1
|
Ibrahim MM, Azmi MN, Alhawarri MB, Kamal NNSNM, AbuMahmoud H. Synthesis, characterization and bioactivity of new pyridine-2(H)-one, nicotinonitrile, and furo[2,3-b]pyridine derivatives. Mol Divers 2025; 29:1569-1587. [PMID: 39009909 DOI: 10.1007/s11030-024-10934-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
Pyridone heterocycles, such as furo[2,3-b]pyridines, have emerged as prominent scaffolds in medicinal chemistry due to their versatile pharmacological properties, including significant anticancer activity. In this study, we successfully synthesized new pyridine-2(H)-one, nicotinonitrile, and furo[2,3-b]pyridine derivatives from chalcones bearing 4-(benzyloxy)phenyl and dichlorothiophenyl subunits to explore their therapeutic potential against breast cancer. By employing a synthetic strategy involving Claisen-Schmidt condensation followed by sequential cyclizations and functional modifications, we synthesized and characterized four compounds (MI-S0, MI-S1, MI-S2, and MI-S3) using various spectroscopic methods, including FT-IR, 1H-NMR, 13C-NMR, DEPT, H,H- and C,H-COSY, and HRMS. The in vitro cytotoxic activity of these compounds was evaluated against two breast cancer cell lines, MCF-7 and MDA-MB-231, and compared with a noncancerous breast cell line, MCF-10A. All compounds exhibited potent cytotoxic activities with minimal selectivity toward normal cells. Molecular docking studies targeting the serine/threonine kinase AKT1, estrogen receptor alpha (ERα), and human epidermal growth factor receptor 2 (HER2) revealed strong binding affinities, suggesting a mechanism involving the disruption of key cellular signaling pathways. These findings underscore the potential of furo[2,3-b]pyridine derivatives as promising candidates for further development into anticancer agents, laying the groundwork for future investigations into their selective therapeutic efficacy and molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad M Ibrahim
- Department of Chemistry, Faculty of Science, Al Al-Bayt University, P.O. BOX 130040, Al-Mafraq, 25113, Jordan.
| | - Mohamad Nurul Azmi
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Maram B Alhawarri
- Department of Pharmacy, Faculty of Pharmacy, Jadara University, P.O.Box 733, Irbid, 21110, Jordan
| | - Nik Nur Syazni Nik Mohamed Kamal
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Penang, Malaysia
| | - Hasan AbuMahmoud
- Department of Chemistry, Faculty of Science, Al Al-Bayt University, P.O. BOX 130040, Al-Mafraq, 25113, Jordan
| |
Collapse
|
2
|
Al-Thiabat MG, Agrawal M, Kumar Sahu K, Alhawarri MB, Banisalman K, Al Jabal GA, Saleh Elqaderi H. Potential MAO-B Inhibitors from Cissampelos Capensis L.f.: ADMET, Molecular Docking, Dynamics, and DFT Insights. Chem Biodivers 2025; 22:e202402351. [PMID: 39471253 DOI: 10.1002/cbdv.202402351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/01/2024]
Abstract
This study explores the therapeutic potential of three proaporphine alkaloids-cissamaline, cissamanine, and cissamdine, which were recently isolated from Cissampelos capensis L.f., against Parkinson's disease (PD). Using computational techniques, we investigated their efficacy as inhibitors of a key protein in PD. ADMET analysis demonstrated that these alkaloids conform to the Lipinski, Pfizer, Golden Triangle, and GSK rules, indicating favorable safety, oral bioavailability, and a high probability of passing the human intestinal and blood-brain barriers. They were neither substrates nor inhibitors of any CYP enzymes tested, indicating minimal metabolic interference and an enhanced safety profile. Molecular docking studies revealed binding energies of -9.05 kcal/mol (cissamaline), -9.95 kcal/mol (cissamanine), and -10.65 kcal/mol (cissamdine) against MAO-B, a critical PD target, surpassing the control (zonisamide, -6.96 kcal/mol). The molecular interaction analyses were also promising, with interactions comparable to the control. Molecular dynamics (MD) simulations confirmed stable protein-ligand interactions, with root-mean-square deviation (RMSD) values ranging from 1.03 Å to 3.92 Å, root-mean-square fluctuation (RMSF) values remaining below 1.14 Å, and radius of gyration (RGyr) values between 20.20 Å and 20.50 Å, indicating compact structures. Hydrogen bonding analysis revealed maximum hydrogen bond counts of 6 (cissamanine), 5 (cissamaline), and 4 (cissamdine), demonstrating robust interactions with MAO-B. Density Functional Theory (DFT) calculations revealed the highest electrophilicity (ω =0.151), highest electron affinity (EA =0.075), and smallest HOMO-LUMO gap (ΔE =0.130) for cissamanine, indicating enhanced reactivity. These results advocate for further in vitro and in vivo studies to evaluate the compounds' potential as PD therapeutics.
Collapse
Affiliation(s)
- Mohammad G Al-Thiabat
- Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Aqaba, 77110, Jordan
| | - Mohit Agrawal
- School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram, Haryana, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, UP, India
| | - Maram B Alhawarri
- Department of Pharmacy, Faculty of Pharmacy, Jadara University, P.O.Box 733, 21110, Irbid, Jordan
| | - Katreen Banisalman
- Department of Pharmacy, Faculty of Pharmacy, Jadara University, P.O.Box 733, 21110, Irbid, Jordan
| | - Ghazi A Al Jabal
- Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Selangor, Malaysia
| | - Haya Saleh Elqaderi
- Department of Pharmacy, Faculty of Pharmacy, Amman Arab University, Amman, Jordan
| |
Collapse
|
3
|
Alhawarri MB. Exploring the Anticancer Potential of Furanpydone A: A Computational Study on its Inhibition of MTHFD2 Across Diverse Cancer Cell Lines. Cell Biochem Biophys 2025; 83:437-454. [PMID: 39110299 DOI: 10.1007/s12013-024-01474-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2024] [Indexed: 03/03/2025]
Abstract
Cancer poses a significant global health challenge due to its high mortality rate and complex treatment strategies. Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), which is notably overexpressed in various malignancies, represents a promising target for anticancer drug development. Furanpydone A, a new 4-hydroxy-2-pyridone alkaloid isolated from the endophytic fungus Arthrinium sp. GZWMJZ-606, has shown potent inhibitory activity against several cancer cell lines. This study provides the first computational evaluation of furanpydone A, focusing on its potential inhibition of MTHFD2 through molecular docking and 200 ns molecular dynamics (MD) simulations. Molecular docking revealed a binding free energy of -8.08 kcal/mol for furanpydone A, comparable to the control compound DS44960156 (-8.13 kcal/mol), indicating stable interactions with the MTHFD2 active site. MD simulations confirmed the structural stability of the furanpydone A-MTHFD2 complex, with RMSD values ranging from 1.5 to 2.9 Å, RMSF values below 4 Å, and a radius of gyration (Rg) of 26.7 Å. Furanpydone A maintained approximately four consistent hydrogen bonds throughout the simulation. Analysis of furanpydone A binding pose orientations and interactions with the MTHFD2 enzyme at 0 ns, 40 ns, 80 ns, 120 ns, 160 ns, and 200 ns revealed consistent and stable binding. MM-PBSA analysis showed a binding free energy (ΔGbind) of -23.57 ± 0.13 kcal/mol, with electrostatic and van der Waals interactions contributing significantly, suggesting competitive binding affinity to the control compound (-25.32 ± 0.11 kcal/mol). The contribution of individual amino acid residues, including key residues such as ARG43, TYR84, ASN87, LYS88, GLN132, and PRO314, indicated strong interactions that support the stability of the furanpydone A-MTHFD2 complex. ADMET predictions indicated that furanpydone A met key drug-likeness criteria and demonstrated good oral bioavailability, suitable distribution profile, minimal risk of drug-drug interactions, efficient elimination, and low toxicity potential. These findings suggest that furanpydone A is a promising candidate for cancer treatment, warranting further in vitro and in vivo validation, and highlighting its potential impact on the development of new anticancer therapies.
Collapse
Affiliation(s)
- Maram B Alhawarri
- Department of Pharmacy, Faculty of Pharmacy, Jadara University, Irbid, 21110, Jordan.
| |
Collapse
|
4
|
Alhawarri MB, Al-Thiabat MG, Dubey A, Tufail A, Banisalman K, Al Jabal GA, Alkasasbeh E, Al-Trad EI, Alrimawi BH. Targeting necroptosis in MCF-7 breast cancer cells: In Silico insights into 8,12-dimethoxysanguinarine from Eomecon Chionantha through molecular docking, dynamics, DFT, and MEP studies. PLoS One 2025; 20:e0313094. [PMID: 39775383 PMCID: PMC11706375 DOI: 10.1371/journal.pone.0313094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/05/2024] [Indexed: 01/11/2025] Open
Abstract
Breast cancer remains a significant challenge in oncology, highlighting the need for alternative therapeutic strategies that target necroptosis to overcome resistance to conventional therapies. Recent investigations into natural compounds have identified 8,12-dimethoxysanguinarine (SG-A) from Eomecon chionantha as a potential necroptosis inducer. This study presents the first computational exploration of SG-A interactions with key necroptotic proteins-RIPK1, RIPK3, and MLKL-through molecular docking, molecular dynamics (MD), density functional theory (DFT), and molecular electrostatic potential (MEP) analyses. Molecular docking revealed that SG-A exhibited a stronger affinity for MLKL (-9.40 kcal/mol) compared to the co-crystallized ligand (-6.29 kcal/mol), while its affinity for RIPK1 (-6.37 kcal/mol) and RIPK3 (-7.01 kcal/mol) was lower. MD simulations further demonstrated the stability of SG-A within the MLKL site, with RMSD values stabilizing between 1.4 and 3.3 Å over 300 ns, indicating a consistent interaction pattern. RMSF analysis indicated the preservation of protein backbone flexibility, with average fluctuations under 1.7 Å. The radius of gyration (Rg) results indicated a consistent value of ~15.3 Å across systems, confirming the role of SG-A in maintaining protein integrity. Notably, SG-A maintains two critical H-bonds within the active site of MLKL, reinforcing the stability of the interaction. Principal component analysis (PCA) indicated a significant reduction in MLKL's conformational space upon SG-A binding, implying enhanced stabilization. Dynamic cross-correlation map (DCCM) analysis further revealed that SG-A induced highly correlated motions, reducing internal fluctuations within MLKL compared to the co-crystallized ligand. MM-PBSA revealed the enhanced binding efficacy of SG-A, with a significant binding free energy of -31.03 ± 0.16 kcal/mol against MLKL, surpassing that of the control (23.96 ± 0.11 kcal/mol). In addition, the individual residue contribution analysis highlighted key interactions, with ARG149 showing a significant contribution (-176.24 kcal/mol) in the MLKL-SG-A complex. DFT and MEP studies corroborated these findings, revealing that the electronic structure of SG-A is conducive to stable binding interactions, characterized by a narrow band gap (~0.16 units) and distinct electrostatic potential favourable for necroptosis induction. In conclusion, SG-A has emerged as a compelling inducer of necroptosis for breast cancer therapy, warranting further experimental validation to fully realize its therapeutic potential.
Collapse
Affiliation(s)
- Maram B. Alhawarri
- Faculty of Pharmacy, Department of Pharmacy, Jadara University, Irbid, Jordan
| | | | - Amit Dubey
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, India
| | - Aisha Tufail
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, India
| | - Katreen Banisalman
- Faculty of Pharmacy, Department of Pharmacy, Jadara University, Irbid, Jordan
| | - Ghazi A. Al Jabal
- Faculty of Pharmacy and Biomedical Sciences, Department of Medicinal Chemistry, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Eman Alkasasbeh
- Faculty of Pharmacy, Department of Pharmacy, Jadara University, Irbid, Jordan
| | - Esra’a Ibrahim Al-Trad
- Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, Al al-bayt University, Mafraq, Jordan
| | | |
Collapse
|
5
|
Alhawarri MB, Olimat S. Potential Serotonin 5-HT2A Receptor Agonist of Psychoactive Components of Silene undulata Aiton: LC-MS/MS, ADMET, and Molecular Docking Studies. Curr Pharm Biotechnol 2025; 26:260-275. [PMID: 38561607 DOI: 10.2174/0113892010299804240324140017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/18/2024] [Accepted: 03/02/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Silene undulata is historically used for inducing vivid and prophetic lucid dreams, but limited information exists on its phytochemical composition and potential pharmacological properties. OBJECTIVE This study aimed to investigate the phytochemical composition of S. undulata through LC-MS/MS analysis and explore its potential serotonergic activity, which could support and confirm the traditional use of S. undulata as a dream-inducing plant. METHODS LC-MS/MS analysis was conducted on S. undulata extract, identifying 51 phytochemicals, including norharman, harmalol, harmaline, harmine, and ibogaine alkaloids. ADMET and Molecular docking investigations were employed to assess the serotonergic potential of these compounds. RESULTS The analysis revealed the presence of β-carboline alkaloids, such as norharman, harmalol, harmaline, harmine, and ibogaine, within S. undulata extract. ADMET analysis showed that these compounds have a favourable pharmacokinetic properties. In addition, molecular docking investigations showed that harmaline (-8.90 Kcal/mol), harmalol (-8.56 Kcal/mol), and ibogaine (-8.75 Kcal/mol) exhibited binding affinities comparable to the control molecule, LSD (-9.14 Kcal/mol), indicating potential agonistic activity at serotonin 5-HT2A receptor. CONCLUSION These findings provide insights into the potential therapeutic benefits of S. undulata, supporting its traditional use as a psychoactive plant. This study investigated the chemical constituents and potential serotonergic agonist activity of S. undulata for the first time. While promising, further research is necessary to uncover additional medicinal properties associated with the identified phytochemical components.
Collapse
Affiliation(s)
- Maram B Alhawarri
- Department of Pharmacy, Faculty of Pharmacy, Jadara University, Irbid, 21110, Jordan
| | - Suleiman Olimat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
6
|
Al Shammari L. Phytochemical diversity, therapeutic potential, and ecological roles of the Cecropia genus. Heliyon 2024; 10:e40375. [PMID: 39759284 PMCID: PMC11699044 DOI: 10.1016/j.heliyon.2024.e40375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/30/2024] [Accepted: 11/12/2024] [Indexed: 01/07/2025] Open
Abstract
The genus Cecropia, a pivotal component of Neotropical flora, is renowned for its integration of traditional medicinal uses with significant ecological functions. This review aims to highlight the phytochemical diversity and pharmacological activities of the Cecropia genus, with a particular focus on well-documented species such as C. angustifolia, C. glaziovii, and C. pachystachya. Through a comprehensive review of the literature and current studies, this review identifies critical phytochemicals, including flavonoids, phenolic acids, and terpenoids, and correlates these compounds with biological activities such as anti-inflammatory, antimicrobial, and antioxidant effects. Notably, the review delves into the pharmacological potential of less than ten out of the sixty-six accepted Cecropia species, revealing a significant research opportunity within the genus. The findings advocate for intensified drug discovery initiatives involving advanced phytochemical analyses, bioactivity assessments, and the integration of conservation strategies. These efforts are crucial for the sustainable utilization of new therapeutic agents for Cecropia species. Additionally, this review discusses the ecological roles of Cecropia, particularly its contributions to forest regeneration and its symbiotic relationships with ants and proposes future research directions aimed at bridging current knowledge gaps and enhancing conservation measures for this valuable genus.
Collapse
Affiliation(s)
- Latifah Al Shammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al Batin, P.O. Box 1803, Hafr Al Batin, 31991, Saudi Arabia
| |
Collapse
|
7
|
Binmujlli MA. Exploring Radioiodinated Anastrozole and Epirubicin as AKT1-Targeted Radiopharmaceuticals in Breast Cancer: In Silico Analysis and Potential Therapeutic Effect with Functional Nuclear Imagining Implications. Molecules 2024; 29:4203. [PMID: 39275052 PMCID: PMC11397058 DOI: 10.3390/molecules29174203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
This study evaluates radio-iodinated anastrozole ([125I]anastrozole) and epirubicin ([125I]epirubicin) for AKT1-targeted breast cancer therapy, utilizing radiopharmaceutical therapy (RPT) for personalized treatment. Through molecular docking and dynamics simulations (200 ns), it investigates these compounds' binding affinities and mechanisms to the AKT1 enzyme, compared to the co-crystallized ligand, a known AKT1 inhibitor. Molecular docking results show that [125I]epirubicin has the highest ΔGbind (-11.84 kcal/mol), indicating a superior binding affinity compared to [125I] anastrozole (-10.68 kcal/mol) and the co-crystallized ligand (-9.53 kcal/mol). Molecular dynamics (MD) simulations confirmed a stable interaction with the AKT1 enzyme, with [125I]anastrozole and [125I]epirubicin reaching stability after approximately 68 ns with an average RMSD of around 2.2 Å, while the co-crystallized ligand stabilized at approximately 2.69 Å after 87 ns. RMSF analysis showed no significant shifts in residues or segments, with consistent patterns and differences of less than 2 Å, maintaining enzyme stability. The [125I]epirubicin complex maintained an average of four H-bonds, indicating strong and stable interactions, while [125I]anastrozole consistently formed three H-bonds. The average Rg values for both complexes were ~16.8 ± 0.1 Å, indicating no significant changes in the enzyme's compactness, thus preserving structural integrity. These analyses reveal stable binding and minimal structural perturbations, suggesting the high potential for AKT1 inhibition. MM-PBSA calculations confirm the potential of these radio-iodinated compounds as AKT1 inhibitors, with [125I]epirubicin exhibiting the most favorable binding energy (-23.57 ± 0.14 kcal/mol) compared to [125I]anastrozole (-20.03 ± 0.15 kcal/mol) and the co-crystallized ligand (-16.38 ± 0.14 kcal/mol), highlighting the significant role of electrostatic interactions in stabilizing the complex. The computational analysis shows [125I]anastrozole and [125I]epirubicin may play promising roles as AKT1 inhibitors, especially [125I]epirubicin for its high binding affinity and dynamic receptor interactions. These findings, supported by molecular docking scores and MM-PBSA binding energies, advocate for their potential superior inhibitory capability against the AKT1 enzyme. Nevertheless, it is crucial to validate these computational predictions through in vitro and in vivo studies to thoroughly evaluate the therapeutic potential and viability of these compounds for AKT1-targeted breast cancer treatment.
Collapse
Affiliation(s)
- Mazen Abdulrahman Binmujlli
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
| |
Collapse
|
8
|
Alhawarri MB, Al-Thiabat MG, Dubey A, Tufail A, Fouad D, Alrimawi BH, Dayoob M. ADME profiling, molecular docking, DFT, and MEP analysis reveal cissamaline, cissamanine, and cissamdine from Cissampelos capensis L.f. as potential anti-Alzheimer's agents. RSC Adv 2024; 14:9878-9891. [PMID: 38528929 PMCID: PMC10961956 DOI: 10.1039/d4ra01070a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/17/2024] [Indexed: 03/27/2024] Open
Abstract
The current pharmacotherapies for Alzheimer's disease (AD) demonstrate limited efficacy and are associated with various side effects, highlighting the need for novel therapeutic agents. Natural products, particularly from medicinal plants, have emerged as a significant source of potential neuroprotective compounds. In this context, Cissampelos capensis L.f., renowned for its medicinal properties, has recently yielded three new proaporphine alkaloids; cissamaline, cissamanine, and cissamdine. Despite their promising bioactive profiles, the biological targets of these alkaloids in the context of AD have remained unexplored. This study undertakes a comprehensive in silico examination of the binding affinity and molecular interactions of these alkaloids with human protein targets implicated in AD. The drug likeness and ADME analyses indicate favorable pharmacokinetic profiles for these compounds, suggesting their potential efficacy in targeting the central nervous system. Molecular docking studies indicate that cissamaline, cissamanine, and cissamdine interact with key AD-associated proteins. These interactions are comparable to, or in some aspects slightly less potent than, those observed with established AD drugs, highlighting their potential as novel therapeutic agents for Alzheimer's disease. Crucially, Density Functional Theory (DFT) calculations offer deep insights into the electronic and energetic characteristics of these alkaloids. These calculations reveal distinct electronic properties, with differences in total energy, binding energy, HOMO-LUMO gaps, dipole moments, and electrophilicity indices. Such variations suggest unique reactivity profiles and molecular stability, pertinent to their pharmacological potential. Moreover, Molecular Electrostatic Potential (MEP) analyses provide visual representations of the electrostatic characteristics of these alkaloids. The analyses highlight areas prone to electrophilic and nucleophilic attacks, indicating their potential for specific biochemical interactions. This combination of DFT and MEP results elucidates the intricate electronic, energetic, and electrostatic properties of these compounds, underpinning their promise as AD therapeutic agents. The in silico findings of this study shed light on the promising potential of cissamaline, cissamanine, and cissamdine as agents for AD treatment. However, further in vitro and in vivo studies are necessary to validate these theoretical predictions and to understand the precise mechanisms through which these alkaloids may exert their therapeutic effects.
Collapse
Affiliation(s)
- Maram B Alhawarri
- Department of Pharmacy, Faculty of Pharmacy, Jadara University P.O.Box 733 Irbid 21110 Jordan
| | - Mohammad G Al-Thiabat
- School of Pharmaceutical Sciences, Universiti Sains Malaysia Gelugor 11800 Penang Malaysia
| | - Amit Dubey
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences Chennai-600077 Tamil Nadu India
- Computational Chemistry and Drug Discovery Division Quanta Calculus Greater Noida-201310 Uttar Pradesh India
| | - Aisha Tufail
- Computational Chemistry and Drug Discovery Division Quanta Calculus Greater Noida-201310 Uttar Pradesh India
| | - Dania Fouad
- Faculty of Dentistry, Ibn Sina University for Medical and Pharmaceutical Sciences Baghdad Iraq
| | | | | |
Collapse
|