Pharmacognosy and Phytotherapy, UCL London School of Pharmacy, Brunswick Square, London WC1N 1AX, UK
- Chinese Medicine Research Centre, Department of Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Mark R. D. Johnson
- Centre for Evidence in Ethnicity Health & Diversity, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Caroline Howard
- Tree of Life Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Adrian Slater
- Biomolecular Technology Group, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| |
Collapse
|
13
|
Aneva I, Zhelev P, Bonchev G. Sideritis elica, a New Species of Lamiaceae from Bulgaria, Revealed by Morphology and Molecular Phylogeny. PLANTS (BASEL, SWITZERLAND) 2022; 11:2900. [PMID: 36365353 PMCID: PMC9654456 DOI: 10.3390/plants11212900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Sideritis elica, from the Rhodope Mountains, is described as a species new to science. Results of a detailed morphological analysis were combined with the data of molecular analyses using DNA barcoding as an efficient tool for the genetic, taxonomic identification of plants. The combination of morphological features distinguishes the new species well: Its first three uppermost leaf pairs are significantly shorter and wider, the branchiness of the stems is much more frequent, the whole plant is much more lanate, and it looks almost white, as opposed to the other closed species of section Empedoclia, which look grayish green. The molecular analysis, based on the rbcL and trnH-psbA regions, supports the morphological data about the divergence of Sideritis scardica and Sideritis elica. The studied populations of the two taxa were found to be genetically distant (up to 6.8% polymorphism for trnH-psbA) with distinct population-specific nucleotide patterns, while no polymorphism in the DNA barcodes was detected within the Sideritis elica population. The results confirm the existence of a new species called Sideritis elica, which occurs in the nature reserve Chervenata Stena, located in the northern part of the Central Rhodope Mountains. There were only 12 individuals found in the locality, which underlines the necessity of conservation measures.
Collapse
Affiliation(s)
- Ina Aneva
- Bulgarian Academy of Sciences, 1, 15 November Str., 1040 Sofia, Bulgaria
| | - Petar Zhelev
- Department of Dendrology, University of Forestry, 10 Kliment Ohridski Blvd., 1797 Sofia, Bulgaria
| | - Georgi Bonchev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
14
|
Kim WJ, Noh S, Choi G, Moon BC. Rapid Identification of Paeoniae Radix and Moutan Radicis Cortex Using a SCAR Marker-Based Conventional PCR Assay. PLANTS (BASEL, SWITZERLAND) 2022; 11:2870. [PMID: 36365322 PMCID: PMC9653921 DOI: 10.3390/plants11212870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Paeoniae Radix is a herbal medicine prepared from the dried roots of Paeonia lactiflora, P. anomala subsp. veitchii, and P. japonica. Although the herbal medicines prepared from these species are morphologically similar, they have different pharmacological effects depending on how they are processed. In addition, P. japonica is more expensive than other Paeonia spp. in the Korean herbal market. Although there is a clear difference between the Korean and Chinese pharmacopeias of Paeoniae Radix, the processed roots of P. lactiflora and P. anomala subsp. veitchii are commonly used indiscriminately in the herbal market. Moreover, Paeonia suffruticosa, an allied genus of P. lactiflora, is prescribed as Moutan Radicis Cortex. Therefore, accurate taxonomic identification of plant species is vital for quality assurance. A genetic assay is a reliable tool for accurately discriminating species in processed herbal medicines. To develop a genetic assay for the identification of four Paeonia species (P. lactiflora, P. anomala subsp. veitchii, P. japonica, and P. suffruticosa), we analyzed the sequences of two DNA barcoding regions, internal transcribed spacer and rbcL. A conventional PCR assay was established in this study for simple and rapid species identification using sequence characterized amplified region (SCAR) markers based on arbitrary nucleotide-containing primers. This assay was verified to be species specific and highly sensitive and could be applied to Paeonia species identification at an affordable rate.
Collapse
|
15
|
El-Kasem Bosly HA. Larvicidal and adulticidal activity of essential oils from plants of the Lamiaceae family against the West Nile virus vector, Culex pipiens (Diptera: Culicidae). Saudi J Biol Sci 2022; 29:103350. [PMID: 35762012 PMCID: PMC9232543 DOI: 10.1016/j.sjbs.2022.103350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 12/17/2022] Open
Abstract
Culex pipiens mosquitoes are the most widely distributed primary vector of the West Nile virus worldwide. Many attempts for investigation of botanical pesticides to avoid the development of pesticide resistance to conventional synthetic pesticides that are recognized as a threat to the diversity of ecosystems. The study aimed to determine the components of three essential oils of Lamiaceae family, lavender (Lavandula angustifolia), peppermint (Mentha piperita L.), and rosemary (Rosmarinus officinalis L.) by gas chromatography-mass spectrometry (GC–MS) analysis. Furthermore, aimed to validate the insecticidal activities of these oils as larvicidal agents against the third instar larvae of Culex pipiens using five different concentrations (62.5, 125, 250, 500, and 1000 ppm) for each oil in five replicates and as an adulticidal agent against approximately three-day-old female adults of Cx. Pipiens using 0.5, 1, 2, 4, and 5% concentrations in three replicates. The results generally showed a dose-related response. At 1000 ppm, rosemary oil showed the highest larvicidal (100%) (LC50, 214.97 ppm), followed by peppermint oil (92.00% mortality and LC50 (269.35 ppm). Lavender oil showed the lowest efficacy with 87.20% mortality and LC50 (301.11 ppm). At 5% oil concentration, the highest knockdown rate at 1 h was recorded for lavender oil (95.55%), followed by peppermint oil (88.89%) and lastly rosemary oil (84.44%). After 24 h, rosemary oil showed the lowest adult mortality rate (88.89%; LC50, 1.44%), while lavender and peppermint oils both showed a 100% mortality rate, with (LC50, 0.81% and 0.91%, respectively). The chemical constituents of the oils consisted of monoterpenes and sesquiterpenes that determined their insecticidal activities against the target insect stage. The study proposed that rosemary essential oil may be useful for the control of Cx. pipiens larvae as part of an integrated water treatment strategy, and lavender and peppermint oils may be used in an integrated plan for adult’s control.
Collapse
Affiliation(s)
- Hanan Abo El-Kasem Bosly
- Entomology Biology Department, Faculty of Science, Jazan University, PO Box 2097, Jizan 45142, Saudi Arabia
| |
Collapse
|
16
|
Chemical Composition and Antibacterial and Antioxidant Activities of Stem Bark Essential Oil and Extracts of Solanecio gigas. Biochem Res Int 2022; 2022:4900917. [PMID: 35855890 PMCID: PMC9288319 DOI: 10.1155/2022/4900917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
Herbal medication developed from natural resources has to have antibacterial and antioxidant effects. The aim of this research is to look at the chemical makeup of Solanecio gigas (S. gigas) stem bark essential oil (EO), as well as the effectiveness of EO and extracts (chloroform, ethyl acetate, and methanol) against human pathogenic bacteria and their antioxidant activity. The GC-MS analysis identified 23 components, accounting for 98.7% of the total oil containing Methylene chloride (49.2%), sabinene (10.5%), 1-nonene (11.3%), Terpinen-4-ol (6.9%), Camphene (4.3%), γ-terpinene (3.6%), α-phellandrene (2.9%) β-myrcene (2.6%), 1,2,5-Oxadiazol-3-carboxamide, 4,4′-azobis-2,2′-dioxide (2.4%), α-terpinene (1.9%), 1-Octanamine, N-methyl- (1.9%), ρ-cymene (1.6%) as major components. The antibacterial efficacy of the EO and extracts (25, 50, 100, and 200 mg/ml) was demonstrated by the inhibitory zones (8.5 ± 0.47–23.3 ± 0.36 and 7.2 ± 0.25–22.0 ± 0.45 mm), respectively. The MIC values of the extracts and the EO were 120–150 and 240 to <1100 μg/ml, respectively. The EO also demonstrated a significant antibacterial impact. The EO and methanolic extract had free radical scavenging activities with IC50 value, 13.8 ± 0.48 and 4.2 ± 0.04 μg/ml, respectively. In comparison to the other extracts, the methanolic extract had the greatest phenolics (100.2 ± 0.13 μg GAE/mg of dry extract) and flavonoid contents (112.1 ± 0.18 μg CE/mg of dry extract).
Collapse
|
17
|
DNA Barcodes for Accurate Identification of Selected Medicinal Plants (Caryophyllales): Toward Barcoding Flowering Plants of the United Arab Emirates. DIVERSITY 2022. [DOI: 10.3390/d14040262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The need for herbal medicinal plants is steadily increasing. Hence, the accurate identification of plant material has become vital for safe usage, avoiding adulteration, and medicinal plant trading. DNA barcoding has shown to be a valuable molecular identification tool for medicinal plants, ensuring the safety and efficacy of plant materials of therapeutic significance. Using morphological characters in genera with closely related species, species delimitation is often difficult. Here, we evaluated the capability of the nuclear barcode ITS2 and plastid DNA barcodes rbcL and matK to identify 20 medicinally important plant species of Caryophyllales. In our analysis, we applied an integrative approach for species discrimination using pairwise distance-based unsupervised operational taxonomic unit “OTU picking” methods, viz., ABGD (Automated Barcode Gap Analysis) and ASAP (Assemble Species by Automatic Partitioning). Along with the unsupervised OTU picking methods, Supervised Machine Learning methods (SML) were also implemented to recognize divergent taxa. Our results indicated that ITS2 was more successful in distinguishing between examined species, implying that it could be used to detect the contamination and adulteration of these medicinally important plants. Moreover, this study suggests that the combination of more than one method could assist in the resolution of morphologically similar or closely related taxa.
Collapse
|