1
|
Zhu Y, Lin D, Li Q, An M, Lv J. Metabolomic Analysis of the Responses of Bryophyte Tortella tortuosa (Hedw.) Limpr. to Cadmium (Cd) Stress. Int J Mol Sci 2025; 26:2856. [PMID: 40243446 PMCID: PMC11989171 DOI: 10.3390/ijms26072856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
In recent years, there have been many studies on the response of plants to heavy metal stress, but the metabolic changes in bryophytes, pioneer plants quickly responding to environmental changes, under exogenous cadmium (Cd) stress have yet to be explored. In this indoor experiment, the responses in the metabolome of bryophyte Tortella tortuosa (Hedw.) Limpr. to different Cd exposure levels (0 (CK), 5 (T1), and 10 (T2) mg·L-1) were analyzed. The results showed that the number of differentially accumulated metabolites (DAMs) secreted by T. tortuosa increased with the increase in the Cd concentration, and the biosynthesis of cofactors, D-Amino acid metabolism, Arginine biosynthesis, ATP-binding cassette transporters (ABC transporters), and biosynthesis of alkaloids derived from shikimate pathway were the main pathways enriched by DAMs. The relative abundances of malic acid, N-Formylkynurenine, L-Glutamine, L-Histidine, LL-2,6-Diaminopimelic acid, and fusaric acid in the T2 treatment increased by 16.06%, 62.51%, 14.51%, 11.92%, 21.37%, and 35.79%, respectively (p < 0.05), compared with those of the CK, and the correlation analysis results showed that the above DAMs were closely related to the changes in plant antioxidant enzyme activity and Cd concentration. These results indicate that the secretion of amino acid (N-Formylkynurenine, L-Histidine) and organic acids (isocitric acid, LL-2,6-Diaminopimelic acid, malic acid) through the metabolic pathways, including biosynthesis of amino acids, biosynthesis of cofactors, glyoxylate and dicarboxylate metabolism, and ABC transporters, is the metabolic mechanism of T. tortuosa to resist exogenous Cd stress. This study will provide a reference for the monitoring and remediation of heavy metal pollution.
Collapse
Affiliation(s)
| | | | | | - Mengjie An
- Key Laboratory of Biological Resources and Genetic Engineering of Xinjiang, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.Z.)
| | - Jie Lv
- Key Laboratory of Biological Resources and Genetic Engineering of Xinjiang, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.Z.)
| |
Collapse
|
2
|
Ciriello M, Pannico A, Rouphael Y, Basile B. Enhancing Yield, Physiological, and Quality Traits of Strawberry Cultivated Under Organic Management by Applying Different Non-Microbial Biostimulants. PLANTS (BASEL, SWITZERLAND) 2025; 14:712. [PMID: 40094695 PMCID: PMC11902179 DOI: 10.3390/plants14050712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 03/19/2025]
Abstract
Organic farming is an environmentally friendly management practice that excludes the use of synthetic inputs, but at the same time is associated with lower yields than conventional production. In an attempt to compensate for yield reduction, resulting from foregoing the use of synthetic fertilizers, we hypothesized that the use of biostimulant products could provide much-desired food security. In light of this, a greenhouse experiment was conducted to compare and evaluate the effects of the foliar application of three different non-microbial biostimulants (a seaweed extract, a plant protein hydrolysate, and a plant extract) on the yield, mineral profile, and physiological response of strawberry (Fragaria × ananassa Duch.) grown in an organic farming context. Regardless of the type of biostimulant, treated plants showed significant improvement in photosynthetic performance. Specifically, the application of plant-derived protein hydrolysate increased ACO2 by 34.5% compared with control. Despite this, only the application of plant-derived protein hydrolysate significantly increased fruit yield per unit area (+13.5%). The improved performance of plants treated with plant-derived protein hydrolysate was associated with an overall improvement in mineral profile (compared to control +49.4 and 33.0% in NO3- and Mg2+ concentration, respectively). In contrast, application of the seaweed biostimulant increased (+17.4%) fruit antioxidant activity (DPPH) compared with control plants. These results underscore how the diverse origins of non-microbial biostimulants are responsible for specific responses in crops that can be exploited by organic growers to increase productivity.
Collapse
Affiliation(s)
| | | | | | - Boris Basile
- Department of Agricultural Sciences, University of Naples Federico II, 80138 Portici, Italy; (M.C.); (A.P.); (Y.R.)
| |
Collapse
|
3
|
Zhao J, Ni H, Wang B, Yang Z. Fish protein fertilizer serves as a sustainable alternative, improving soil properties, bamboo growth and shoots yield in Lei bamboo forests. Sci Rep 2025; 15:4363. [PMID: 39910135 PMCID: PMC11799177 DOI: 10.1038/s41598-025-88503-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Abstract
Lei bamboo (Phyllostachys violascens 'Prevernalis') has high economic value, providing high yields of quality of bamboo shoots. Heavy use of chemical fertilizers and cover cultivation to produce off-season bamboo shoots results in soil degradation and a decline in soil productivity. This paper introduces an amino acid fertilizer, fish protein fertilizer, to replace a portion of chemical fertilizer, investigating the effects of different fertilizer combinations on bamboo growth, shoot yield, and soil properties, clarifying the growth-promoting mechanism of amino acid fertilizer. Results showed that after replacing 45 kg of compound fertilizer with 10 kg and 20 kg, respectively, of fish protein fertilizer (1) bamboo shoot yield increased by 23.24% and 26.19%, respectively; (2) leaf and root growth were enhanced, thick root proportion increased, and topsoil root proportion decreased; (3) soil pH, contents of available phosphate, soil organic carbon, microbial biomass carbon and microbial biomass nitrogen, soil enzyme activity increased; (4) the contents of nitrogen (N) and phosphate (P) in leaves increased, while the N/P and K/P decreased. Overall, amino acid fertilizer can promote microbial growth through supplying carbon sources and nitrogen sources, enhance soil enzyme activity, thus promote phosphorus activation and increase soil phosphorus effectiveness, and then expand the scale of root foraging and ultimately improve nutrients absorption and increase bamboo shoot yield.
Collapse
Affiliation(s)
- Jiancheng Zhao
- Zhejiang Academy of Forestry, Northwest Zhejiang Bamboo Forest Ecosystem Positioning Observation and Research Station, Hangzhou, 310023, Zhejiang, China
| | - Huijing Ni
- Zhejiang Academy of Forestry, Northwest Zhejiang Bamboo Forest Ecosystem Positioning Observation and Research Station, Hangzhou, 310023, Zhejiang, China
| | - Bo Wang
- Zhejiang Academy of Forestry, Northwest Zhejiang Bamboo Forest Ecosystem Positioning Observation and Research Station, Hangzhou, 310023, Zhejiang, China
| | - Zhenya Yang
- Zhejiang Academy of Forestry, Northwest Zhejiang Bamboo Forest Ecosystem Positioning Observation and Research Station, Hangzhou, 310023, Zhejiang, China.
| |
Collapse
|
4
|
Sun W, Shahrajabian MH, Wang N. A Study of the Different Strains of the Genus Azospirillum spp. on Increasing Productivity and Stress Resilience in Plants. PLANTS (BASEL, SWITZERLAND) 2025; 14:267. [PMID: 39861620 PMCID: PMC11768469 DOI: 10.3390/plants14020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
One of the most important and essential components of sustainable agricultural production is biostimulants, which are emerging as a notable alternative of chemical-based products to mitigate soil contamination and environmental hazards. The most important modes of action of bacterial plant biostimulants on different plants are increasing disease resistance; activation of genes; production of chelating agents and organic acids; boosting quality through metabolome modulation; affecting the biosynthesis of phytochemicals; coordinating the activity of antioxidants and antioxidant enzymes; synthesis and accumulation of anthocyanins, vitamin C, and polyphenols; enhancing abiotic stress through cytokinin and abscisic acid (ABA) production; upregulation of stress-related genes; and the production of exopolysaccharides, secondary metabolites, and ACC deaminase. Azospirillum is a free-living bacterial genus which can promote the yield and growth of many species, with multiple modes of action which can vary on the basis of different climate and soil conditions. Different species of Bacillus spp. can increase the growth, yield, and biomass of plants by increasing the availability of nutrients; enhancing the solubilization and subsequent uptake of nutrients; synthesizing indole-3-acetic acid; fixing nitrogen; solubilizing phosphorus; promoting the production of phytohormones; enhancing the growth, production, and quality of fruits and crops via enhancing the production of carotenoids, flavonoids, phenols, and antioxidants; and increasing the synthesis of indoleacetic acid (IAA), gibberellins, siderophores, carotenoids, nitric oxide, and different cell surface components. The aim of this manuscript is to survey the effects of Azospirillum spp. and Bacillus spp. by presenting case studies and successful paradigms in several horticultural and agricultural plants.
Collapse
Affiliation(s)
- Wenli Sun
- Correspondence: ; Tel.: +86-4260-83836
| | | | | |
Collapse
|
5
|
Shahrajabian MH, Sun W. Study Rapid, Quantitative, and Simultaneous Detection of Drug Residues and Immunoassay in Chickens. Rev Recent Clin Trials 2025; 20:2-17. [PMID: 39171469 DOI: 10.2174/0115748871305331240724104132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/28/2024] [Accepted: 06/13/2024] [Indexed: 08/23/2024]
Abstract
Different levels of residual drugs can be monitored within a relatively safe range without causing harm to human health if the appropriate dosing methodology is considered and the drug withdrawal period is controlled during poultry and livestock raising. Antimicrobials are factors that can suppress the growth of microorganisms, and antibiotic residues in livestock farming have been considered as a potential cause of antimicrobial resistance in animals and humans. Antimicrobial drug resistance is associated with the capability of a microorganism to survive the inhibitory effects of the antimicrobial components. Antibiotic residue presence in chicken is a human health concern due to its negative effects on consumer health. Neglected aspects related to the application of veterinary drugs may threaten the safety of both humans and animals, as well as their environment. The detection of chemical contaminants is essential to ensure food quality. The most important antibiotic families used in veterinary medicines are β-lactams (penicillins and cephalosporins), tetracyclines, chloramphenicols, macrolides, spectinomycin, lincosamide, sulphonamides, nitrofuranes, nitroimidazoles, trimethoprim, polymyxins, quinolones, and macrocyclics (glycopeptides, ansamycins, and aminoglycosides). Antibiotic residue presence is the main contributor to the development of antibiotic resistance, which is considered a chief concern for both human and animal health worldwide. The incorrect application and misuse of antibiotics carry the risk of the presence of residues in the edible tissues of the chicken, which can cause allergies and toxicity in hypersensitive consumers. The enforcement of the regulation of food safety depends on efficacious monitoring of antimicrobial residues in the foodstuff. In this review, we have explored the rapid detection of drug residues in broilers.
Collapse
Affiliation(s)
- Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100086, China
| | - Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100086, China
| |
Collapse
|
6
|
Lin CY, Hsieh CH, Lai PY, Huang CW, Chung YH, Huang SM, Hsu KC. Inhibitory Effects of Gliadin Hydrolysates on BACE1 Expression and APP Processing to Prevent Aβ Aggregation. Int J Mol Sci 2024; 25:13212. [PMID: 39684923 DOI: 10.3390/ijms252313212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease (AD), a leading neurodegenerative disorder, is closely associated with the accumulation of amyloid-beta (Aβ) peptides in the brain. The enzyme β-secretase (BACE1), pivotal in Aβ production, represents a promising therapeutic target for AD. While bioactive peptides derived from food protein hydrolysates have neuroprotective properties, their inhibitory effects on BACE1 remain largely unexplored. In this study, we evaluated the inhibitory potential of protein hydrolysates from gliadin, whey, and casein proteins prepared using bromelain, papain, and thermolysin. Through in vitro and cellular assays, bromelain-hydrolyzed gliadin (G-Bro) emerged as the most potent BACE1 inhibitor, with an IC50 of 0.408 mg/mL. G-Bro significantly reduced BACE1 expression and amyloid precursor protein (APP) processing in N2a/PS/APP cell cultures, suggesting its potential to attenuate Aβ aggregation. The unique peptide profile of G-Bro likely contributes to its inhibitory effect, with proline residues disrupting β-sheets, lysine residues introducing positive charges that hinder aggregation, hydrophobic residues stabilizing binding interactions, and glutamine residues enhancing solubility and stability. These findings highlight gliadin hydrolysates, particularly G-Bro, as potential natural BACE1 inhibitors with applications in dietary interventions for AD prevention. However, further studies are warranted to elucidate specific peptide interactions and their bioactivity in neural pathways to better understand their therapeutic potential.
Collapse
Affiliation(s)
- Chin-Yu Lin
- Department of Biomedical Sciences and Engineering, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien City 970374, Taiwan
| | - Cheng-Hong Hsieh
- Department of Nutrition, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City 40604, Taiwan
- Department of Food Nutrition and Health Biotechnology, Asia University, 500 Lioufeng Rd., Wufeng, Taichung City 41354, Taiwan
| | - Pei-Yu Lai
- Department of Nutrition, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City 40604, Taiwan
| | - Ching-Wei Huang
- Department of Nutrition, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City 40604, Taiwan
| | - Yung-Hui Chung
- Department of Nutrition, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City 40604, Taiwan
| | - Shang-Ming Huang
- Department of Nutrition, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City 40604, Taiwan
| | - Kuo-Chiang Hsu
- Department of Nutrition, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City 40604, Taiwan
- Department of Food Nutrition and Health Biotechnology, Asia University, 500 Lioufeng Rd., Wufeng, Taichung City 41354, Taiwan
| |
Collapse
|
7
|
El-Saadony MT, Saad AM, Mohammed DM, Fahmy MA, Elesawi IE, Ahmed AE, Algopishi UB, Elrys AS, Desoky ESM, Mosa WF, Abd El-Mageed TA, Alhashmi FI, Mathew BT, AbuQamar SF, El-Tarabily KA. Drought-tolerant plant growth-promoting rhizobacteria alleviate drought stress and enhance soil health for sustainable agriculture: A comprehensive review. PLANT STRESS 2024; 14:100632. [DOI: 10.1016/j.stress.2024.100632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
8
|
Hernandez LE, Ruiz JM, Espinosa F, Alvarez-Fernandez A, Carvajal M. Plant nutrition challenges for a sustainable agriculture of the future. PHYSIOLOGIA PLANTARUM 2024; 176:e70018. [PMID: 39691080 DOI: 10.1111/ppl.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024]
Abstract
This article offers a comprehensive review of sustainable plant nutrition concepts, examining a multitude of cutting-edge techniques that are revolutionizing the modern area. The review copes with the crucial role of biostimulants as products that stimulate plant nutrition processes, including their potential for biofertilization, followed by an exploration of the significance of micronutrients in plant health and growth. We then delve into strategies for enhancing plants' tolerance to mineral nutrient contaminants and the promising realm of biofortification to increase the essential nutrients necessary for human health. Furthermore, this work also provides a concise overview of the burgeoning field of nanotechnologies in fertilization, while the integration of circular economy principles underscores the importance of sustainable resource management. Then, with examined the interrelation between micronutrients. We conclude with the future challenges and opportunities that lie ahead in the pursuit of more sustainable and resilient plant systems.
Collapse
Affiliation(s)
- Luis E Hernandez
- Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Madrid, Spain
| | - Juan M Ruiz
- Department of Plant Physiology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Francisco Espinosa
- Plant Biology, Ecology and Earth Sciences Department, Extremadura University, Badajoz, Spain
| | | | - Micaela Carvajal
- Aquaporins Group. Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS, CSIC), Campus Universitario de Espinardo, Murcia, Spain
| |
Collapse
|
9
|
Koshiyama T, Higashiyama Y, Mochizuki I, Yamada T, Kanekatsu M. Ergothioneine Improves Seed Yield and Flower Number through FLOWERING LOCUS T Gene Expression in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:2487. [PMID: 39273971 PMCID: PMC11397572 DOI: 10.3390/plants13172487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Biostimulants are a new category of materials that improve crop productivity by maximizing their natural abilities. Out of these biostimulants, those that increase seed production are considered to be particularly important as they contribute directly to the increase in the yield of cereals and legumes. Ergothioneine (EGT) is a natural, non-protein amino acid with antioxidant effects that is used in pharmaceuticals, cosmetics, and foods. However, EGT has not been used in agriculture. This study investigated the effect of EGT on seed productivity in Arabidopsis thaliana. Compared with an untreated control, the application of EGT increased the seed yield by 66%. However, EGT had no effect on seed yield when applied during or after bolting and did not promote the growth of vegetative organs. On the other hand, both the number of flowers and the transcript levels of FLOWERING LOCUS T (FT), a key gene involved in flowering, were increased significantly by the application of EGT. The results suggest that EGT improves seed productivity by increasing flower number through the physiological effects of the FT protein. Furthermore, the beneficial effect of EGT on flower number is expected to make it a potentially useful biostimulant not only in crops where seeds are harvested, but also in horticultural crops such as ornamental flowering plants, fruits, vegetables.
Collapse
Affiliation(s)
- Tatsuyuki Koshiyama
- New Business Division, Kureha Corporation, Chuo-ku, Tokyo 103-8552, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | | | - Izumi Mochizuki
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tetsuya Yamada
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Motoki Kanekatsu
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
10
|
Trovão M, Schüler L, Pedroso H, Reis A, Santo GE, Barros A, Correia N, Ribeiro J, Bombo G, Gama F, Viana C, Costa MM, Ferreira S, Cardoso H, Varela J, Silva J, Freitas F, Pereira H. Isolation and Selection of Protein-Rich Mutants of Chlorella vulgaris by Fluorescence-Activated Cell Sorting with Enhanced Biostimulant Activity to Germinate Garden Cress Seeds. PLANTS (BASEL, SWITZERLAND) 2024; 13:2441. [PMID: 39273926 PMCID: PMC11396921 DOI: 10.3390/plants13172441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Microalgae are a promising feedstock with proven biostimulant activity that is enhanced by their biochemical components (e.g., amino acids and phytohormones), which turns them into an appealing feedstock to reduce the use of fertilisers in agriculture and improve crop productivity and resilience. Thus, this work aimed to isolate protein-rich microalgal mutants with increased biostimulant activity. Random mutagenesis was performed with Chlorella vulgaris, and a selection of protein-rich mutants were sorted through fluorescence-activated cell sorting (FACS), resulting in the isolation of 17 protein-rich mutant strains with protein contents 19-34% higher than that of the wildtype (WT). Furthermore, mutant F4 displayed a 38%, 22% and 62% higher biomass productivity, growth rate and chlorophyll content, respectively. This mutant was then scaled up to a 7 L benchtop reactor to produce biomass and evaluate the biostimulant potential of this novel strain towards garden cress seeds. Compared to water (control), the germination index and the relative total growth increased by 7% and 19%, respectively, after the application of 0.1 g L-1 of this bioproduct, which highlights its biostimulant potential.
Collapse
Affiliation(s)
- Mafalda Trovão
- Allmicroalgae Natural Products S.A., R&D Department, 2445-413 Pataias, Portugal
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Lisa Schüler
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
- CCMAR, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Humberto Pedroso
- Allmicroalgae Natural Products S.A., R&D Department, 2445-413 Pataias, Portugal
| | - Ana Reis
- Allmicroalgae Natural Products S.A., R&D Department, 2445-413 Pataias, Portugal
| | | | - Ana Barros
- Allmicroalgae Natural Products S.A., R&D Department, 2445-413 Pataias, Portugal
| | - Nádia Correia
- Allmicroalgae Natural Products S.A., R&D Department, 2445-413 Pataias, Portugal
| | - Joana Ribeiro
- Allmicroalgae Natural Products S.A., R&D Department, 2445-413 Pataias, Portugal
| | - Gabriel Bombo
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - Florinda Gama
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
- CCMAR, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Catarina Viana
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - Monya M Costa
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - Sara Ferreira
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - Helena Cardoso
- Allmicroalgae Natural Products S.A., R&D Department, 2445-413 Pataias, Portugal
| | - João Varela
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
- CCMAR, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Joana Silva
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - Filomena Freitas
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Hugo Pereira
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
11
|
Dai L, Yu P, Ma P, Chen C, Ma J, Zhang J, Huang B, Xin Z, Zheng X, Tang T. Effects of the supernatant of Chlorella vulgaris cultivated under different culture modes on lettuce ( Lactuca sativa L.) growth. Front Nutr 2024; 11:1437374. [PMID: 39279893 PMCID: PMC11392778 DOI: 10.3389/fnut.2024.1437374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
CO2 capture by microalgae is a feasible strategy to reduce CO2 emissions. However, large amounts of cell-free supernatant will be produced after microalgal harvesting, which may be harmful to the environment if it is disorderly discharged. In this study, Chlorella vulgaris (C. vulgaris) was cultivated under three common cultivation modes (autotrophic culture (AC), heterotrophic culture (HC) and mixotrophic culture (MC)), and the obtained supernatant was used as fertilizer to investigate its effect on the growth of lettuce. The biomass concentration of C. vulgaris cultivated under MC and HC was 3.25 and 2.59 times that of under AC, respectively. The contents of macronutrients in supernatant obtained from AC were higher than those of MC and HC. However, the contents of amino acids and hormones in supernatant obtained from MC and HC were higher than those of AC. The fresh shoot weight, fresh root weight and root length of lettuce treated with supernatant were significantly higher than that of control treatment. In addition, the contents of chlorophyll, soluble sugar and soluble protein in lettuce treated with supernatant were also higher than that of control treatment. However, the contents of nitrate in lettuce treated with supernatant was lower than that of control treatment. These results showed that the supernatant could promote the growth of lettuce and was a potential of fertilizer for crop planting.
Collapse
Affiliation(s)
- Lin Dai
- ChnEnergy XinJiang TuoKexun Energy Co., Ltd., Xinjiang, China
| | - Peng Yu
- School of Civil and Resources Engineering, Graduate School of University of Science & Technology Beijing, Beijing, China
- ChnEnergy New Energy Technology Research Institute Co., Ltd., Beijing, China
| | - Pengyao Ma
- ChnEnergy XinJiang TuoKexun Energy Co., Ltd., Xinjiang, China
| | - Cheng Chen
- ChnEnergy XinJiang TuoKexun Energy Co., Ltd., Xinjiang, China
| | - Jun Ma
- ChnEnergy XinJiang TuoKexun Energy Co., Ltd., Xinjiang, China
| | - Jinli Zhang
- CAS Key Lab of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Bo Huang
- CAS Key Lab of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Zhikun Xin
- ChnEnergy New Energy Technology Research Institute Co., Ltd., Beijing, China
| | - Xufan Zheng
- ChnEnergy New Energy Technology Research Institute Co., Ltd., Beijing, China
| | - Tao Tang
- CAS Key Lab of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
12
|
Shahrajabian MH, Petropoulos SA. Editorial for the Special Issue on Plant Biostimulants in Sustainable Horticulture and Agriculture: Development, Function, and Applications. PLANTS (BASEL, SWITZERLAND) 2024; 13:2342. [PMID: 39273826 PMCID: PMC11396779 DOI: 10.3390/plants13172342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
The growing need for food production through sustainable cultivation practices, without reducing crop yield and producer income, is a major objective due to increased environmental pollution and the gradual degradation of cultivated soils [...].
Collapse
Affiliation(s)
- Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China
| | - Spyridon A Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece
| |
Collapse
|
13
|
Ntanasi T, Karavidas I, Spyrou GP, Giannothanasis E, Aliferis KA, Saitanis C, Fotopoulos V, Sabatino L, Savvas D, Ntatsi G. Plant Biostimulants Enhance Tomato Resilience to Salinity Stress: Insights from Two Greek Landraces. PLANTS (BASEL, SWITZERLAND) 2024; 13:1404. [PMID: 38794474 PMCID: PMC11125247 DOI: 10.3390/plants13101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Salinity, one of the major abiotic stresses in plants, significantly hampers germination, photosynthesis, biomass production, nutrient balance, and yield of staple crops. To mitigate the impact of such stress without compromising yield and quality, sustainable agronomic practices are required. Among these practices, seaweed extracts (SWEs) and microbial biostimulants (PGRBs) have emerged as important categories of plant biostimulants (PBs). This research aimed at elucidating the effects on growth, yield, quality, and nutrient status of two Greek tomato landraces ('Tomataki' and 'Thessaloniki') following treatments with the Ascophyllum nodosum seaweed extract 'Algastar' and the PGPB 'Nitrostim' formulation. Plants were subjected to bi-weekly applications of biostimulants and supplied with two nutrient solutions: 0.5 mM (control) and 30 mM NaCl. The results revealed that the different mode(s) of action of the two PBs impacted the tolerance of the different landraces, since 'Tomataki' was benefited only from the SWE application while 'Thessaloniki' showed significant increase in fruit numbers and average fruit weight with the application of both PBs at 0.5 and 30 mM NaCl in the root zone. In conclusion, the stress induced by salinity can be mitigated by increasing tomato tolerance through the application of PBs, a sustainable tool for productivity enhancement, which aligns well with the strategy of the European Green Deal.
Collapse
Affiliation(s)
- Theodora Ntanasi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.P.S.); (E.G.); (D.S.)
| | - Ioannis Karavidas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.P.S.); (E.G.); (D.S.)
| | - George P. Spyrou
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.P.S.); (E.G.); (D.S.)
| | - Evangelos Giannothanasis
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.P.S.); (E.G.); (D.S.)
| | - Konstantinos A. Aliferis
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
- Department of Plant Science, Macdonald Campus, McGill University, Montreal, QC H9X 3V9, Canada
| | - Costas Saitanis
- Laboratory of Ecology and Environmental Sciences, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science Cyprus University of Technology, P.O. Box 50329, 3603 Lemesos, Cyprus;
| | - Leo Sabatino
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy;
| | - Dimitrios Savvas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.P.S.); (E.G.); (D.S.)
| | - Georgia Ntatsi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.P.S.); (E.G.); (D.S.)
| |
Collapse
|
14
|
Sun W, Shahrajabian MH, Soleymani A. The Roles of Plant-Growth-Promoting Rhizobacteria (PGPR)-Based Biostimulants for Agricultural Production Systems. PLANTS (BASEL, SWITZERLAND) 2024; 13:613. [PMID: 38475460 DOI: 10.3390/plants13050613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
The application of biostimulants has been proven to be an advantageous tool and an appropriate form of management towards the effective use of natural resources, food security, and the beneficial effects on plant growth and yield. Plant-growth-promoting rhizobacteria (PGPR) are microbes connected with plant roots that can increase plant growth by different methods such as producing plant hormones and molecules to improve plant growth or providing increased mineral nutrition. They can colonize all ecological niches of roots to all stages of crop development, and they can affect plant growth and development directly by modulating plant hormone levels and enhancing nutrient acquisition such as of potassium, phosphorus, nitrogen, and essential minerals, or indirectly via reducing the inhibitory impacts of different pathogens in the forms of biocontrol parameters. Many plant-associated species such as Pseudomonas, Acinetobacter, Streptomyces, Serratia, Arthrobacter, and Rhodococcus can increase plant growth by improving plant disease resistance, synthesizing growth-stimulating plant hormones, and suppressing pathogenic microorganisms. The application of biostimulants is both an environmentally friendly practice and a promising method that can enhance the sustainability of horticultural and agricultural production systems as well as promote the quantity and quality of foods. They can also reduce the global dependence on hazardous agricultural chemicals. Science Direct, Google Scholar, Springer Link, CAB Direct, Scopus, Springer Link, Taylor and Francis, Web of Science, and Wiley Online Library were checked, and the search was conducted on all manuscript sections in accordance with the terms Acinetobacter, Arthrobacter, Enterobacter, Ochrobactrum, Pseudomonas, Rhodococcus, Serratia, Streptomyces, Biostimulants, Plant growth promoting rhizobactera, and Stenotrophomonas. The aim of this manuscript is to survey the effects of plant-growth-promoting rhizobacteria by presenting case studies and successful paradigms in various agricultural and horticultural crops.
Collapse
Affiliation(s)
- Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ali Soleymani
- Department of Agronomy and Plant Breeding, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
- Plant Improvement and Seed Production Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
| |
Collapse
|
15
|
Shahrajabian MH, Sun W. The Power of the Underutilized and Neglected Medicinal Plants and Herbs of the Middle East. Rev Recent Clin Trials 2024; 19:159-175. [PMID: 38409705 DOI: 10.2174/0115748871276544240212105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/28/2024]
Abstract
The Middle east and North Africa harbour many native species with pharmaceutical and nutraceutical potential. Since the beginning of history, food and herbal medicinal plants have been an essential part of human lives and the traditional Middle Eastern healthcare system. The notable medicinal plants that have been mentioned in the Bible, which are common in West Asia and some regions of North Africa, are Aloe vera, anise, balm, cassia, cinnamon, cumin, flax, and fig. Chemical components of Aloe vera are aloin, sinapinic acid, catechin, chromone, myricetin, quercitrin and syringic acid. Anethole, safrole, and estragole are the main chemical components of anise. The chemical components of cassia are coumarin, emodin, cinnamyl alcohol, and cinnamaldehyde. The major chemical ingredients of cumin are terpinene, cuminaldehyde, sabinene, thujene, and thymoquinone. The goal of this article is to review the considerable health benefits and pharmaceutical benefits of medicinal herbs and plants that have been neglected and underutilized in the Middle East and North Africa, as well as to promote their utilization. On the basis of the results, the experimented neglected medicinal plant can offer various advantages when used together with conventional medicinal treatments for various health conditions, such as palliative care in managing the side effects of conventional treatments, access to a wider range of treatments, increased patient satisfaction, and improved emotional and mental well-being. Moreover, consuming medicinal plants may help to manage and prevent diabetes, cancer, and heart disease with notable anti-tumor, and anti-inflammatory properties.
Collapse
Affiliation(s)
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|