1
|
Xing M, Yan D, Zhang X, Shen Z, Hai M, Zhang Y, Zhang Z, Li F. The effects of remediation under different substrate conditions and environmental behavior of heavy metals. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025:1-11. [PMID: 39989192 DOI: 10.1080/15226514.2025.2468298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
This study analyzed changes in physicochemical properties of the soil under various substrate conditions, as well as the interactions between ryegrass and heavy metals. Results indicated that biochar significantly improved soil physicochemical properties, such as an increase in electrical conductivity by 34.8%, enhancement of pH from 7.13 to 7.32, and augmentation in organic matter by 152%. Moreover, readily available phosphorus and alkali-hydrolyzable nitrogen increased by 237% and 122% respectively, while soil cation exchange capacity rose by 135%. This contributes to plant growth and the maintenance of soil fertility. The biochar addition also led to a decrease in the proportion of fine soil particles by 20%, significantly enhancing structure and stability of soil aggregates and promoting the formation of larger aggregates, crucial for improving soil aeration, water retention, and root permeability. The addition of biochar notably altered the chemical forms of heavy metals in soil, promoting their transformation from bioavailable forms to more stable and less toxic forms, effectively reducing the bioavailability and mobility of heavy metals, and decreasing their environmental toxicity. The addition of biochar, by changing the chemical forms of heavy metals, not only enhanced germination rate of ryegrass seeds but also improved the overall growth state of ryegrass.
Collapse
Affiliation(s)
- Menglong Xing
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Dajiang Yan
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, China
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Xu Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Zhiyuan Shen
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Mengmeng Hai
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Yanhao Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Zhibin Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, China
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
2
|
Zhang Y, Shen Z, Zhou W, Liu C, Li Y, Ding B, Zhang P, Zhang X, Zhang Z. Environmental problems of emerging toxic metals and treatment technology and methods. RSC Adv 2024; 14:37299-37310. [PMID: 39588236 PMCID: PMC11586922 DOI: 10.1039/d4ra06085g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/02/2024] [Indexed: 11/27/2024] Open
Abstract
The increasing industrial use of toxic metals essential for modern electronics and renewable energy presents significant environmental and health challenges. This review was needed to address the environmental risks posed by toxic metals, particularly those accumulating in soil and sediment ecosystems. The objective is to examine the sources of toxic metal pollution, their ecological impacts, and the effectiveness of existing treatment technologies. By comprehensively reviewing the recent literature, we analyzed the physiological and molecular responses of plants to toxic metals, focusing on their toxicity mechanisms. Key parameters measured include toxic metal concentration, soil and sediment health, microbial diversity, and plant stress responses. Our findings highlight that toxic metals, such as lithium, nickel, and indium, fueled by industrial activities, including mining and electronic waste disposal, significantly disrupt ecosystems. These metals bioaccumulate, harming soil microbial communities and aquatic life. For instance, in soil ecosystems, cadmium and lead inhibit microbial functions, while in aquatic systems, resuspension of sediment-bound metals leads to persistent contamination. Data show that phytoremediation and microbial techniques are effective in reducing toxic metal concentrations up to 30-40%. In conclusion, long-term monitoring and sustainable remediation strategies are essential to mitigate these environmental impacts. Future efforts should focus on enhancing the efficiency of bioremediation techniques and integrating these methods into global toxic metal management practices.
Collapse
Affiliation(s)
- Yanhao Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
| | - Zhiyuan Shen
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
| | - Wenlu Zhou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
| | - Chengying Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
| | - Yi Li
- Shandong Academy for Environmental Planning Jinan 250101 China
| | - Botao Ding
- Shandong Academy for Environmental Planning Jinan 250101 China
| | - Peng Zhang
- Yantai Economic and Technological Development Zone Water Supply Co., Ltd Yantai 264006 China
| | - Xu Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China
| | - Zhibin Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
| |
Collapse
|
3
|
Chhikara S, Singh Y, Long S, Minocha R, Musante C, White JC, Dhankher OP. Overexpression of bacterial γ-glutamylcysteine synthetase increases toxic metal(loid)s tolerance and accumulation in Crambe abyssinica. PLANT CELL REPORTS 2024; 43:270. [PMID: 39443376 DOI: 10.1007/s00299-024-03351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
KEY MESSAGE Transgenic Crambe abyssinica lines overexpressing γ-ECS significantly enhance tolerance to and accumulation of toxic metal(loid)s, improving phytoremediation potential and offering an effective solution for contaminated soil management. Phytoremediation is an attractive environmental-friendly technology to remove metal(loid)s from contaminated soils and water. However, tolerance to toxic metals in plants is a critical limiting factor. Transgenic Crambe abyssinica lines were developed that overexpress the bacterial γ-glutamylcysteine synthetase (γ-ECS) gene to increase the levels of non-protein thiol peptides such as γ-glutamylcysteine (γ-EC), glutathione (GSH), and phytochelatins (PCs) that mediate metal(loid)s detoxification. The present study investigated the effect of γ-ECS overexpression on the tolerance to and accumulation of toxic As, Cd, Pb, Hg, and Cr supplied individually or as a mixture of metals. Compared to wild-type plants, γ-ECS transgenics (γ-ECS1-8 and γ-ECS16-5) exhibited a significantly higher capacity to tolerate and accumulate these elements in aboveground tissues, i.e., 76-154% As, 200-254% Cd, 37-48% Hg, 26-69% Pb, and 39-46% Cr, when supplied individually. This is attributable to enhanced production of GSH (82-159% and 75-87%) and PC2 (27-33% and 37-65%) as compared to WT plants under AsV and Cd exposure, respectively. The levels of Cys and γ-EC were also increased by 56-67% and 450-794% in the overexpression lines compared to WT plants under non-stress conditions, respectively. This likely enhanced the metabolic pathway associated with GSH biosynthesis, leading to the ultimate synthesis of PCs, which detoxify toxic metal(loid)s through chelation. These findings demonstrate that γ-ECS overexpressing Crambe lines can be used for the enhanced phytoremediation of toxic metals and metalloids from contaminated soils.
Collapse
Affiliation(s)
- Sudesh Chhikara
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
- Department of Biology, Merrimack College, North Andover, MA, USA
| | - Yogita Singh
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Stephanie Long
- USDA Forest Service, Northern Research Station, Durham, NH, 03824, USA
| | - Rakesh Minocha
- USDA Forest Service, Northern Research Station, Durham, NH, 03824, USA
| | - Craig Musante
- Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Jason C White
- Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
4
|
Bashir Z, Raj D, Selvasembian R. A combined bibliometric and sustainable approach of phytostabilization towards eco-restoration of coal mine overburden dumps. CHEMOSPHERE 2024; 363:142774. [PMID: 38969231 DOI: 10.1016/j.chemosphere.2024.142774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
Extraction of coal through opencast mining leads to the buildup of heaps of overburden (OB) material, which poses a significant risk to production safety and environmental stability. A systematic bibliometric analysis to identify research trends and gaps, and evaluate the impact of studies and authors in the field related to coal OB phytostabilization was conducted. Key issues associated with coal extraction include land degradation, surface and groundwater contamination, slope instability, erosion and biodiversity loss. Handling coal OB material intensifies such issues, initiating additional environmental and physical challenges. The conventional approach such as topsoiling for OB restoration fails to restore essential soil properties crucial for sustainable vegetation cover. Phytostabilization approach involves establishing a self-sustaining plant cover over OB dump surfaces emerges as a viable strategy for OB restoration. This method enhanced by the supplement of organic amendments boosts the restoration of OB dumps by improving rhizosphere properties conducive to plant growth and contaminant uptake. Criteria essential for plant selection in phytostabilization are critically evaluated. Native plant species adapted to local climatic and ecological conditions are identified as key agents in stabilizing contaminants, reducing soil erosion, and enhancing ecosystem functions. Applicable case studies of successful phytostabilization of coal mines using native plants, offering practical recommendations for species selection in coal mine reclamation projects are provided. This review contributes to sustainable approaches for mitigating the environmental consequences of coal mining and facilitates the ecological recovery of degraded landscapes.
Collapse
Affiliation(s)
- Zahid Bashir
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India
| | - Deep Raj
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India.
| | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India.
| |
Collapse
|
5
|
Ammar A, Nouira A, El Mouridi Z, Boughribil S. Recent trends in the phytoremediation of radionuclide contamination of soil by cesium and strontium: Sources, mechanisms and methods: A comprehensive review. CHEMOSPHERE 2024; 359:142273. [PMID: 38750727 DOI: 10.1016/j.chemosphere.2024.142273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
This comprehensive review examines recent trends in phytoremediation strategies to address soil radionuclide contamination by cesium (Cs) and strontium (Sr). Radionuclide contamination, resulting from natural processes and nuclear-related activities such as accidents and the operation of nuclear facilities, poses significant risks to the environment and human health. Cs and Sr, prominent radionuclides involved in nuclear accidents, exhibit chemical properties that contribute to their toxicity, including easy uptake, high solubility, and long half-lives. Phytoremediation is emerging as a promising and environmentally friendly approach to mitigate radionuclide contamination by exploiting the ability of plants to extract toxic elements from soil and water. This review focuses specifically on the removal of 90Sr and 137Cs, addressing their health risks and environmental implications. Understanding the mechanisms governing plant uptake of radionuclides is critical and is influenced by factors such as plant species, soil texture, and physicochemical properties. Phytoremediation not only addresses immediate contamination challenges but also provides long-term benefits for ecosystem restoration and sustainable development. By improving soil health, biodiversity, and ecosystem resilience, phytoremediation is in line with global sustainability goals and environmental protection initiatives. This review aims to provide insights into effective strategies for mitigating environmental hazards associated with radionuclide contamination and to highlight the importance of phytoremediation in environmental remediation efforts.
Collapse
Affiliation(s)
- Ayyoub Ammar
- Laboratory of Virology, Microbiology, Quality and Biotechnology /Eco-toxicology and Biodiversity (LVMQB/EB), Faculty of Sciences and Techniques Mohammedia, University Hassan II, Casablanca, Morocco; National Center for Energy, Sciences, and Nuclear Techniques (CNESTEN), Rabat, Morocco; Laboratory of Environment and Conservation of Natural Resources, National Institute of Agronomique Research (INRA), Rabat, Morocco.
| | - Asmae Nouira
- National Center for Energy, Sciences, and Nuclear Techniques (CNESTEN), Rabat, Morocco
| | - Zineb El Mouridi
- Laboratory of Environment and Conservation of Natural Resources, National Institute of Agronomique Research (INRA), Rabat, Morocco
| | - Said Boughribil
- Laboratory of Virology, Microbiology, Quality and Biotechnology /Eco-toxicology and Biodiversity (LVMQB/EB), Faculty of Sciences and Techniques Mohammedia, University Hassan II, Casablanca, Morocco
| |
Collapse
|
6
|
Urošević J, Stanković D, Jokanović D, Trivan G, Rodzkin A, Jović Đ, Jovanović F. Phytoremediation Potential of Different Genotypes of Salix alba and S. viminalis. PLANTS (BASEL, SWITZERLAND) 2024; 13:735. [PMID: 38475581 DOI: 10.3390/plants13050735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Elevated concentrations of heavy metals result in soil degradation, a reduction in plant yields, and a lower quality of agricultural products, which directly endangers people, animals, and the ecosystem. The potential of three clones of Salix alba (347, NS 73/6, and B-44) and one genotype of S. viminalis for the phytoextraction of heavy metals was investigated, with the aim of identifying the most physiologically suitable willow genotypes for use in soil phytoremediation. The experiment was placed on the contaminated soil substrate collected in Kolubara Mining Basin (Serbia), enriched by high loads of heavy metal salts, and a control medium. Significant differences in the concentrations of heavy metals were recorded between the contaminated and control plant material, especially when it comes to nickel (Ni), copper (Cu), cadmium (Cd), and lead (Pb), confirming that S. alba and S. viminalis are hyperaccumulator species of heavy metals. Clone 347 shows the greatest uptake of Cd and chromium (Cr), and clone B-44 takes up these metals only to a lesser extent, while clone NS 73/6 shows a less pronounced uptake of Cr. The roots have the greatest ability to accumulate Ni and Pb, Cu is absorbed by all plant organs, while Cd is absorbed by the leaves. The organ that showed the greatest ability to accumulate heavy metals was the root, which means that willows have a limited power to translocate heavy metals to above-ground organs. The studied genotypes of S. alba have a higher potential for the phytostabilization of Cu and Cd, as well as the phytoextraction of Cd, compared with S. viminalis. The results confirm the assumption of differences between different willow genotypes in terms of the ability to phytoextract certain heavy metals from soil, which is important information when selecting genotypes for soil phytoremediation.
Collapse
Affiliation(s)
- Jelena Urošević
- Electric Power of Serbia, Balkanska 13, 11000 Belgrade, Serbia
| | - Dragica Stanković
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Dušan Jokanović
- Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Goran Trivan
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Aleh Rodzkin
- International Sakharov Environmental Institute, Belarusian State University, Dauhabrodskaja 23/1, 220070 Minsk, Belarus
| | - Đorđe Jović
- Institute of Forestry, Kneza Višeslava 3, 11000 Belgrade, Serbia
| | - Filip Jovanović
- Institute of Forestry, Kneza Višeslava 3, 11000 Belgrade, Serbia
| |
Collapse
|