1
|
Generalić Mekinić I, Politeo O, Ljubenkov I, Mastelić L, Popović M, Veršić Bratinčević M, Šimat V, Radman S, Skroza D, Ninčević Runjić T, Runjić M, Dumičić G, Urlić B. The alphabet of sea fennel: Comprehensive phytochemical characterisation of Croatian populations of Crithmum maritimum L. Food Chem X 2024; 22:101386. [PMID: 38681233 PMCID: PMC11052897 DOI: 10.1016/j.fochx.2024.101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
Extreme environmental conditions affect the synthesis and accumulation of bioactive metabolites in halophytic plants. The aim of this study was to investigate the presence and quantity of key health-promoting phytochemicals in Croatian sea fennel, one of the most popular Mediterranean halophytes with a wide range of uses. The EOs were characterised by a high content of limonene (up to 93%), while the fatty acid profile shows a low content of oleic acid and the presence of valuable linoleic acid (ω-6) and linolenic acid (ω-3) in high percentages. The dominances of lutein and α-tocopherol were also confirmed in all samples. The results confirm the great variability in the chemistry of sea fennel populations in the Mediterranean region, with significant differences in the composition of the Croatian samples compared to the others, as well as the presence and high concentrations of the analysed bioactive compounds that contribute to the plant's health-promoting attributes.
Collapse
Affiliation(s)
- Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Olivera Politeo
- Department of Biochemistry, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Ivica Ljubenkov
- Department of Chemistry, Faculty of Science, University of Split, R. Boškovića 33, HR-21000 Split, Croatia
| | - Linda Mastelić
- Department of Chemistry, Faculty of Science, University of Split, R. Boškovića 33, HR-21000 Split, Croatia
| | - Marijana Popović
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia
| | - Maja Veršić Bratinčević
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia
| | - Vida Šimat
- Department of Marine Studies, University of Split, Ruđera Boškovića 37, HR-21000 Split, Croatia
| | - Sanja Radman
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Danijela Skroza
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Tonka Ninčević Runjić
- Department of Plant Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia
| | - Marko Runjić
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia
| | - Gvozden Dumičić
- Department of Plant Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia
| | - Branimir Urlić
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia
| |
Collapse
|
2
|
Correia I, Antunes M, Tecelão C, Neves M, Pires CL, Cruz PF, Rodrigues M, Peralta CC, Pereira CD, Reboredo F, Moreno MJ, Brito RMM, Ribeiro VS, Vaz DC, Campos MJ. Nutritive Value and Bioactivities of a Halophyte Edible Plant: Crithmum maritimum L. (Sea Fennel). PLANTS (BASEL, SWITZERLAND) 2024; 13:427. [PMID: 38337960 PMCID: PMC10857157 DOI: 10.3390/plants13030427] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Crithmum maritimum L. (sea fennel), an edible xerophyte of coastal habitats, is considered an emerging cash crop for biosaline agriculture due to its salt-tolerance ability and potential applications in the agri-food sector. Here, the nutritional value and bioactive properties of sea fennel are described. Sea fennel leaves, flowers, and schizocarps are composed of carbohydrates (>65%) followed by ash, proteins, and lipids. Sea fennel's salty, succulent leaves are a source of omega-6 and omega-3 polyunsaturated fatty acids, especially linoleic acid. Extracts obtained from flowers and fruits/schizocarps are rich in antioxidants and polyphenols and show antimicrobial activity against Staphylococcus aureus, Staphylococcus epidermis, Candida albicans, and Candida parapsilosis. Plant material is particularly rich in sodium (Na) but also in other nutritionally relevant minerals, such as calcium (Ca), chlorine (Cl), potassium (K), phosphorus (P), and sulfur (S), beyond presenting a potential prebiotic effect on Lactobacillus bulgaricus and being nontoxic to human intestinal epithelial Caco-2 model cells, up to 1.0% (w/v). Hence, the rational use of sea fennel can bring nutrients, aroma, and flavor to culinary dishes while balancing microbiomes and contributing to expanding the shelf life of food products.
Collapse
Affiliation(s)
- Iris Correia
- Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal (M.N.)
| | - Madalena Antunes
- Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal (M.N.)
| | - Carla Tecelão
- Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal (M.N.)
- School of Tourism and Marine Technology, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Marta Neves
- Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal (M.N.)
- School of Tourism and Marine Technology, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Cristiana L. Pires
- Coimbra Chemistry Centre (CQC), Institute of Molecular Sciences, Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal (P.F.C.); (M.J.M.)
| | - Pedro F. Cruz
- Coimbra Chemistry Centre (CQC), Institute of Molecular Sciences, Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal (P.F.C.); (M.J.M.)
| | - Maria Rodrigues
- Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials (LSRE-LCM), ESTG-IPLeiria, 2411-901 Leiria, Portugal; (M.R.); (V.S.R.)
- ALiCE–Associate Laboratory in Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Claúdia C. Peralta
- Coimbra Chemistry Centre (CQC), Institute of Molecular Sciences, Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal (P.F.C.); (M.J.M.)
| | - Cidália D. Pereira
- School of Health Sciences, Polytechnic of Leiria, 2411-901 Leiria, Portugal;
- Centre for Innovative Care and Health Technology, Polytechnic of Leiria, 2411-901 Leiria, Portugal
| | - Fernando Reboredo
- GeoBioTec, FCT, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| | - Maria João Moreno
- Coimbra Chemistry Centre (CQC), Institute of Molecular Sciences, Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal (P.F.C.); (M.J.M.)
| | - Rui M. M. Brito
- Coimbra Chemistry Centre (CQC), Institute of Molecular Sciences, Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal (P.F.C.); (M.J.M.)
| | - Vânia S. Ribeiro
- Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials (LSRE-LCM), ESTG-IPLeiria, 2411-901 Leiria, Portugal; (M.R.); (V.S.R.)
- ALiCE–Associate Laboratory in Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- School of Health Sciences, Polytechnic of Leiria, 2411-901 Leiria, Portugal;
- Centre for Innovative Care and Health Technology, Polytechnic of Leiria, 2411-901 Leiria, Portugal
| | - Daniela C. Vaz
- Coimbra Chemistry Centre (CQC), Institute of Molecular Sciences, Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal (P.F.C.); (M.J.M.)
- Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials (LSRE-LCM), ESTG-IPLeiria, 2411-901 Leiria, Portugal; (M.R.); (V.S.R.)
- ALiCE–Associate Laboratory in Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- School of Health Sciences, Polytechnic of Leiria, 2411-901 Leiria, Portugal;
| | - Maria Jorge Campos
- Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal (M.N.)
- School of Tourism and Marine Technology, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| |
Collapse
|
3
|
Calvo MM, López-Caballero ME, Martínez-Alvarez O. Identification of Polyphenols in Sea Fennel ( Crithmum maritimum) and Seaside Arrowgrass ( Triglochin maritima) Extracts with Antioxidant, ACE-I, DPP-IV and PEP-Inhibitory Capacity. Foods 2023; 12:3886. [PMID: 37959005 PMCID: PMC10650209 DOI: 10.3390/foods12213886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Sea fennel and seaside arrowgrass are two abundant but underutilized halophytes along the Atlantic and Mediterranean coasts. This study investigated the antioxidant capacity and the potential antihypertensive (Angiotensin Converting Enzyme I, ACE-I inhibition), hypoglycaemic (Dipeptidyl Peptidase IV, DPP-IV inhibition), and nootropic (Prolyl Endopeptidase, PEP inhibition) activity of their polyphenol extracts. They had a high phenol content (21-24 mEq GA/g), antioxidant capacity evaluated using the ABTS (17-2 mg ascorbic acid/g) and FRAP (170-270 mM Mohr's salt/g) assays, and effective ACE-inhibiting properties (80-90% inhibiting activity at final concentration of 0.5 mg/mL). Additionally, the sea fennel extract displayed high DPP-IV inhibitory capacity (73% at 1 mg/mL), while the seaside arrowgrass extract exhibited potent Prolyl endopeptidase inhibitory capacity (75% at 1 mg/mL). Fractionation by HPLC concentrated the bioactive molecules in two fractions, for which the composition was analyzed by LC-MS/MS. Different chlorogenic acids seemed to play an important role in the bioactivity of sea fennel extract, and different flavonoids, mainly apigenin, luteolin and chrysoeriol, in the bioactivity of the seaside arrowgrass extract. Given their potential health benefits, these extracts could serve as valuable bioactive ingredients and could potentially encourage the cultivation of these species in regions where traditional crops face challenges in growth.
Collapse
Affiliation(s)
| | | | - Oscar Martínez-Alvarez
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 6th José Antonio Novais St., 28040 Madrid, Spain; (M.M.C.); (M.E.L.-C.)
| |
Collapse
|
4
|
Qiu J, Shi M, Shi S, Wu S. Pharmacognostic standardization and machine learning-based investigations on Akebia quinata and Akebia trifoliata. Biomed Chromatogr 2023; 37:e5700. [PMID: 37429816 DOI: 10.1002/bmc.5700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/24/2023] [Accepted: 06/15/2023] [Indexed: 07/12/2023]
Abstract
Currently, Akebiae Caulis is being used in clinical practice, but there are few reseaches on its different varieties. To ensure the accuracy and effectiveness of clinical practice, this study distinguished the Akebia quinata (Thunb.) Decne. and Akebia trifoliata (Thunb.) Koidz, using organoleptic evaluation, microscopic observation, fluorescence reaction, physicochemical properties, thin-layer chromatography, IR spectroscopy, HPLC, four machine learning models, and in vitro antioxidant methods. Analysis of the powders of these two varieties using optical microscopy revealed the presence of starch granules, cork cells, crystal fibers, scalariform vessels, and wood fibers. Scanning electron microscopy revealed the presence of scalariform vessels, pitted vessels, wood fibers, and calcium oxalate crystals. Several tissues, including the cork layer, fiber population, cortex, phloem, pith, xylem, and ray, were found in the transverse section. In addition, thin-layer chromatography was used to identify two components: oleanolic acid and calceolarioside B; 11 common peaks were identified in 15 batches of SAQ and 5 batches of SAT by using HPLC. Support vector machine, BP neural networks, and GA-bp neural networks were able to predict 100% accurately of the different origins of stem of Akebia quinate (Thunb.) Decne (SAQ) and Akebia trifoliata (Thunb.) Koidz (SAT). Extreme learning machine achieved a correct rate of 87.5%. Meanwhile, Fourier-transform infrared spectroscopy fingerprint identified nine characteristic absorption peaks of the secondary metabolites of SAQ and SAT. 2,2-Diphenyl-1-1-picrylhydrazyl experiment revealed that the IC50 values of SAQ and SAT extracts were 155.49 and 128.75 μg/ml, respectively. For the 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) assay, the IC50 value of SAT extract was found to be 269.24 μg/ml, which was lower than that of SAQ extract (IC50 = 358.99 μg/ml). This study successfully used different methods to differentiate between A. quinata (Thunb.) Decne. and A. trifoliata (Thunb.) Koidz., to help decide on which type to use for clinical application.
Collapse
Affiliation(s)
- Junjie Qiu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Menglin Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Senlin Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Suxiang Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
5
|
Kraouia M, Nartea A, Maoloni A, Osimani A, Garofalo C, Fanesi B, Ismaiel L, Aquilanti L, Pacetti D. Sea Fennel ( Crithmum maritimum L.) as an Emerging Crop for the Manufacturing of Innovative Foods and Nutraceuticals. Molecules 2023; 28:4741. [PMID: 37375298 PMCID: PMC10303230 DOI: 10.3390/molecules28124741] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Sea fennel (Crithmum maritimum L.) is a perennial, strongly aromatic herb that has been used since ancient times in cuisine and folk medicine due to its renowned properties. Recently described as a "cash" crop, sea fennel is an ideal candidate for the promotion of halophyte agriculture in the Mediterranean basin due to its acknowledged adaptation to the Mediterranean climate, its resilience to risks/shocks related to climate changes, and its exploitability in food and non-food applications, which generates an alternative source of employment in rural areas. The present review provides insight into the nutritional and functional traits of this new crop as well as its exploitation in innovative food and nutraceutical applications. Various previous studies have fully demonstrated the high biological and nutritional potential of sea fennel, highlighting its high content of bioactive compounds, including polyphenols, carotenoids, ω-3 and ω-6 essential fatty acids, minerals, vitamins, and essential oils. Moreover, in previous studies, this aromatic halophyte showed good potential for application in the manufacturing of high-value foods, including both fermented and unfermented preserves, sauces, powders, and spices, herbal infusions and decoctions, and even edible films, as well as nutraceuticals. Further research efforts are needed to fully disclose the potential of this halophyte in view of its full exploitation by the food and nutraceutical industries.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lucia Aquilanti
- Department of Agricultural, Food and Environmental Sciences (D3A), Università Politecnica delle Marche (UNIVPM), 60131 Ancona, Italy; (M.K.); (A.N.); (A.M.); (A.O.); (C.G.); (B.F.); (L.I.); (D.P.)
| | | |
Collapse
|
6
|
Stanković M. 10th Anniversary of Plants-Recent Advances and Further Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 12:1696. [PMID: 37111918 PMCID: PMC10145593 DOI: 10.3390/plants12081696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/08/2023] [Indexed: 06/19/2023]
Abstract
Published for the first time in 2012, Plants will celebrate its 10th anniversary [...].
Collapse
Affiliation(s)
- Milan Stanković
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
7
|
Politeo O, Popović M, Veršić Bratinčević M, Kovačević K, Urlić B, Generalić Mekinić I. Chemical Profiling of Sea Fennel ( Crithmum maritimum L., Apiaceae) Essential Oils and Their Isolation Residual Waste-Waters. PLANTS (BASEL, SWITZERLAND) 2023; 12:214. [PMID: 36616340 PMCID: PMC9824355 DOI: 10.3390/plants12010214] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 05/17/2023]
Abstract
Sea fennel (Crithmum maritimum L.) is a wild-growing halophyte used in cuisine, traditional medicine or cosmetic products for its beneficial nutritive value and pleasant sensory characteristics. This study aimed to investigate sea fennel essential oils (EOs) from different parts of the plant (flowers, leaves and stems) and the corresponding hydrodistillation by-products (residual water) to validate their potential use and application in different industries. EOs were analyzed by gas chromatography coupled with mass spectrometry (GC-MS), while the phenolic profile of the residual water was analyzed by high-performance liquid chromatography (HPLC) and spectrophotometric methods. The EO analysis confirmed the presence of 14 compounds, dominated by sabinene (from 42.55 to 51.47%) and limonene (from 36.28 to 43.58%), while among the 12 detected phenolics, chlorogenic acid and its isomers (cryptochlorogenic and neochlorogenic acid) were found in the highest concentrations. Total phenolic, flavonoid and tannin contents were concentrated in the order flowers > leaves > stems. Although the sea fennel samples showed differences in chemical profiles, overall they were rich in bioactive compounds with relatively high amounts of key compounds with already proved good biological properties, especially in waste-water, indicating great potential for re-use in accordance with green processing technology trends.
Collapse
Affiliation(s)
- Olivera Politeo
- Department of Biochemistry, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Marijana Popović
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia
| | - Maja Veršić Bratinčević
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia
| | - Kristina Kovačević
- Department of Biochemistry, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Branimir Urlić
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia
| | - Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| |
Collapse
|