1
|
Burchardt S, Czernicka M, Kućko A, Pokora W, Kapusta M, Domagalski K, Jasieniecka-Gazarkiewicz K, Karwaszewski J, Wilmowicz E. Exploring the response of yellow lupine (Lupinus luteus L.) root to drought mediated by pathways related to phytohormones, lipid, and redox homeostasis. BMC PLANT BIOLOGY 2024; 24:1049. [PMID: 39506671 PMCID: PMC11539565 DOI: 10.1186/s12870-024-05748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Yellow lupine (Lupinus luteus L.) is a high-protein crop of considerable economic and ecological significance. It has the ability to fix atmospheric nitrogen in symbiosis with Rhizobium, enriching marginal soils with this essential nutrient and reducing the need for artificial fertilizers. Additionally, lupine produces seeds with a high protein content, making it valuable for animal feed production. However, drought negatively affects lupine development, its mutualistic relationship with bacteria, and overall yield. To understand how lupine responds to this stress, global transcriptome sequencing was conducted, along with in-depth biochemical, chromatography, and microscopy analyses of roots subjected to drought. The results presented here contribute to strategies aimed at mitigating the effects of water deficit on lupine growth and development. RESULTS Based on RNA-seq, drought-specific genes were identified and annotated to biological pathways involved in phytohormone biosynthesis/signaling, lipid metabolism, and redox homeostasis. Our findings indicate that drought-induced disruption of redox balance characterized by the upregulation of reactive oxygen species (ROS) scavenging enzymes, coincided with the accumulation of lipid-metabolizing enzymes, such as phospholipase D (PLD) and lipoxygenase (LOX). This disruption also led to modifications in lipid homeostasis, including increased levels of triacylglycerols (TAG) and free fatty acids (FFA), along with a decrease in polar lipid content. Additionally, the stress response involved alterations in the transcriptional regulation of the linolenic acid metabolism network, resulting in changes in the composition of fatty acids containing 18 carbons. CONCLUSION The first comprehensive global transcriptomic profiles of lupine roots, combined with the identification of key stress-responsive molecules, represent a significant advancement in understanding lupine's responses to abiotic stress. The increased expression of the Δ12DESATURASE gene and enhanced PLD activity lead to higher level of linoleic acid (18:2), which is subsequently oxidized by LOX, resulting in membrane damage and malondialdehyde (MDA) accumulation. Oxidative stress elevates the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT), while the conversion of FFAs into TAGs provides protection against ROS. This research offers valuable molecular and biochemical candidates with significant potential to enhance drought tolerance . It enables innovative strategies in lupine breeding and crop improvement to address critical agricultural challenges.
Collapse
Affiliation(s)
- Sebastian Burchardt
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 1 Lwowska Street, Toruń, 87-100, Poland
| | - Małgorzata Czernicka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, Krakow, 31-120, Poland
| | - Agata Kućko
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences- SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Wojciech Pokora
- Department of Plant Physiology and Biotechnology, University of Gdańsk, 59 Wita Stwosza, Gdańsk, 80-308, Poland
| | - Małgorzata Kapusta
- Bioimaging Laboratory, University of Gdańsk, 59 Wita Stwosza, Gdańsk, 80-308, Poland
| | - Krzysztof Domagalski
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 1 Lwowska Street, Toruń, 87-100, Poland
| | | | - Jacek Karwaszewski
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 1 Lwowska Street, Toruń, 87-100, Poland
| | - Emilia Wilmowicz
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 1 Lwowska Street, Toruń, 87-100, Poland.
| |
Collapse
|
2
|
Shu H, Sun S, Wang X, Chen J, Yang C, Zhang G, Han H, Li Z, Liang T, Liu R. Thidiazuron combined with cyclanilide modulates hormone pathways and ROS systems in cotton, increasing defoliation at low temperatures. FRONTIERS IN PLANT SCIENCE 2024; 15:1333816. [PMID: 38633458 PMCID: PMC11021790 DOI: 10.3389/fpls.2024.1333816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
Low temperatures decrease the thidiazuron (TDZ) defoliation efficiency in cotton, while cyclanilide (CYC) combined with TDZ can improve the defoliation efficiency at low temperatures, but the mechanism is unknown. This study analyzed the effect of exogenous TDZ and CYC application on cotton leaf abscissions at low temperatures (daily mean temperature: 15°C) using physiology and transcriptomic analysis. The results showed that compared with the TDZ treatment, TDZ combined with CYC accelerated cotton leaf abscission and increased the defoliation rate at low temperatures. The differentially expressed genes (DEGs) in cotton abscission zones (AZs) were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to compare the enriched GO terms and KEGG pathways between the TDZ treatment and TDZ combined with CYC treatment. TDZ combined with CYC could induce more DEGs in cotton leaf AZs at low temperatures, and these DEGs were related to plant hormone and reactive oxygen species (ROS) pathways. CYC is an auxin transport inhibitor. TDZ combined with CYC not only downregulated more auxin response related genes but also upregulated more ethylene and jasmonic acid (JA) response related genes at low temperatures, and it decreased the indole-3-acetic acid (IAA) content and increased the JA and 1-aminocyclopropane-1-carboxylic acid (ACC) contents, which enhanced cotton defoliation. In addition, compared with the TDZ treatment alone, TDZ combined with CYC upregulated the expression of respiratory burst oxidase homologs (RBOH) genes and the hydrogen peroxide content in cotton AZs at low temperatures, which accelerated cotton defoliation. These results indicated that CYC enhanced the TDZ defoliation efficiency in cotton by adjusting hormone synthesis and response related pathways (including auxin, ethylene, and JA) and ROS production at low temperatures.
Collapse
Affiliation(s)
- Hongmei Shu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Shangwen Sun
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Xiaojing Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Jian Chen
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Changqin Yang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Guowei Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Huanyong Han
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Zhikang Li
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Ting Liang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Ruixian Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| |
Collapse
|
3
|
Kućko A, de Dios Alché J, Tranbarger TJ, Wilmowicz E. Abscisic acid- and ethylene-induced abscission of yellow lupine flowers is mediated by jasmonates. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154119. [PMID: 37879220 DOI: 10.1016/j.jplph.2023.154119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
The appropriate timing of organ abscission determines plant growth, development, reproductive success, and yield in relation to crop species. Among these, yellow lupine is an example of a crop species that loses many fully developed flowers, which limits the formation of pods with high-protein seeds and affects its economic value. Lupine flower abscission, similarly to the separation of other organs, depends on a complex regulatory network functioning in the cells of the abscission zone (AZ). In the present study, genetic, biochemical, and cellular methods were used to highlight the complexity of the interactions among strong hormonal stimulators of abscission, including abscisic acid (ABA), ethylene, and jasmonates (JAs) precisely in the AZ cells, with all results supporting that the JA-related pathway has an important role in the phytohormonal cross-talk leading to flower abscission in yellow lupine. Based on obtained results, we conclude that ABA and ET have positive influence on JAs biosynthesis and signaling pathway in time-dependent manner. Both phytohormones changes lipoxygenase (LOX) gene expression, affects LOX protein abundance, and JA accumulation in AZ cells. We have also shown that the signaling pathway of JA is highly sensitive to ABA and ET, given the accumulation of COI1 receptor and MYC2 transcription factor in response to these phytohormones. The results presented provide novel information about the JAs-dependent separation of organs and provide insight and details about the phytohormone-related mechanisms of lupine flower abscission.
Collapse
Affiliation(s)
- Agata Kućko
- Department of Plant Physiology, Institute of Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Juan de Dios Alché
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008, Granada, Spain.
| | - Timothy John Tranbarger
- UMR DIADE, IRD Centre de Montpellier, Institut de Recherche pour le Développement, Université de Montpellier, 911 Avenue Agropolis BP 64501, 34394 CEDEX 5, Montpellier, France.
| | - Emilia Wilmowicz
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 1 Lwowska Street, 87-100, Toruń, Poland.
| |
Collapse
|
4
|
Singh P, Arif Y, Miszczuk E, Bajguz A, Hayat S. Specific Roles of Lipoxygenases in Development and Responses to Stress in Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:979. [PMID: 35406959 PMCID: PMC9002551 DOI: 10.3390/plants11070979] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 05/24/2023]
Abstract
Lipoxygenases (LOXs), naturally occurring enzymes, are widely distributed in plants and animals. LOXs can be non-sulfur iron, non-heme iron, or manganese-containing dioxygenase redox enzymes. LOXs catalyze the oxidation of polyunsaturated fatty acids into fatty acid hydroperoxides. Linolenic acid, a precursor in the jasmonic acid (JA) biosynthesis, is converted to 12-oxo-phytodienoic acid through oxygenation with LOX, allene oxide synthase, and allene oxide cyclase. Moreover, JA participates in seed germination, fruit ripening, senescence, and many other physio-biochemical processes. LOXs also play crucial roles in defense responses against biotic stress, i.e., insects, pests, pathogenic attacks, and abiotic stress, such as wounding, UV-rays, extreme temperature, oxidative stress, and drought.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India; (P.S.); (Y.A.); (S.H.)
| | - Yamshi Arif
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India; (P.S.); (Y.A.); (S.H.)
| | - Edyta Miszczuk
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
| | - Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
| | - Shamsul Hayat
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India; (P.S.); (Y.A.); (S.H.)
| |
Collapse
|