1
|
Jayawardena TU, Merindol N, Liyanage NS, Gélinas SE, Lionel B, Seydou K, Seck M, Evidente A, Desgagné-Penix I. Antiviral alkaloids from Crinum jagus: Extraction, synergistic effects, and activity against dengue virus and human coronavirus OC43. Heliyon 2025; 11:e42580. [PMID: 40028517 PMCID: PMC11870263 DOI: 10.1016/j.heliyon.2025.e42580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/01/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Crinum jagus, a medicinal plant from the Amaryllidaceae family, possesses potent antiviral properties attributed to alkaloids such as cherylline and lycorine. This study evaluated various extraction methods--including continuous shaking, hot solvent, microwave-assisted, ultrasound-assisted, and liquid-liquid extraction using methanol, followed by ethyl acetate and subsequent acid-base to optimize the yield of bioactive compounds. The extraction method significantly influenced phenolic acid and alkaloid precursor content, with liquid-liquid extraction yielding the highest amounts. LC-MS/MS analyses confirmed the presence of major alkaloids in the extracts, notably cherylline and lycorine. The cytotoxic and antiviral properties of C. jagus extracts were assessed using a reporter-encoding dengue virus (DENV) vector and the β-coronavirus HCoV-OC43. LLE_E (liquid-liquid extract extract), enriched in phenolic compounds, was the most cytotoxic extract at concentrations above 0.6 μg/mL. Acid-base fractions, enriched in alkaloids, exhibited higher cytotoxicity than the methanol extracts counterparts, with significant cell death at concentrations above 2.5 μg/mL Additionally, the acid-base and LLE_E extracts were also the most efficient in inhibiting the replication of both HCoV-OC43 and DENV, with EC50 values ranging from 1 to 2.5 μg/mL. The synergistic antiviral effect of cherylline with other C. jagus alkaloids was also evaluated, revealing that a combination of cherylline with gigantellinine strikingly reduced the flavivirus replication. These findings underscore the potential of C. jagus as a source of bioactive compounds with antiviral properties and highlight the importance of optimizing extraction methods to enhance specific applications.
Collapse
Affiliation(s)
- Thilina U. Jayawardena
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- Plant Biology Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Natacha Merindol
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- Plant Biology Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Nuwan Sameera Liyanage
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- Plant Biology Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Sarah-Eve Gélinas
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- Plant Biology Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Berthoux Lionel
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Ka Seydou
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- Laboratoire de Chimie Organique et Thérapeutique, Faculté de Médecine, de Pharmacie et d’Odontologie de l’Université Cheikh Anta Diop de Dakar, BP 5005, Dakar, Fann, Senegal
| | - Matar Seck
- Laboratoire de Chimie Organique et Thérapeutique, Faculté de Médecine, de Pharmacie et d’Odontologie de l’Université Cheikh Anta Diop de Dakar, BP 5005, Dakar, Fann, Senegal
| | - Antonio Evidente
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- Plant Biology Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| |
Collapse
|
2
|
Guedri MM, Krir N, Terol CC, Romdhane M, Boulila A, Guetat A. Phytochemical Analysis, Acetylcholinesterase Inhibition, Antidiabetic and Antioxidant Activities of Atriplex halimus L. (Amaranthaceae Juss.). Chem Biodivers 2024; 21:e202301941. [PMID: 38224199 DOI: 10.1002/cbdv.202301941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 01/16/2024]
Abstract
Mediterranean saltbush Atriplex halimus L. (Amaranthaceae) from different bioclimatic arid zones (ten wild populations) were studied. Phenols contents, flavonoids, flavonols, tannins and anthocyanins were determined and then tested for their antioxidants, antidiabetic and anti-acetylcholinesterase (AChE) activities. Levels of total polyphenols including flavonoids and flavonols, tannins and anthocyanins were high and varied significantly among analyzed populations. Nine phenolic acids and four flavonoids were identified for the first time in the methanolic fraction and quantified by liquid high-performance chromatography system HPLC (DAD). All extracts showed a substantial antioxidant activity, as assessed by DPPH assay (1,1-diphenyl-2-picrylhydrazyl free radical) (IC50DPPH=147.3for population of Seliena), Ferric Reducing Antioxidant Power (FRAP; IC50FRAP=3.2 for populations of Sousse and Kairouan), and Chelation Fer test (IC50FerCh=1.5 μg/mL for populations of El-hamma and Mednine). Atriplex halimus possessed a high inhibitory effect against α-amylase activity (up to 2.6 mg ACE/gE), a moderate activity for α-glucosidase (up to 91.0 mg ACE/gE) and AChE (up to 147.2 μg/mL) compared to standard. The analyzed populations were isolated and subdivided into three distinct groups, without any bioclimatic structuration. Enzymatic activities seem to be associated with the presence, in plant extracts, of other classes of compounds then phenols such as terpenes, sterols, saponins, coumarins and carotenoids.
Collapse
Affiliation(s)
- Mounira Mkaddem Guedri
- Laboratory of Energy, Water, Environment and Process, LR18ES35), National Engineering School of Gabes, University of Gabes, Zrig Eddakhlania, 6072, Gabes, Tunisia
- Omar elkhattab city-, ZRIG-6029, Gabes, Tunisia
| | - Nouha Krir
- Laboratory of Energy, Water, Environment and Process, LR18ES35), National Engineering School of Gabes, University of Gabes, Zrig Eddakhlania, 6072, Gabes, Tunisia
- Omar elkhattab city-, ZRIG-6029, Gabes, Tunisia
| | - Carolina Clausell Terol
- Départamento de Ingeniería Química, Instituto Universitario de Tecnología Cerámica, Universitat Jaume I, 12071, Castellón, Spain
| | - Mehrez Romdhane
- Laboratory of Energy, Water, Environment and Process, LR18ES35), National Engineering School of Gabes, University of Gabes, Zrig Eddakhlania, 6072, Gabes, Tunisia
- Omar elkhattab city-, ZRIG-6029, Gabes, Tunisia
| | - Abdennacer Boulila
- Laboratory of Natural Substances LR10INRAP02, National Institute of Research and Physico-Chemical Analyses, Biotechpole of Sidi Thabet, Ariana, Tunisia
| | - Arbi Guetat
- Northern Border University, College of Sciences, Department of Biological Sciences, Arar, Saudi Arabia
| |
Collapse
|
3
|
Gargiulo E, Roscetto E, Galdiero U, Surico G, Catania MR, Evidente A, Taglialatela-Scafati O. Antibacterial Metabolites Produced by Limonium lopadusanum, an Endemic Plant of Lampedusa Island. Biomolecules 2024; 14:134. [PMID: 38275763 PMCID: PMC10813400 DOI: 10.3390/biom14010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Lampedusa, the largest island of the Pelagie archipelago, Sicily, Italy, has proven to be a rich source of plants and shrubs used in folk medicine. These plants, often native to the island, have been very poorly investigated for their phytochemical composition and biological potential to be translated into pharmacological applications. To start achieving this purpose, a specimen of Limonium lopadusanum, a plant native to Lampedusa, was investigated for the first time. This manuscript reports the results of a preliminary biological assay, focused on antimicrobial activity, carried out using the plant organic extracts, and the isolation and chemical and biological characterization of the secondary metabolites obtained. Thus 3-hydroxy-4-methoxybenzoic acid methyl ester (syn: methyl isovanillate, (1), methyl syringate (2), pinoresinol (3), erythrinassinate C (4) and tyrosol palmitate (5) were isolated. Their antimicrobial activity was tested on several strains and compound 4 showed promising antibacterial activity against Enterococcus faecalis. Thus, this metabolite has antibiotic potential against the drug-resistant opportunistic pathogen E. faecalis.
Collapse
Affiliation(s)
- Ernesto Gargiulo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy;
| | - Emanuela Roscetto
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy; (E.R.); (U.G.); (M.R.C.)
| | - Umberto Galdiero
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy; (E.R.); (U.G.); (M.R.C.)
| | - Giuseppe Surico
- Department of Agriculture, Food, Environment, and Forestry (DAGRI), Section of Agricultural Microbiology, Plant Pathology and Entomology, University of Florence, 50121 Firenze, Italy;
| | - Maria Rosaria Catania
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy; (E.R.); (U.G.); (M.R.C.)
| | - Antonio Evidente
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70125 Bari, Italy;
| | | |
Collapse
|
4
|
Fragkouli R, Antonopoulou M, Asimakis E, Spyrou A, Kosma C, Zotos A, Tsiamis G, Patakas A, Triantafyllidis V. Mediterranean Plants as Potential Source of Biopesticides: An Overview of Current Research and Future Trends. Metabolites 2023; 13:967. [PMID: 37755247 PMCID: PMC10535963 DOI: 10.3390/metabo13090967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023] Open
Abstract
The development and implementation of safe natural alternatives to synthetic pesticides are urgent needs that will provide ecological solutions for the control of plant diseases, bacteria, viruses, nematodes, pests, and weeds to ensure the economic stability of farmers and food security, as well as protection of the environment and human health. Unambiguously, production of botanical pesticides will allow for the sustainable and efficient use of natural resources and finally decrease the use of chemical inputs and burden. This is further underlined by the strict regulations on pesticide residues in agricultural products and is in harmony with the Farm to Fork strategy, which aims to reduce pesticide use by 50% by 2030. Thus, the present work aims to compile the scientific knowledge of the last 5 years (2017-February 2023) regarding the Mediterranean plants that present biopesticidal effects. The literature review revealed 40 families of Mediterranean plants with at least one species that have been investigated as potential biopesticides. However, only six families had the highest number of species, and they were reviewed comprehensively in this study. Following a systematic approach, the extraction methods, chemical composition, biopesticidal activity, and commonly used assays for evaluating the antimicrobial, pesticidal, repellant, and herbicidal activity of plant extracts, as well as the toxicological and safety aspects of biopesticide formulation, are discussed in detail. Finally, the aspects that have not yet been investigated or are under-investigated and future perspectives are highlighted.
Collapse
Affiliation(s)
- Regina Fragkouli
- Department of Food Science & Technology, University of Patras, Seferi 2, 30100 Agrinio, Greece; (R.F.); (C.K.); (A.P.)
| | - Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, Seferi 2, 30100 Agrinio, Greece; (M.A.); (E.A.); (A.S.); (A.Z.); (G.T.)
| | - Elias Asimakis
- Department of Sustainable Agriculture, University of Patras, Seferi 2, 30100 Agrinio, Greece; (M.A.); (E.A.); (A.S.); (A.Z.); (G.T.)
| | - Alexandra Spyrou
- Department of Sustainable Agriculture, University of Patras, Seferi 2, 30100 Agrinio, Greece; (M.A.); (E.A.); (A.S.); (A.Z.); (G.T.)
| | - Chariklia Kosma
- Department of Food Science & Technology, University of Patras, Seferi 2, 30100 Agrinio, Greece; (R.F.); (C.K.); (A.P.)
| | - Anastasios Zotos
- Department of Sustainable Agriculture, University of Patras, Seferi 2, 30100 Agrinio, Greece; (M.A.); (E.A.); (A.S.); (A.Z.); (G.T.)
| | - George Tsiamis
- Department of Sustainable Agriculture, University of Patras, Seferi 2, 30100 Agrinio, Greece; (M.A.); (E.A.); (A.S.); (A.Z.); (G.T.)
| | - Angelos Patakas
- Department of Food Science & Technology, University of Patras, Seferi 2, 30100 Agrinio, Greece; (R.F.); (C.K.); (A.P.)
| | - Vassilios Triantafyllidis
- Department of Food Science & Technology, University of Patras, Seferi 2, 30100 Agrinio, Greece; (R.F.); (C.K.); (A.P.)
| |
Collapse
|