1
|
Orzoł A, Głowacka K, Pätsch R, Piernik A, Gallegos-Cerda SD, Cárdenas-Pérez S. The local environment influences salt tolerance differently in four Salicornia europaea L. inland populations. Sci Rep 2025; 15:13128. [PMID: 40240466 PMCID: PMC12003738 DOI: 10.1038/s41598-025-97394-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Salinity limits plant growth and crop production, impacting 8.7% of the earth's surface. Plants growing in saline soils have adaptations that help them persist in these harsh environments. In this research, we studied the salt-stress response mechanism of four populations of Salicornia europaea by varying the salinity gradient between 0 and 1000 mM. Our results demonstrate that salinity changes the morphological traits, salinity stress biomarkers, and the activity of antioxidative enzymes in the shoots and roots of these plants differently. The present results suggest that plants from the Salzgraben Salzdahlum population in Germany were the most tolerant to salinity, followed by Inowrocław in Poland, which exhibited a higher content of CAT in roots at 1000 mM, which we attributed to its higher salt tolerance. The differential behavior in Salicornia populations confirms that the tolerance mechanism is population-specific. This study is essential for advancing saline agriculture, developing restoration strategies for saline areas, and exploring S. europaea as a potential functional food. The strong association between halophyte salinity tolerance, high biomass production, and enhanced cellular antioxidant defenses highlights its resilience and suitability for these applications.
Collapse
Affiliation(s)
- Aleksandra Orzoł
- Department of Geobotany and Landscape Planning, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100, Toruń, Poland
| | - Katarzyna Głowacka
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, 10-719, Olsztyn, Poland
| | - Ricarda Pätsch
- IBU Institute of Biology and Environmental Science, Carl Von Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Agnieszka Piernik
- Department of Geobotany and Landscape Planning, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100, Toruń, Poland
| | - Susana Dianey Gallegos-Cerda
- Department of Geobotany and Landscape Planning, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100, Toruń, Poland
| | - Stefany Cárdenas-Pérez
- Department of Geobotany and Landscape Planning, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100, Toruń, Poland.
| |
Collapse
|
2
|
Narayanan K, Chellappan RK. Exploring the growth and phytoremediation efficacy of Suaeda fruticosa in agricultural soil contaminated by shrimp aquaculture. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025; 27:437-447. [PMID: 39520281 DOI: 10.1080/15226514.2024.2426177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Plants face numerous environmental challenges from biotic and abiotic stressors, with soil salinization emerging as a significant global concern. The coastal regions of Tamil Nadu, face severe environmental challenges due to discharge of saline water from shrimp farms exacerbates this issue, compromising the viability of paddy and other crops in the vicinity. This study explores the phytoremediation potential of Suaeda fruticosa in addressing soil salinity resulting from shrimp farming activities under field conditions over a 120-day period to restore soil health in salt affected soil. This research demonstrates Suaeda fruticosa's exceptional salt tolerance and bioaccumulation potential in facilitating soil restoration. Significant enhancements were observed in various growth parameters, including 466% increase in plant height, 338% in fresh weight and 387% in dry weight. Biochemical parameters also showed substantial enhancements with total chlorophyll, protein, proline, phenol, and glycinebetaine levels increasing by 655%, 588%, 690%, 153%, and 531%, respectively. Enzymatic activities exhibited notable elevations as well, with catalase, peroxidase, and polyphenol oxidase activities escalating by 258%, 587%, and 121% respectively, indicating robust adaptation to saline environments. Moreover, Suaeda fruticosa exhibited remarkable bioaccumulation capabilities, accumulating 461 kg NaCl ha-1. This led to substantial improvements in soil characteristics, including a reduction in pH from 8.8 to 6.49, electrical conductivity from 5.7 to 1.53 dSm-1, and sodium adsorption ratio from 16.1 to 4.4 mmol L-1. The successive cultivation of Suaeda fruticosa in this study, has proven to be a viable strategy for reclaiming salt-affected lands, thereby alleviating a significant constraint on crop productivity.
Collapse
Affiliation(s)
- Killivalavan Narayanan
- Phytoremediation Lab, Department of Botany, Faculty of Science, Annamalai University, Chidambaram, India
| | | |
Collapse
|
3
|
Augusthy S, Nizam A, Kumar A. The diversity, drivers, consequences and management of plant invasions in the mangrove ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173851. [PMID: 38871312 DOI: 10.1016/j.scitotenv.2024.173851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Mangrove ecosystems, which occupy intertidal environments across tropical and subtropical regions, provide crucial ecosystem services, such as protecting the coastal areas by reducing the impact of cyclones, storms, and tidal waves. Anthropogenic activities such as human settlements, deforestation, pollution, and climate change have increased the risk of biological invasions in mangrove habitats. Plant species can be introduced to mangrove habitats via anthropogenic means, such as trade and transportation, urbanisation, and agriculture, as well as through natural processes like wind, floods, cyclones, and animal-assisted seed dispersal. Additionally, some native plants can become invasive due to the changes in the mangrove ecosystem. Invasive species can significantly affect coastal ecosystems by out-competing native flora for resources, thereby altering fundamental properties, functions, and ecosystem services of the mangrove forests. The successful establishment of invasive species depends on a complex interplay of factors involving the biological attributes of the invading species and the ecological dynamics of the invaded habitat. This review focuses on exploring the mechanisms of invasion, strategies used by invasive plants, the effects of invasive plants on mangrove habitats and their possible management strategies. Based on the literature, managing invasive species is possible by biological, chemical, or physical methods. Some non-native mangrove species introduced through restoration activities can often become more intrusive than native species. Therefore, restoration activities should prioritise avoiding the use of non-native plant species.
Collapse
Affiliation(s)
- Somitta Augusthy
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod 671316, Kerala, India
| | - Ashifa Nizam
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod 671316, Kerala, India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod 671316, Kerala, India.
| |
Collapse
|
4
|
Voigt RAL, MacFarlane GR. Sub-lethal effects of metal(loid) contamination on the halophyte Sarcocornia quinqueflora with links to plant photosynthetic performance and biomass - A field study. MARINE POLLUTION BULLETIN 2024; 205:116569. [PMID: 38889664 DOI: 10.1016/j.marpolbul.2024.116569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Two saltmarsh locations within Lake Macquarie, NSW, Australia were selected to investigate the uptake and partitioning of metal(loid)s Cu, Zn, As, Se, Cd and Pb in the Australian saltmarsh halophyte, Sarcocornia quinqueflora and the associated sub-lethal effects of metal(loid)s on plant health, including photosynthetic performance, biomass, and productivity. Metal(loid)s primarily accumulated to roots (BCF > 1). Barriers to transport were observed at the root to non-photosynthetic stem transition (TF < 1) for all metal(loid)s, suggesting this species is suitable for phytostabilisation. Sediment and plant tissue metal(loid) concentrations were significantly correlated with photosynthetic performance and plant biomass. As such, the action of sediment and tissue metal(loid)s on photosynthetic performance and the subsequent effect on biomass of S.quinqueflora appear to be suitable targets for molecular analyses to further elucidate mechanisms responsible for the observed adverse effects and the development of adverse outcome pathways.
Collapse
Affiliation(s)
- Rebecca A L Voigt
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, 2308, Australia.
| |
Collapse
|
5
|
El-Ghamry AM, El-Sherpiny MA, Alkharpotly AEA, Ghazi DA, Helmy AA, Siddiqui MH, Pessarakli M, Hossain MA, Elghareeb EM. The synergistic effects of organic composts and microelements co-application in enhancing potato productivity in saline soils. Heliyon 2024; 10:e32694. [PMID: 38988530 PMCID: PMC11233941 DOI: 10.1016/j.heliyon.2024.e32694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/12/2024] Open
Abstract
Soil salinity is a major threat hindering the optimum growth, yield, and nutritional value of potato. The application of organic composts and micronutrients can effectively ameliorate the salinity-deleterious effects on potato growth and productivity. Herein, the combined effect of banana and soybean composts (BCo and SCo) application alongside foliar supplementation of boron (B), selenium (Se), cobalt (Co), and titanium (Ti) were investigated for improving growth, physiology, and agronomical attributes of potato plants grown in saline alluvial soil. Salinity stress significantly reduced biomass accumulation, chlorophyll content, NPK concentrations, yield attributes, and tuber quality, while inducing malondialdehyde and antioxidant enzymes. Co-application of either BCo or SCo with trace elements markedly alleviated salinity-adverse effects on potato growth and productivity. These promotive effects were also associated with a significant reduction in malondialdehyde content and activities of peroxidase and superoxide dismutase enzymes. The co-application of BCo and B/Se was the most effective among other treatments. Principle component analysis and heatmap also highlighted the efficacy of the co-application of organic composts and micronutrients in improving the salinity tolerance of potato plants. In essence, the co-application of BCo with B and Se can be adopted as a promising strategy for enhancing the productivity of potato crops in salt-affected soils.
Collapse
Affiliation(s)
- Ayman M. El-Ghamry
- Soil Sciences Department, Faculty of Agriculture, Mansoura University, 35516, Egypt
| | - Mohamed A. El-Sherpiny
- Soil, Water and Environment Research Institute, Agriculture Research Center, El-Gama St., Giza, 12619, Egypt
| | - Abd-Elbaset A. Alkharpotly
- Horticulture Department, Faculty of Agriculture and Natural Resources, Aswan University, 81528, Egypt
- Horticulture Department, Faculty of desert and environmental agricultural, Matrouh University, 51511, Egypt
| | - Dina A. Ghazi
- Soil Sciences Department, Faculty of Agriculture, Mansoura University, 35516, Egypt
| | - Amal A. Helmy
- Soil Sciences Department, Faculty of Agriculture, Mansoura University, 35516, Egypt
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Eman M. Elghareeb
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
6
|
Voigt RAL, MacFarlane GR. Tolerance of the Australian halophyte, beaded samphire, Sarcocornia quinqueflora, to Pb and Zn under glasshouse conditions: Evaluating metal uptake and partitioning, photosynthetic performance, biomass, and growth. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106887. [PMID: 38461756 DOI: 10.1016/j.aquatox.2024.106887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Saltmarsh sediments are susceptible to accumulation of excessive concentrations of anthropogenically elevated metals such as lead (Pb) and zinc (Zn). The resident salt tolerant plants of saltmarsh ecosystems form the basal underpinning of these ecosystems. As such, metal-associated adverse impacts on their physiology can have detrimental flow-on effects at individual, population, and community levels. The present study assessed the accumulation and partitioning of ecologically relevant concentrations of Pb, Zn, and their combination in a dominant Australian saltmarsh species, Sarcocornia quinqueflora. Plants were hydroponically maintained under glasshouse conditions for 16 weeks exposure to either Pb (20 µg l-1), Zn (100 µg l-1), or their mixture. We evaluated the chronic toxicological effects of single and mixed metal treatments with reference to metal uptake and partitioning, photosynthetic performance, photosynthetic pigment concentration, biomass and growth. Lead was more toxic than Zn, and Zn appeared to have an antagonistic effect on the toxicological effects of Pb in S.quinqueflora in terms of metal uptake, photosynthetic performance, photosynthetic pigment concentrations, and growth. Indeed, the tolerance index was 55 % in plants treated with Pb compared to 77 % in Zn treated plants and 73 % in Pb+Zn treated plants. Finally, Sarcocornia quinqueflora primarily accumulated both Pb and Zn in roots at concentrations exceeding unity whilst translocation of these metals to above ground tissues was restricted regardless of treatment. This suggests that S. quinqueflora may be suitable for phytostabilisation of Zn, and of Pb particularly in the presence of Zn.
Collapse
Affiliation(s)
- Rebecca A L Voigt
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, 2308, Australia.
| |
Collapse
|
7
|
Vuerich M, Cingano P, Trotta G, Petrussa E, Braidot E, Scarpin D, Bezzi A, Mestroni M, Pellegrini E, Boscutti F. New perspective for the upscaling of plant functional response to flooding stress in salt marshes using remote sensing. Sci Rep 2024; 14:5472. [PMID: 38443548 PMCID: PMC10914724 DOI: 10.1038/s41598-024-56165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/02/2024] [Indexed: 03/07/2024] Open
Abstract
Understanding the response of salt marshes to flooding is crucial to foresee the fate of these fragile ecosystems, requiring an upscaling approach. In this study we related plant species and community response to multispectral indices aiming at parsing the power of remote sensing to detect the environmental stress due to flooding in lagoon salt marshes. We studied the response of Salicornia fruticosa (L.) L. and associated plant community along a flooding and soil texture gradient in nine lagoon salt marshes in northern Italy. We considered community (i.e., species richness, dry biomass, plant height, dry matter content) and individual traits (i.e., annual growth, pigments, and secondary metabolites) to analyze the effect of flooding depth and its interplay with soil properties. We also carried out a drone multispectral survey, to obtain remote sensing-derived vegetation indices for the upscaling of plant responses to flooding. Plant diversity, biomass and growth all declined as inundation depth increased. The increase of soil clay content exacerbated flooding stress shaping S. fruticosa growth and physiological responses. Multispectral indices were negatively related with flooding depth. We found key species traits rather than other community traits to better explain the variance of multispectral indices. In particular stem length and pigment content (i.e., betacyanin, carotenoids) were more effective than other community traits to predict the spectral indices in an upscaling perspective of salt marsh response to flooding. We proved multispectral indices to potentially capture plant growth and plant eco-physiological responses to flooding at the large scale. These results represent a first fundamental step to establish long term spatial monitoring of marsh acclimation to sea level rise with remote sensing. We further stressed the importance to focus on key species traits as mediators of the entire ecosystem changes, in an ecological upscaling perspective.
Collapse
Affiliation(s)
- Marco Vuerich
- DI4A Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy.
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy.
| | - Paolo Cingano
- DI4A Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
- Department of Environmental and Life Sciences (DSV), University of Trieste, 34127, Trieste, Italy
| | - Giacomo Trotta
- DI4A Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
- Department of Environmental and Life Sciences (DSV), University of Trieste, 34127, Trieste, Italy
| | - Elisa Petrussa
- DI4A Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| | - Enrico Braidot
- DI4A Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| | - Dora Scarpin
- DI4A Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| | - Annelore Bezzi
- Department of Mathematics and Geosciences, University of Trieste, 34128, Trieste, Italy
| | - Michele Mestroni
- Agricoltura Innovativa Mestroni, 33036, Mereto di Tomba, UD, Italy
| | - Elisa Pellegrini
- DI4A Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| | - Francesco Boscutti
- DI4A Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| |
Collapse
|
8
|
Koźmińska A, Kamińska I, Hanus-Fajerska E. Sulfur-Oxidizing Bacteria Alleviate Salt and Cadmium Stress in Halophyte Tripolium pannonicum (Jacq.) Dobrocz. Int J Mol Sci 2024; 25:2455. [PMID: 38473702 DOI: 10.3390/ijms25052455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this study was to investigate how introducing halophilic sulfur-oxidizing bacteria (SOB) Halothiobacillus halophilus to the growth substrate affects the physiological and biochemical responses of the halophyte Tripolium pannonicum (also known as sea aster or seashore aster) under salt and cadmium stress conditions. This study assessed the plant's response to these stressors and bacterial inoculation by analyzing various factors including the accumulation of elements such as sodium (Na), chloride (Cl), cadmium (Cd) and sulfur (S); growth parameters; levels of photosynthetic pigments, proline and phenolic compounds; the formation of malondialdehyde (MDA); and the plant's potential to scavenge 2,2-Diphenyl-1-picrylhydrazyl (DPPH). The results revealed that bacterial inoculation was effective in mitigating the deleterious effect of cadmium stress on some growth criteria. For instance, stem length was 2-hold higher, the growth tolerance index was 3-fold higher and there was a 20% increase in the content of photosynthetic pigments compared to non-inoculated plants. Furthermore, the SOB contributed to enhancing cadmium tolerance in Tripolium pannonicum by increasing the availability of sulfur in the plant's leaves, which led to the maintenance of an appropriate, about 2-fold-higher level of phenolic compounds (phenylpropanoids and flavonols), as well as chloride ions. The level of MDA decreased after bacterial application in all experimental variants except when both salt and cadmium stress were present. These findings provide novel insights into how halophytes respond to abiotic stress following inoculation of the growth medium with sulfur-oxidizing bacteria. The data suggest that inoculating the substrate with SOB has a beneficial effect on T. pannonicum's tolerance to cadmium stress.
Collapse
Affiliation(s)
- Aleksandra Koźmińska
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Cracow, Poland
| | - Iwona Kamińska
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Cracow, Poland
| | - Ewa Hanus-Fajerska
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Cracow, Poland
| |
Collapse
|
9
|
Mosa A, Hawamdeh OA, Rady M, Taha AA. Ecotoxicological monitoring of potentially toxic elements contamination in Eucalyptus forest plantation subjected to long-term irrigation with recycled wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121739. [PMID: 37121299 DOI: 10.1016/j.envpol.2023.121739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/15/2023] [Accepted: 04/28/2023] [Indexed: 05/04/2023]
Abstract
Afforestation is an evergreen technology for restraining greenhouse gases (GHGs) emission and improving soil carbon sink in arid and semi-arid regions. Nonetheless, the long-term impact of woody forests irrigation using recycled wastewater resources remains inconclusive so far. For this purpose, the ecological risk benchmarks of potentially toxic elements (PTEs) were investigated on Eucalyptus forest plantation in order to gauge their bioavailability in the rhizospheric layer of Typic Torripsammentsoil and their accretion capacity in the biosphere. Water quality guidelines pointed to a moderate degree of restriction on use with elevated levels of PTEs. Notably, concentrations of As, B, Cd, Cr, Cu, Mn, Ni, V and Zn were above the permissible limits for irrigation. The geospatial mapping of PTEs concentration in soil pointed to elevated levels of most PTEs, particularly in the deforestated areas. Some of PTEs (Cd, Cu, Hg and Zn) showed values above the permissible limits. A spectrum of ecological risk indices showed considerable to high degree of contamination. Among PTEs, the water-soluble and exchangeable fractions showed high values of As, Cd and Hg (20.7, 17.2 and 11.0%, respectively). Sequential extraction showed variations among PTEs in their tendency to bind with different soil geochemical fractions: (i) carbonate (Cd, Zn and Cu), (ii) Fe-Mn oxides (Pb, Zn and Mn) and (iii) organic matter (B, Pb and Hg). Eight fungal species including Aspergillus flavus, Fusarium solani, Cephalosporimsp., Penicilliumsp., Rhizoctonia solani, Aspergillus niger, Botrytissp. and Verticilliumsp. were dominated in soil. Meanwhile, Agrobacteriumsp., phosphate solubilizing bacteria, nitrogen fixing bacteria and Escherichia coli were the dominant bacterial strains. Values of bioaccumulation index varied among PTEs, wherein B (5.15), Ni (1.98), Mn (1.62) and Cd (1.02) exhibited higher phytoextraction potentials. Other PTEs, however, exhibited values below 1.0 confirming their low phytoextraction potentials. Findings of this investigation, therefore, provide insights into biochemical signals of PTEs contamination in woody forest plantations and the urgent need to contextualize the large-scale utilization of recycled wastewater resources in such vulnerable areas.
Collapse
Affiliation(s)
- Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516, Mansoura, Egypt.
| | - Olfat A Hawamdeh
- Soils Department, Faculty of Agriculture, Mansoura University, 35516, Mansoura, Egypt; Chemistry Department, Faculty of Agriculture and Science, Jerash Private University, 26150, Jerash, Jordan
| | - Mohamed Rady
- Soils Department, Faculty of Agriculture, Mansoura University, 35516, Mansoura, Egypt
| | - Ahmed A Taha
- Soils Department, Faculty of Agriculture, Mansoura University, 35516, Mansoura, Egypt
| |
Collapse
|
10
|
Singh VK, Singh R, Rajput VD, Singh VK. Halophytes for the sustainable remediation of heavy metal-contaminated sites: Recent developments and future perspectives. CHEMOSPHERE 2023; 313:137524. [PMID: 36509191 DOI: 10.1016/j.chemosphere.2022.137524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Increasing land degradation by high level of metal wastes is of prime concern for the global research communities. In this respect, halophytes having specific features like salt glands, exclusion of excess ions, heavy metals (HMs) compartmentalization, large pool of antioxidants, and associations with metal-tolerant microbes are of great promise in the sustainable clean-up of contaminated sites. However, sustainable clean-up of HMs by a particular halophyte plant species is governed considerably by physico-chemical characteristics of soil and associated microbial communities. The present review has shed light on the superiority of halophytes over non-halophytes, mechanisms of metal-remediation, recent developments and future perspectives pertaining to the utilization of halophytes in management of HM-contaminated sites with the aid of bibliometric analysis. The results revealed that the research field is receiving considerable attention in the last 5-10 years by publishing ∼50-90% documents with an annual growth rate of 15.41% and citations per document of 29.72. Asian (viz., China, India, and Pakistan) and European (viz., Spain, Portugal, Belgium, Argentina) countries have been emerged as the major regions conducting and publishing extensive research on this topic. The investigations conducted both under in vitro and field conditions have reflected the inherent potential of halophyte as sustainable research tool for successfully restoring the HM-contaminated sites. The findings revealed that the microbial association with halophytes under different challenging conditions is a win-win approach for metal remediation. Therefore, exploration of new halophyte species and associated microorganisms (endophytic and rhizospheric) from different geographical locations, and identification of genes conferring tolerance and phytoremediation of metal contaminants would further advance the intervention of halophytes for sustainable ecological restoration.
Collapse
Affiliation(s)
- Vipin Kumar Singh
- Department of Botany, K. S. Saket P. G. College, (Affiliated to Dr. Rammanohar Lohia Avadh University, Ayodhya), Ayodhya, 224123, India.
| | - Rishikesh Singh
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia.
| | - Vivek Kumar Singh
- University Department of Botany, Tilka Manjhi Bhagalpur University, Bhagalpur, 812007, Bihar, India.
| |
Collapse
|
11
|
Grigore MN, Vicente O. Wild Halophytes: Tools for Understanding Salt Tolerance Mechanisms of Plants and for Adapting Agriculture to Climate Change. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020221. [PMID: 36678935 PMCID: PMC9863273 DOI: 10.3390/plants12020221] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 05/27/2023]
Abstract
Halophytes, wild plants adapted to highly saline natural environments, represent extremely useful-and, at present, underutilised-experimental systems with which to investigate the mechanisms of salt tolerance in plants at the anatomical, physiological, biochemical and molecular levels. They can also provide biotechnological tools for the genetic improvement of salt tolerance in our conventional crops, such as salt tolerance genes or salt-induced promoters. Furthermore, halophytes may constitute the basis of sustainable 'saline agriculture' through commercial cultivation after some breeding to improve agronomic traits. All these issues are relevant in the present context of climate emergency, as soil salinity is-together with drought-the most critical environmental factor in reducing crop yield worldwide. In fact, climate change represents the most serious challenge for agricultural production and food security in the near future. Several of the topics mentioned above-mainly referring to basic studies on salt tolerance mechanisms-are addressed in the articles published within this Special Issue.
Collapse
Affiliation(s)
- Marius-Nicușor Grigore
- Faculty of Medicine and Biological Sciences, “Ștefan cel Mare” University of Suceava, Str. Universității 13, 720229 Suceava, Romania
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV, UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
12
|
Akram M, Naz N, Ali H. Anatomical and physiological systematics of Capparis decidua (Forsskal.) Edgew from different habitats of Cholistan Desert, Pakistan. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Salinity Tolerance and Ion Accumulation of Coastal and Inland Accessions of Clonal Climbing Plant Species Calystegia sepium in Comparison with a Coastal-Specific Clonal Species Calystegia soldanella. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb13040032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Plant species adapted to saline habitats represent an important resource in the assessment of salinity tolerance mechanisms. The aim of the present study was to analyze salinity tolerance and ion accumulation characteristics for various accessions of Calystegia sepium from different habitats in comparison to these of Calystegia soldanella in controlled conditions. Plants were introduced in culture using stem explants with leaf and were cultivated in controlled conditions under six different substrate salinities. Salinity tolerance of both C. sepium and C. soldanella plants was relatively high, but the tolerance of particular accessions did not depend on the substrate salinity level in their natural habitats. C. sepium accession from a mesophytic non-saline habitat was only slightly negatively affected by increasing substrate salinity. However, coastal accession of C. sepium and coastal-specific species C. soldanella had some similarities in ion accumulation characteristics, both accumulating a high concentration of soluble ions in aboveground parts and excluding them from underground parts. All C. sepium accessions from different habitats represented varied physiotypes, possibly associated with their genetic differences. C. sepium accessions from different habitats can be suggested as models for further studies aiming at dissecting possible genetic, epigenetic and physiological mechanisms of adaptation to heterogeneous environmental conditions.
Collapse
|
14
|
Yu W, Wu W, Zhang N, Wang L, Wang Y, Wang B, Lan Q, Wang Y. Research Advances on Molecular Mechanism of Salt Tolerance in Suaeda. BIOLOGY 2022; 11:biology11091273. [PMID: 36138752 PMCID: PMC9495733 DOI: 10.3390/biology11091273] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022]
Abstract
Plant growth and development are inevitably affected by various environmental factors. High salinity is the main factor leading to the reduction of cultivated land area, which seriously affects the growth and yield of plants. The genus Suaeda is a kind of euhalophyte herb, with seedlings that grow rapidly in moderately saline environments and can even survive in conditions of extreme salinity. Its fresh branches can be used as vegetables and the seed oil is rich in unsaturated fatty acids, which has important economic value and usually grows in a saline environment. This paper reviews the progress of research in recent years into the salt tolerance of several Suaeda species (for example, S. salsa, S. japonica, S. glauca, S. corniculata), focusing on ion regulation and compartmentation, osmotic regulation of organic solutes, antioxidant regulation, plant hormones, photosynthetic systems, and omics (transcriptomics, proteomics, and metabolomics). It helps us to understand the salt tolerance mechanism of the genus Suaeda, and provides a theoretical foundation for effectively improving crop resistance to salt stress environments.
Collapse
Affiliation(s)
- Wancong Yu
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Wenwen Wu
- Department of Agronomy, Tianjin Agricultural University, Tianjin 300392, China
| | - Nan Zhang
- Department of Agronomy, Tianjin Agricultural University, Tianjin 300392, China
| | - Luping Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Yiheng Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Bo Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Qingkuo Lan
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
- Correspondence: (Q.L.); (Y.W.)
| | - Yong Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
- Correspondence: (Q.L.); (Y.W.)
| |
Collapse
|