1
|
Karakoti H, Kumar R, Prakash O, Dhami A, Kumar S, Rawat DS. Bioactive flavonoids from Leucosceptrum canum with nematicidal efficacy and mechanistic insights through acetylcholinesterase inhibition and docking study. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106294. [PMID: 40015886 DOI: 10.1016/j.pestbp.2025.106294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 03/01/2025]
Abstract
Leucosceptrum canum, a rare Himalayan plant, shows significant bioactive properties, with its nematicidal potential investigated here for the first time. This study isolated and characterized flavonoids from L. canum, assessing their efficacy against the plant-parasitic nematode Meloidogyne incognita. Bioassay-guided fractionation identified three active flavonoids: Pectolinarigenin, 5,6,7-Trihydroxy-4'-methoxyflavone and Acacetin, structurally elucidated using spectroscopic techniques and literature comparisons. The flavonoids exhibited dose-dependent nematicidal activity, with percent mortalities after 96 h of 100 %, 92 %, and 59 %, respectively. LC₅₀ values of Pectolinarigenin (11.79 μg/mL), 5,6,7-Trihydroxy-4'-methoxyflavone (230.54 μg/mL), and Acacetin (679.67 μg/mL) were recorded, comparable to the standard nematicide Nimitz (LC₅₀: 0.01 μg/mL). These flavonoids also showed strong to moderate acetylcholinesterase (AChE) inhibitory activity, with IC₅₀ values of 17.09, 86.72, and 142.2 μg/mL, respectively, nearing the efficacy of standard, physostigmine (IC₅₀: 19.37 μg/mL), suggesting a neuromuscular mechanism of action. The enzyme kinetics analysis of pectolinarigenin revealed it to be a reversible inhibitor of AChE exhibiting mixed-type inhibition, with inhibition constant of 15.94 μg/mL. Molecular docking revealed strong binding affinities (-7.8 to -7.2 kcal/mol) at the AChE active site, highlighting key hydrogen bonds and hydrophobic interactions. ADMET analysis confirmed favorable pharmacokinetic and safety profiles, underscoring the potential of these flavonoids as eco-friendly nematicidal alternatives. This study establishes L. canum as a valuable source of flavonoids with dual nematicidal and AChE inhibitory properties, supported by integrated in vitro and in silico studies. It underscores the untapped phytochemical wealth of Himalayan flora for sustainable nematode management.
Collapse
Affiliation(s)
- Himani Karakoti
- Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, 263145, Uttarakhand, India.
| | - Ravendra Kumar
- Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, 263145, Uttarakhand, India.
| | - Om Prakash
- Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, 263145, Uttarakhand, India
| | - Anamika Dhami
- Department of Plant Pathology, College of Agriculture, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, 263145, Uttarakhand, India
| | - Satya Kumar
- Medicinal Process Chemistry Division CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Dharmendra Singh Rawat
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, 263145, Uttarakhand, India
| |
Collapse
|
2
|
Mezerket A, Palomares-Rius JE, Bouasla S, Saib H. Phytochemical profile and nematicidal potential of essential oil from Algerian wild Origanum vulgare subsp. glandulosum Defs. Turk J Biol 2025; 49:52-59. [PMID: 40104573 PMCID: PMC11913355 DOI: 10.55730/1300-0152.2723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/24/2025] [Accepted: 01/27/2025] [Indexed: 03/20/2025] Open
Abstract
Background/aim The root gall nematode Meloidogyne incognita constitute the most damaging species that infects many crops in Algeria. The intense use of harmful agricultural chemical products has incited research to develop alternative methods with natural and ecological advantages like essential oils extracted from plants. The objective of this study was to evaluate the efficacy of Origanum vulgare subsp. glandulosum Desf. (Lamiaceae) essential oil on the development of the root-knot nematode M. incognita in potted tomatoes. Materials and methods In pot trials, we assessed the activity of O. vulgare subsp. glandulosum essential oil at two concentrations of 0.75 and 0.37 mg/L against M. incognita. These dilutions were applied in two treatments to soil: the preventive treatment (pretomato planting), and the curative treatment (posttomato planting), using an artificially inoculated tomato under controlled conditions. Results The application of O. vulgare subsp. glandulosum essential oil was very effective at the pretomato planting treatment compared to the chemical treatments, and the inoculated control. We noted a reduction in number of roots and soil juveniles, galling index, and an increase in the tomato root and stem weights. The phytochemical screening of O. vulgare subsp. glandulosum revealed the presence of five classes of bioactive compounds (glycosides, saponins, flavonoids, tannins, and gallic tannins). Conclusion This study showed a potential nematicidal effect of O. vulgare subsp. glandulosum essential oil on root-knot nematode.
Collapse
Affiliation(s)
- Amina Mezerket
- Department of Natural Sciences LESN, Higher Normal School of Kouba (ENS) Cheikh Mohamed El Bachir El Ibrahimi, Algeries, Algeria
| | - Juan Emilio Palomares-Rius
- Institute for Sustainable Agriculture (IAS), Higher Council for Scientific Research (CSIC), Cordoba, Spain
| | - Souad Bouasla
- Faculty of Sciences, University of Ferhat Abas, Campus El Bez, Setif, Algeria
| | - Henia Saib
- Department of Natural Sciences LESN, Higher Normal School of Kouba (ENS) Cheikh Mohamed El Bachir El Ibrahimi, Algeries, Algeria
| |
Collapse
|
3
|
Kim G, Cho H, Kim S. Identification of a candidate gene for the I locus determining the dominant white bulb color in onion (Allium cepa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:118. [PMID: 38709404 DOI: 10.1007/s00122-024-04626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
KEY MESSAGE Through a map-based cloning approach, a gene coding for an R2R3-MYB transcription factor was identified as a causal gene for the I locus controlling the dominant white bulb color in onion. White bulb colors in onion (Allium cepa L.) are determined by either the C or I loci. The causal gene for the C locus was previously isolated, but the gene responsible for the I locus has not been identified yet. To identify candidate genes for the I locus, an approximately 7-Mb genomic DNA region harboring the I locus was obtained from onion and bunching onion (A. fistulosum) whole genome sequences using two tightly linked molecular markers. Within this interval, the AcMYB1 gene, known as a positive regulator of anthocyanin production, was identified. No polymorphic sequences were found between white and red AcMYB1 alleles in the 4,860-bp full-length genomic DNA sequences. However, a 4,838-bp LTR-retrotransposon was identified in the white allele, in the 79-bp upstream coding region from the stop codon. The insertion of this LTR-retrotransposon created a premature stop codon, resulting in the replacement of 26 amino acids with seven different residues. A molecular marker was developed based on the insertion of this LTR-retrotransposon to genotype the I locus. A perfect linkage between bulb color phenotypes and marker genotypes was observed among 5,303 individuals of segregating populations. The transcription of AcMYB1 appeared to be normal in both red and white onions, but the transcription of CHS-A, which encodes chalcone synthase and is involved in the first step of the anthocyanin biosynthesis pathway, was inactivated in the white onions. Taken together, an aberrant AcMYB1 protein produced from the mutant allele might be responsible for the dominant white bulb color in onions.
Collapse
Affiliation(s)
- Geonjoong Kim
- Department of Horticulture, Biotechnology Research Institute, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Heejung Cho
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Sunggil Kim
- Department of Horticulture, Biotechnology Research Institute, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
4
|
Montesinos Á, Sacristán S, Del Prado-Polonio P, Arnaiz A, Díaz-González S, Diaz I, Santamaria ME. Contrasting plant transcriptome responses between a pierce-sucking and a chewing herbivore go beyond the infestation site. BMC PLANT BIOLOGY 2024; 24:120. [PMID: 38369495 PMCID: PMC10875829 DOI: 10.1186/s12870-024-04806-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Plants have acquired a repertoire of mechanisms to combat biotic stressors, which may vary depending on the feeding strategies of herbivores and the plant species. Hormonal regulation crucially modulates this malleable defense response. Jasmonic acid (JA) and salicylic acid (SA) stand out as pivotal regulators of defense, while other hormones like abscisic acid (ABA), ethylene (ET), gibberellic acid (GA) or auxin also play a role in modulating plant-pest interactions. The plant defense response has been described to elicit effects in distal tissues, whereby aboveground herbivory can influence belowground response, and vice versa. This impact on distal tissues may be contingent upon the feeding guild, even affecting both the recovery of infested tissues and those that have not suffered active infestation. RESULTS To study how phytophagous with distinct feeding strategies may differently trigger the plant defense response during and after infestation in both infested and distal tissues, Arabidopsis thaliana L. rosettes were infested separately with the chewing herbivore Pieris brassicae L. and the piercing-sucker Tetranychus urticae Koch. Moderate infestation conditions were selected for both pests, though no quantitative control of damage levels was carried out. Feeding mode did distinctly influence the transcriptomic response of the plant under these conditions. Though overall affected processes were similar under either infestation, their magnitude differed significantly. Plants infested with P. brassicae exhibited a short-term response, involving stress-related genes, JA and ABA regulation and suppressing growth-related genes. In contrast, T. urticae elicited a longer transcriptomic response in plants, albeit with a lower degree of differential expression, in particular influencing SA regulation. These distinct defense responses transcended beyond infestation and through the roots, where hormonal response, flavonoid regulation or cell wall reorganization were differentially affected. CONCLUSION These outcomes confirm that the existent divergent transcriptomic responses elicited by herbivores employing distinct feeding strategies possess the capacity to extend beyond infestation and even affect tissues that have not been directly infested. This remarks the importance of considering the entire plant's response to localized biotic stresses.
Collapse
Affiliation(s)
- Álvaro Montesinos
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Universidad de Zaragoza, Calle Pedro Cerbuna, 12, Zaragoza, 50009, Spain
| | - Soledad Sacristán
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Palmira Del Prado-Polonio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Ana Arnaiz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, Burgos, 09001, Spain
| | - Sandra Díaz-González
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - M Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
5
|
Skovmand L, O'Dea RE, Greig KA, Amato KR, Hendry AP. Effects of leaf herbivory and autumn seasonality on plant secondary metabolites: A meta-analysis. Ecol Evol 2024; 14:e10912. [PMID: 38357594 PMCID: PMC10864732 DOI: 10.1002/ece3.10912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Plant secondary metabolites (PSMs) are produced by plants to overcome environmental challenges, both biotic and abiotic. We were interested in characterizing how autumn seasonality in temperate and subtropical climates affects overall PSM production in comparison to herbivory. Herbivory is commonly measured between spring to summer when plants have high resource availability and prioritize growth and reproduction. However, autumn seasonality also challenges plants as they cope with limited resources and prepare survival for winter. This suggests a potential gap in our understanding of how herbivory affects PSM production in autumn compared to spring/summer. Using meta-analysis, we recorded overall production of 22 different PSM subgroups from 58 published papers to calculate effect sizes from herbivory studies (absence to presence) and temperate to subtropical seasonal studies (summer to autumn), while considering other variables (e.g., plant type, increase in time since herbivory, temperature, and precipitation). We also compared production of five phenolic PSM subgroups - hydroxybenzoic acids, flavan-3-ols, flavonols, hydrolysable tannins, and condensed tannins. We wanted to detect a shared response across all PSMs and found that herbivory increased overall PSM production in herbaceous plants. Herbivory was also found to have a positive effect on individual PSM subgroups, such as flavonol production, while autumn seasonality was found to have a positive effect on flavan-3-ol and condensed tannin production. We discuss how these responses might stem from plants producing some PSMs constitutively, whereas others are induced only after herbivory, and how plants produce metabolites with higher costs only during seasons when other resources for growth and reproduction are less available, while other phenolic PSM subgroups serve more than one function for plants and such functions can be season dependent. The outcome of our meta-analysis is that autumn seasonality changes some PSM production differently from herbivory, and we see value in further investigating seasonality-herbivory interactions with plant chemical defense.
Collapse
Affiliation(s)
- Lota Skovmand
- Redpath Museum & Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Rose E. O'Dea
- School of Agriculture, Food, and Ecosystem SciencesUniversity of MelbourneMelbourneVictoriaAustralia
| | - Keri A. Greig
- Department of Integrative BiologyUniversity of Texas at AustinAustinTexasUSA
| | | | - Andrew P. Hendry
- Redpath Museum & Department of BiologyMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
6
|
Funnell-Harris DL, Sattler SE, O'Neill PM, Gries T, Ge Z, Nersesian N. Effects of Altering Three Steps of Monolignol Biosynthesis on Sorghum Responses to Stalk Pathogens and Water Deficit. PLANT DISEASE 2023; 107:3984-3995. [PMID: 37430480 DOI: 10.1094/pdis-08-22-1959-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The drought-resilient crop sorghum (Sorghum bicolor [L.] Moench) is grown worldwide for multiple uses, including forage or potential lignocellulosic bioenergy feedstock. A major impediment to biomass yield and quality are the pathogens Fusarium thapsinum and Macrophomina phaseolina, which cause Fusarium stalk rot and charcoal rot, respectively. These fungi are more virulent with abiotic stresses such as drought. Monolignol biosynthesis plays a critical role in plant defense. The genes Brown midrib (Bmr)6, Bmr12, and Bmr2 encode the monolignol biosynthesis enzymes cinnamyl alcohol dehydrogenase, caffeic acid O-methyltransferase, and 4-coumarate:CoA ligase, respectively. Plant stalks from lines overexpressing these genes and containing bmr mutations were screened for pathogen responses with controlled adequate or deficit watering. Additionally, near-isogenic bmr12 and wild-type lines in five backgrounds were screened for response to F. thapsinum with adequate and deficit watering. All mutant and overexpression lines were no more susceptible than corresponding wild-type under both watering conditions. The bmr2 and bmr12 lines, near-isogenic to wild-type, had significantly shorter mean lesion lengths (were more resistant) than RTx430 wild-type when inoculated with F. thapsinum under water deficit. Additionally, bmr2 plants grown under water deficit had significantly smaller mean lesions when inoculated with M. phaseolina than under adequate-water conditions. When well-watered, bmr12 in cultivar Wheatland and one of two Bmr2 overexpression lines in RTx430 had shorter mean lesion lengths than corresponding wild-type lines. This research demonstrates that modifying monolignol biosynthesis for increased usability may not impair plant defenses but can even enhance resistance to stalk pathogens under drought conditions.
Collapse
Affiliation(s)
- Deanna L Funnell-Harris
- Wheat, Sorghum, and Forage Research Unit, United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Lincoln, NE 68583
- Department of Plant Pathology, University of Nebraska, Lincoln (UNL), Lincoln, NE 68583
| | - Scott E Sattler
- Wheat, Sorghum, and Forage Research Unit, United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Lincoln, NE 68583
- Department of Agronomy and Horticulture, UNL, Lincoln, NE 68583
| | - Patrick M O'Neill
- Wheat, Sorghum, and Forage Research Unit, United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Lincoln, NE 68583
- Department of Plant Pathology, University of Nebraska, Lincoln (UNL), Lincoln, NE 68583
| | - Tammy Gries
- Wheat, Sorghum, and Forage Research Unit, United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Lincoln, NE 68583
- Department of Agronomy and Horticulture, UNL, Lincoln, NE 68583
| | - Zhengxiang Ge
- Department of Agronomy and Horticulture, UNL, Lincoln, NE 68583
| | | |
Collapse
|
7
|
Raza T, Qadir MF, Khan KS, Eash NS, Yousuf M, Chatterjee S, Manzoor R, Rehman SU, Oetting JN. Unrevealing the potential of microbes in decomposition of organic matter and release of carbon in the ecosystem. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118529. [PMID: 37418912 DOI: 10.1016/j.jenvman.2023.118529] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/13/2023] [Accepted: 06/25/2023] [Indexed: 07/09/2023]
Abstract
Organic matter decomposition is a biochemical process with consequences affecting climate change and ecosystem productivity. Once decomposition begins, C is lost as CO2 or sequestered into more recalcitrant carbon difficult to further degradation. As microbial respiration releases carbon dioxide into the atmosphere, microbes act as gatekeepers in the whole process. Microbial activities were found to be the second largest CO2 emission source in the environment after human activities (industrialization), and research investigations suggest that this may have affected climate change over the past few decades. It is crucial to note that microbes are major contributors in the whole C cycle (decomposition, transformation, and stabilization). Therefore, imbalances in the C cycle might be causing changes in the entire carbon content of the ecosystem. The significance of microbes, especially soil bacteria in the terrestrial carbon cycle requires more attention. This review focuses on the factors that affect microorganism behavior during the breakdown of organic materials. The key factors affecting the microbial degradation processes are the quality of the input material, nitrogen, temperature, and moisture content. In this review, we suggest that to address global climate change and its effects on agricultural systems and vice versa, there is a need to double-up on efforts and conduct new research studies to further evaluate the potential of microbial communities to reduce their contribution to terrestrial carbon emission.
Collapse
Affiliation(s)
- Taqi Raza
- The Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, USA.
| | - Muhammad Farhan Qadir
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad 38040, Pakistan
| | - Khuram Shehzad Khan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Neal S Eash
- The Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, USA
| | - Muhammad Yousuf
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad 38040, Pakistan
| | - Sumanta Chatterjee
- USDA ARS, Hydrology and Remote Sensing Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705, USA; ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Rabia Manzoor
- Land Resources Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Sana Ur Rehman
- National Research Center of Intercropping, The Islamia University of Bahawalpur, Pakistan
| | | |
Collapse
|
8
|
Bairwa A, Sood S, Bhardwaj V, Rawat S, Tamanna T, Siddappa S, Venkatasalam EP, Dipta B, Sharma AK, Kumar A, Singh B, Mhatre PH, Sharma S, Kumar V. Identification of genes governing resistance to PCN (Globodera rostochiensis) through transcriptome analysis in Solanum tuberosum. Funct Integr Genomics 2023; 23:242. [PMID: 37453957 DOI: 10.1007/s10142-023-01164-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Potato cyst nematodes (PCNs) are major pests worldwide that affect potato production. The molecular changes happening in the roots upon PCN infection are still unknown. Identification of transcripts and genes governing PCN resistance will help in the development of resistant varieties. Hence, differential gene expression of compatible (Kufri Jyoti) and incompatible (JEX/A-267) potato genotypes was studied before (0 DAI) and after (10 DAI) inoculation of Globodera rostochiensis J2s through RNA sequencing (RNA-Seq). Total sequencing reads generated ranged between 33 and 37 million per sample, with a read mapping of 48-84% to the potato reference genome. In the infected roots of the resistant genotype JEX/A-267, 516 genes were downregulated, and 566 were upregulated. In comparison, in the susceptible genotype Kufri Jyoti, 316 and 554 genes were downregulated and upregulated, respectively. Genes encoding cell wall proteins, zinc finger protein, WRKY transcription factors, MYB transcription factors, disease resistance proteins, and pathogenesis-related proteins were found to be majorly involved in the incompatible reaction after PCN infection in the resistant genotype, JEX/A-267. Furthermore, RNA-Seq results were validated through quantitative real-time PCR (qRT-PCR), and it was observed that ATP, FLAVO, CYTO, and GP genes were upregulated at 5 DAI, which was subsequently downregulated at 10 DAI. The genes encoding ATP, FLAVO, LBR, and GP were present in > 1.5 fold before infection in JEX-A/267 and upregulated 7.9- to 27.6-fold after 5 DAI; subsequently, most of these genes were downregulated to 0.9- to 2.8-fold, except LBR, which was again upregulated to 44.4-fold at 10 DAI.
Collapse
Affiliation(s)
- Aarti Bairwa
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| | - Salej Sood
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India.
| | - Vinay Bhardwaj
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India.
| | - Shashi Rawat
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| | - Tamanna Tamanna
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| | - Sundaresha Siddappa
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| | - E P Venkatasalam
- ICAR-Central Potato Research Station, Muthorai, 643004, The Nilgiris, Udhagamandalam, Tamil Nadu, India
| | - Bhawna Dipta
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| | - Ashwani K Sharma
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| | - Ashwani Kumar
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| | - Baljeet Singh
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| | - Priyank H Mhatre
- ICAR-Central Potato Research Station, Muthorai, 643004, The Nilgiris, Udhagamandalam, Tamil Nadu, India
| | - Sanjeev Sharma
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| | - Vinod Kumar
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| |
Collapse
|
9
|
Khan A, Chen S, Fatima S, Ahamad L, Siddiqui MA. Biotechnological Tools to Elucidate the Mechanism of Plant and Nematode Interactions. PLANTS (BASEL, SWITZERLAND) 2023; 12:2387. [PMID: 37376010 DOI: 10.3390/plants12122387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Plant-parasitic nematodes (PPNs) pose a threat to global food security in both the developed and developing worlds. PPNs cause crop losses worth a total of more than USD 150 billion worldwide. The sedentary root-knot nematodes (RKNs) also cause severe damage to various agricultural crops and establish compatible relationships with a broad range of host plants. This review aims to provide a broad overview of the strategies used to identify the morpho-physiological and molecular events that occur during RKN parasitism. It describes the most current developments in the transcriptomic, proteomic, and metabolomic strategies of nematodes, which are important for understanding compatible interactions of plants and nematodes, and several strategies for enhancing plant resistance against RKNs. We will highlight recent rapid advances in molecular strategies, such as gene-silencing technologies, RNA interference (RNAi), and small interfering RNA (siRNA) effector proteins, that are leading to considerable progress in understanding the mechanism of plant-nematode interactions. We also take into account genetic engineering strategies, such as targeted genome editing techniques, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) (CRISPR/Cas-9) system, and quantitative trait loci (QTL), to enhance the resistance of plants against nematodes.
Collapse
Affiliation(s)
- Arshad Khan
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Shaohua Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Saba Fatima
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Lukman Ahamad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | | |
Collapse
|
10
|
Gautam H, Sharma A, Trivedi PK. The role of flavonols in insect resistance and stress response. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102353. [PMID: 37001187 DOI: 10.1016/j.pbi.2023.102353] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 06/10/2023]
Abstract
Plants are sessile organisms and must adapt to various environmental changes, especially from stress conditions. Synthesis of secondary metabolites by the plant is one of the adaptive mechanisms against stress to provide resistance. Among several secondary metabolites, flavonols, a subgroup of flavonoids, are one of the most widely distributed in the plant kingdom. These molecules work as antioxidants, reduce reactive oxygen species (ROS) in plants, and cause detrimental effects on insect growth on feeding. Despite the great interest in flavonol function leading to insect tolerance and stress response, the detailed mechanisms related to these specific functions have yet to be studied. In this review, we have summarized the role of flavonols in plant defense against insects and different abiotic stresses and possible mechanisms involved in these functions.
Collapse
Affiliation(s)
- Himanshi Gautam
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ashish Sharma
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India; Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Prabodh Kumar Trivedi
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India; Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India.
| |
Collapse
|
11
|
Seo JW, Lee JG, Yoo JH, Lim JD, Choi IY, Kim MJ, Yu CY, Seong ES. Cellular Morphology and Transcriptome Comparative Analysis of Astragalus membranaceus Bunge Sprouts Cultured In Vitro under Different LED Light. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091914. [PMID: 37176972 PMCID: PMC10180632 DOI: 10.3390/plants12091914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Astragalus membranaceus, the major components of which are saponins, flavonoids, and polysaccharides, has been established to have excellent pharmacological activity. After ginseng, it is the second most used medicinal plant. To examine the utility of A. membranaceus as a sprout crop for plant factory cultivation, we sought to establish a functional substance control model by comparing the transcriptomes of sprouts grown in sterile, in vitro culture using LED light sources. Having sown the seeds of A. membranaceus, these were exposed to white LED light (continuous spectrum), red LED light (632 nm, 1.58 μmol/m2/s), or blue LED light (465 nm, 1.44 μmol/m2/s) and grown for 6 weeks; after which, the samples were collected for transcriptome analysis. Scanning electron microscopy analysis of cell morphology in plants exposed to the three light sources revealed that leaf cell size was largest in those plants exposed to red light, where the thickest stem was observed in plants exposed to white light. The total number of genes in A. membranaceus spouts determined via de novo assembly was 45,667. Analysis of differentially expressed genes revealed that for the comparisons of blue LED vs. red LED, blue LED vs. white LED, and red LED vs. white LED, the numbers of upregulated genes were 132, 148, and 144, respectively. Binding, DNA integration, transport, phosphorylation, DNA biosynthetic process, membrane, and plant-type secondary cell wall biogenesis were the most enriched in the comparative analysis of blue LED vs. red LED, whereas Binding, RNA-templated DNA biosynthetic process, DNA metabolic process, and DNA integration were the most enriched in the comparative analysis of blue vs. white LED, and DNA integration and resolution of meiotic recombination intermediates were the most enrichment in the comparison between red LED vs. white LED. The GO term associated with flavonoid biosynthesis, implying the functionality of A. membranaceus, was the flavonoid biosynthetic process, which was enriched in the white LED vs. red LED comparison. The findings of this study thus indicate that different LED light sources can differentially influence the transcriptome expression pattern of A. membranaceus sprouts, which can provide a basis for establishing a flavonoid biosynthesis regulation model and thus, the cultivation of high-functional Astragalus sprouts.
Collapse
Affiliation(s)
- Ji Won Seo
- Interdisciplinary Program in Smart Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jae Geun Lee
- Research Institute of Biotechnology, Hwajin Cosmetics, Hongcheon 25142, Republic of Korea
| | - Ji Hye Yoo
- Bioherb Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jung Dae Lim
- Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ik Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Myong Jo Kim
- Division of Bioresource Sciences, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chang Yeon Yu
- Division of Bioresource Sciences, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Eun Soo Seong
- Division of Bioresource Sciences, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
12
|
Zhuang WB, Li YH, Shu XC, Pu YT, Wang XJ, Wang T, Wang Z. The Classification, Molecular Structure and Biological Biosynthesis of Flavonoids, and Their Roles in Biotic and Abiotic Stresses. Molecules 2023; 28:molecules28083599. [PMID: 37110833 PMCID: PMC10147097 DOI: 10.3390/molecules28083599] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
With the climate constantly changing, plants suffer more frequently from various abiotic and biotic stresses. However, they have evolved biosynthetic machinery to survive in stressful environmental conditions. Flavonoids are involved in a variety of biological activities in plants, which can protect plants from different biotic (plant-parasitic nematodes, fungi and bacteria) and abiotic stresses (salt stress, drought stress, UV, higher and lower temperatures). Flavonoids contain several subgroups, including anthocyanidins, flavonols, flavones, flavanols, flavanones, chalcones, dihydrochalcones and dihydroflavonols, which are widely distributed in various plants. As the pathway of flavonoid biosynthesis has been well studied, many researchers have applied transgenic technologies in order to explore the molecular mechanism of genes associated with flavonoid biosynthesis; as such, many transgenic plants have shown a higher stress tolerance through the regulation of flavonoid content. In the present review, the classification, molecular structure and biological biosynthesis of flavonoids were summarized, and the roles of flavonoids under various forms of biotic and abiotic stress in plants were also included. In addition, the effect of applying genes associated with flavonoid biosynthesis on the enhancement of plant tolerance under various biotic and abiotic stresses was also discussed.
Collapse
Affiliation(s)
- Wei-Bing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Yu-Hang Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Xiao-Chun Shu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Yu-Ting Pu
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Xiao-Jing Wang
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Tao Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| |
Collapse
|
13
|
Zhang L, Li S, Shan C, Liu Y, Zhang Y, Ye L, Lin Y, Xiong G, Ma J, Adnan M, Shi X, Sun X, Kuang W, Cui R. Integrated transcriptome and metabolome analysis revealed that flavonoids enhanced the resistance of Oryza sativa against Meloidogyne graminicola. FRONTIERS IN PLANT SCIENCE 2023; 14:1137299. [PMID: 37063174 PMCID: PMC10102519 DOI: 10.3389/fpls.2023.1137299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Rice is a crucial food crop worldwide, but its yield and quality are significantly affected by Meloidogyne graminicola is a root knot nematode. No rice variety is entirely immune to this nematode disease in agricultural production. Thus, the fundamental strategy to combat this disease is to utilize rice resistance genes. In this study, we conducted transcriptome and metabolome analyses on two rice varieties, ZH11 and IR64. The results indicated that ZH11 showed stronger resistance than IR64. Transcriptome analysis revealed that the change in gene expression in ZH11 was more substantial than that in IR64 after M. graminicola infection. Moreover, GO and KEGG enrichment analysis of the upregulated genes in ZH11 showed that they were primarily associated with rice cell wall construction, carbohydrate metabolism, and secondary metabolism relating to disease resistance, which effectively enhanced the resistance of ZH11. However, in rice IR64, the number of genes enriched in disease resistance pathways was significantly lower than that in ZH11, which further explained susceptibility to IR64. Metabolome analysis revealed that the metabolites detected in ZH11 were enriched in flavonoid metabolism and the pentose phosphate pathway, compared to IR64, after M. graminicola infection. The comprehensive analysis of transcriptome and metabolome data indicated that flavonoid metabolism plays a crucial role in rice resistance to M. graminicola infection. The content of kaempferin, apigenin, and quercetin in ZH11 significantly increased after M. graminicola infection, and the expression of genes involved in the synthetic pathway of flavonoids also significantly increased in ZH11. Our study provides theoretical guidance for the precise analysis of rice resistance and disease resistance breeding in further research.
Collapse
Affiliation(s)
- Lianhu Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Songyan Li
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Chonglei Shan
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Yankun Liu
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Yifan Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Lifang Ye
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Yachun Lin
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Guihong Xiong
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Jian Ma
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Muhammad Adnan
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xugen Shi
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Xiaotang Sun
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
| | - Weigang Kuang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Ruqiang Cui
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
14
|
Makhumbila P, Rauwane ME, Muedi HH, Madala NE, Figlan S. Metabolome profile variations in common bean (Phaseolus vulgaris L.) resistant and susceptible genotypes incited by rust (Uromyces appendiculatus). Front Genet 2023; 14:1141201. [PMID: 37007949 PMCID: PMC10060544 DOI: 10.3389/fgene.2023.1141201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/10/2023] [Indexed: 03/18/2023] Open
Abstract
The causal agent of rust, Uromyces appendiculatus is a major constraint for common bean (Phaseolus vulgaris) production. This pathogen causes substantial yield losses in many common bean production areas worldwide. U. appendiculatus is widely distributed and although there have been numerous breakthroughs in breeding for resistance, its ability to mutate and evolve still poses a major threat to common bean production. An understanding of plant phytochemical properties can aid in accelerating breeding for rust resistance. In this study, metabolome profiles of two common bean genotypes Teebus-RR-1 (resistant) and Golden Gate Wax (susceptible) were investigated for their response to U. appendiculatus races (1 and 3) at 14- and 21-days post-infection (dpi) using liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (LC-qTOF-MS). Non-targeted data analysis revealed 71 known metabolites that were putatively annotated, and a total of 33 were statistically significant. Key metabolites including flavonoids, terpenoids, alkaloids and lipids were found to be incited by rust infections in both genotypes. Resistant genotype as compared to the susceptible genotype differentially enriched metabolites including aconifine, D-sucrose, galangin, rutarin and others as a defence mechanism against the rust pathogen. The results suggest that timely response to pathogen attack by signalling the production of specific metabolites can be used as a strategy to understand plant defence. This is the first study to illustrate the utilization of metabolomics to understand the interaction of common bean with rust.
Collapse
Affiliation(s)
- Penny Makhumbila
- Department of Agriculture and Animal Health, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Roodeport, South Africa
- *Correspondence: Penny Makhumbila,
| | - Molemi E. Rauwane
- Department of Agriculture and Animal Health, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Roodeport, South Africa
- Department of Botany, Nelson Mandela University, Port Elizabeth, South Africa
| | - Hangwani H. Muedi
- Research Support Services, North-West Provincial Department of Agriculture and Rural Development, Potchefstroom, South Africa
| | - Ntakadzeni E. Madala
- Department of Biochemistry, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, South Africa
| | - Sandiswa Figlan
- Department of Agriculture and Animal Health, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Roodeport, South Africa
| |
Collapse
|
15
|
Kurepa J, Shull TE, Smalle JA. Friends in Arms: Flavonoids and the Auxin/Cytokinin Balance in Terrestrialization. PLANTS (BASEL, SWITZERLAND) 2023; 12:517. [PMID: 36771601 PMCID: PMC9921348 DOI: 10.3390/plants12030517] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Land plants survive the challenges of new environments by evolving mechanisms that protect them from excess irradiation, nutrient deficiency, and temperature and water availability fluctuations. One such evolved mechanism is the regulation of the shoot/root growth ratio in response to water and nutrient availability by balancing the actions of the hormones auxin and cytokinin. Plant terrestrialization co-occurred with a dramatic expansion in secondary metabolism, particularly with the evolution and establishment of the flavonoid biosynthetic pathway. Flavonoid biosynthesis is responsive to a wide range of stresses, and the numerous synthesized flavonoid species offer two main evolutionary advantages to land plants. First, flavonoids are antioxidants and thus defend plants against those adverse conditions that lead to the overproduction of reactive oxygen species. Second, flavonoids aid in protecting plants against water and nutrient deficiency by modulating root development and establishing symbiotic relations with beneficial soil fungi and bacteria. Here, we review different aspects of the relationships between the auxin/cytokinin module and flavonoids. The current body of knowledge suggests that whereas both auxin and cytokinin regulate flavonoid biosynthesis, flavonoids act to fine-tune only auxin, which in turn regulates cytokinin action. This conclusion agrees with the established master regulatory function of auxin in controlling the shoot/root growth ratio.
Collapse
Affiliation(s)
| | | | - Jan A. Smalle
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
16
|
Mohammad AA, Amer HM, El-Sawy SM, Youssef DA, Nour SA, Soliman GM. Nematicidal activity of sweet annie and garden cress nano-formulations and their impact on the vegetative growth and fruit quality of tomato plants. Sci Rep 2022; 12:22302. [PMID: 36566273 PMCID: PMC9789970 DOI: 10.1038/s41598-022-26819-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Root-knot nematode is one of the major problems that face the agricultural production of several vegetable crops. Chemical nematicides have been banned because of their healthy and environmental undesirable attributes. So, this study aimed to evaluate the potential use of sweet annie (Artimisia annua) and garden cress (Lepidium sativum) as green routes for the development of effective and eco-friendly alternative nematicides. Nematicidal activity of sweet annie and garden cress aqueous extracts (500 g/L) in the original and nano-forms were evaluated against Meloidogyne incognita in tomato planted in infected soil under greenhouse conditions. Nineteen phenolic compounds were identified in A. annua extract, which was dominated by chlorogenic acid (5059 µg/100 mL), while 11 compounds were identified in L. sativum extract, that dominated by p-hydroxybenzoic acid (3206 μg/100 mL). Nano-particles were characterized with smooth surface, spherical shape and small size (50-100 nm). Under laboratory, the nano-formulations showed mortality percentage of M. incognita J2 greater than the original extract from. Vegetative growth parameters of tomato plants treated with A. annua and L. sativum extracts significantly improved compared to the control plants. Also, biochemical analysis revealed that the extracts were able to induce tomato plants towards the accumulation of phenolic compounds and increasing the activity of defensive enzymes (protease, polyphenol oxidase and chitinase) resulting in systemic resistance. Regarding tomato fruits yield and quality, the studied treatments significantly improved the yield and physicochemical parameters of tomato fruits in terms of fruit weight, diameter, TSS, pH, lycopene content and color attributes gaining higher sensorial acceptance by the panelist. Generally, both extracts represent promising nematicide alternatives and have potential use in crop management. The nano-form of A. annua extract outperformed the nematicidal activity of other studied treatments.
Collapse
Affiliation(s)
- Ayman A Mohammad
- Food Technology Department, National Research Centre, Dokki, 12622, Cairo, Egypt.
| | - Heba M Amer
- Medicinal and Aromatic Plants Research Department, National Research Centre, Dokki, 12622, Cairo, Egypt.
| | - Sameh M El-Sawy
- Vegetable Research Department, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Dalia A Youssef
- Pests and Plant Protection Department, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Shaimaa A Nour
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Gaziea M Soliman
- Plant Pathology Department, Nematology Unit, National Research Centre, Dokki, 12622, Cairo, Egypt
| |
Collapse
|
17
|
Hama JR, Hooshmand K, Laursen BB, Vestergård M, Fomsgaard IS. Clover Root Uptake of Cereal Benzoxazinoids (BXs) Caused Accumulation of BXs and BX Transformation Products Concurrently with Substantial Increments in Clover Flavonoids and Abscisic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14633-14640. [PMID: 36350751 DOI: 10.1021/acs.jafc.2c04715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metabolomic studies on root uptake and transformation of bioactive compounds, like cereal benzoxazinoids (BXs) in non-BX producing plants, are very limited. Therefore, a targeted mass-spectrometry-based metabolomics study was performed to elucidate the root uptake of BXs in white clover (Trifolium repens L.) and the impact of absorbed BXs on intrinsic clover secondary metabolites. Clover plants grew in a medium containing 100 μM of individual BXs (five aglycone and one glycoside BXs) for 3 weeks. Subsequently, plant tissues were analyzed by liquid chromatography-tandem mass spectrometry to quantify the BXs and clover secondary metabolite concentrations. All BXs were taken up by clover roots and translocated to the shoots. Upon uptake of 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA), 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), 2-hydroxy-1,4-benzoxazin-3-one (HBOA), and 2-β-d-glucopyranosyloxy-1,4-benzoxazin-3-one (HBOA-glc), the parent compounds and a range of transformation products were seen in the roots and shoots. The individual BX concentrations ranged from not detected (nd) to 469 μg/g of dry weight (dw) and from nd to 170 μg/g of dw in the roots and shoots, respectively. The root uptake of BXs altered the composition of intrinsic clover secondary metabolites. In particular, the concentration of flavonoids and the hormone abscisic acid increased substantially in comparison to control plants.
Collapse
Affiliation(s)
- Jawameer R Hama
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Kourosh Hooshmand
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Bente B Laursen
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Mette Vestergård
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Inge S Fomsgaard
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| |
Collapse
|
18
|
Arraes FBM, Vasquez DDN, Tahir M, Pinheiro DH, Faheem M, Freitas-Alves NS, Moreira-Pinto CE, Moreira VJV, Paes-de-Melo B, Lisei-de-Sa ME, Morgante CV, Mota APZ, Lourenço-Tessutti IT, Togawa RC, Grynberg P, Fragoso RR, de Almeida-Engler J, Larsen MR, Grossi-de-Sa MF. Integrated Omic Approaches Reveal Molecular Mechanisms of Tolerance during Soybean and Meloidogyne incognita Interactions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202744. [PMID: 36297768 PMCID: PMC9612212 DOI: 10.3390/plants11202744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 05/08/2023]
Abstract
The root-knot nematode (RKN), Meloidogyne incognita, is a devastating soybean pathogen worldwide. The use of resistant cultivars is the most effective method to prevent economic losses caused by RKNs. To elucidate the mechanisms involved in resistance to RKN, we determined the proteome and transcriptome profiles from roots of susceptible (BRS133) and highly tolerant (PI 595099) Glycine max genotypes 4, 12, and 30 days after RKN infestation. After in silico analysis, we described major defense molecules and mechanisms considered constitutive responses to nematode infestation, such as mTOR, PI3K-Akt, relaxin, and thermogenesis. The integrated data allowed us to identify protein families and metabolic pathways exclusively regulated in tolerant soybean genotypes. Among them, we highlighted the phenylpropanoid pathway as an early, robust, and systemic defense process capable of controlling M. incognita reproduction. Associated with this metabolic pathway, 29 differentially expressed genes encoding 11 different enzymes were identified, mainly from the flavonoid and derivative pathways. Based on differential expression in transcriptomic and proteomic data, as well as in the expression profile by RT-qPCR, and previous studies, we selected and overexpressed the GmPR10 gene in transgenic tobacco to assess its protective effect against M. incognita. Transgenic plants of the T2 generation showed up to 58% reduction in the M. incognita reproduction factor. Finally, data suggest that GmPR10 overexpression can be effective against the plant parasitic nematode M. incognita, but its mechanism of action remains unclear. These findings will help develop new engineered soybean genotypes with higher performance in response to RKN infections.
Collapse
Affiliation(s)
- Fabricio B M Arraes
- Postgraduate Program in Cellular and Molecular Biology (PPGBCM), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Daniel D N Vasquez
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Genomic Sciences and Biotechnology (PPGCGB), Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
| | - Muhammed Tahir
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Daniele H Pinheiro
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Muhammed Faheem
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- Department of Biological Sciences, National University of Medical Sciences, The Mall, Rawalpindi 46000, Punjab, Pakistan
| | - Nayara S Freitas-Alves
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Bioprocess Engineering and Biotechnology (PPGEBB), Federal University of Paraná (UFPR), Curitiba 80060-000, PR, Brazil
| | - Clídia E Moreira-Pinto
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
| | - Valdeir J V Moreira
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Molecular Biology (PPGBiomol), University of Brasilia (UnB), Brasília 70910-900, DF, Brazil
| | - Bruno Paes-de-Melo
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
| | - Maria E Lisei-de-Sa
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Minas Gerais Agricultural Research Company (EPAMIG), Uberaba 31170-495, MG, Brazil
| | - Carolina V Morgante
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Embrapa Semiarid, Petrolina 56302-970, PE, Brazil
| | - Ana P Z Mota
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, 06903 Sophia-Antipolis, France
| | - Isabela T Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Roberto C Togawa
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Priscila Grynberg
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Rodrigo R Fragoso
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Embrapa Agroenergy, Brasilia 70770-901, DF, Brazil
| | - Janice de Almeida-Engler
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, 06903 Sophia-Antipolis, France
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Maria F Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Genomic Sciences and Biotechnology (PPGCGB), Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
| |
Collapse
|
19
|
de Souza Gouveia A, Monteiro TSA, Balbino HM, de Magalhães FC, Ramos MES, Silva de Moura VA, Luiz PHD, de Almeida Oliveira MG, de Freitas LG, de Oliveira Ramos HJ. Inoculation of Pochonia chlamydosporia triggers a defense response in tomato roots, affecting parasitism by Meloidogyne javanica. Microbiol Res 2022; 266:127242. [DOI: 10.1016/j.micres.2022.127242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
|
20
|
Sikder MM, Vestergård M, Kyndt T, Topalović O, Kudjordjie EN, Nicolaisen M. Genetic disruption of Arabidopsis secondary metabolite synthesis leads to microbiome-mediated modulation of nematode invasion. THE ISME JOURNAL 2022; 16:2230-2241. [PMID: 35760884 PMCID: PMC9381567 DOI: 10.1038/s41396-022-01276-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 05/29/2023]
Abstract
In-depth understanding of metabolite-mediated plant-nematode interactions can guide us towards novel nematode management strategies. To improve our understanding of the effects of secondary metabolites on soil nematode communities, we grew Arabidopsis thaliana genetically altered in glucosinolate, camalexin, or flavonoid synthesis pathways, and analyzed their root-associated nematode communities using metabarcoding. To test for any modulating effects of the associated microbiota on the nematode responses, we characterized the bacterial and fungal communities. Finally, as a proxy of microbiome-modulating effects on nematode invasion, we isolated the root-associated microbiomes from the mutants and tested their effect on the ability of the plant parasitic nematode Meloidogyne incognita to penetrate tomato roots. Most mutants had altered relative abundances of several nematode taxa with stronger effects on the plant parasitic Meloidogyne hapla than on other root feeding taxa. This probably reflects that M. hapla invades and remains embedded within root tissues and is thus intimately associated with the host. When transferred to tomato, microbiomes from the flavonoid over-producing pap1-D enhanced M. incognita root-invasion, whereas microbiomes from flavonoid-deficient mutants reduced invasion. This suggests microbiome-mediated effect of flavonoids on Meloidogyne infectivity plausibly mediated by the alteration of the abundances of specific microbial taxa in the transferred microbiomes, although we could not conclusively pinpoint such causative microbial taxa.
Collapse
Affiliation(s)
- Md Maniruzzaman Sikder
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark
- Department of Botany, Faculty of Biological Sciences, Jahangirnagar University, 1342 Savar, Dhaka, Bangladesh
| | - Mette Vestergård
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark
| | - Tina Kyndt
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000, Gent, Belgium
| | - Olivera Topalović
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark
| | - Enoch Narh Kudjordjie
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark
| | - Mogens Nicolaisen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark.
| |
Collapse
|
21
|
Cao H, Li H, Chen X, Zhang Y, Lu L, Li S, Tao X, Zhu W, Wang J, Ma L. Insight into the molecular mechanisms of leaf coloration in Cymbidium ensifolium. Front Genet 2022; 13:923082. [PMID: 36035180 PMCID: PMC9413228 DOI: 10.3389/fgene.2022.923082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Cymbidiumensifolium L. is a significant ornamental plant in Orchidaceae. Aside from its attractive flowers, its leaf coloration is also an important ornamental trait. However, there is an apparent lack of studies concerning the intricate mechanism of leaf coloration in C. ensifolium. In this study, we report a systematic evaluation of leaf coloration utilizing transcriptome and metabolome profiles of purple, yellow, and green leaves. In total, 40 anthocyanins and 67 flavonoids were quantified along with chlorophyll content. The tissue–transcriptome profile identified 26,499 differentially expressed genes (DEGs). The highest chlorophyll contents were identified in green leaves, followed by yellow and purple leaves. We identified key anthocyanins and flavonoids associated with leaf coloration, including cyanidin-3-O-sophoroside, naringenin-7-O-glucoside, delphinidin, cyanidin, petunidin, and quercetin, diosmetin, sinensetin, and naringenin chalcone. Moreover, genes encoding UDP-glucoronosyl, UDP-glucosyl transferase, chalcone synthesis, flavodoxin, cytochrome P450, and AMP-binding enzyme were identified as key structural genes affecting leaf coloration in C. ensifolium. In summary, copigmentation resulting from several key metabolites modulated by structural genes was identified as governing leaf coloration in C. ensifolium. Further functional verification of the identified DEGs and co-accumulation of metabolites can provide a tool to modify leaf color and improve the aesthetic value of C. ensifolium.
Collapse
Affiliation(s)
- Hua Cao
- Flower Research Institute Yunnan Agriculture Academy Science, Kunming, China
| | - Han Li
- Flower Research Institute Yunnan Agriculture Academy Science, Kunming, China
| | - Xiang Chen
- Fujian Forestry Science and Technology Experimental Center, Zhangzhou, China
| | - Yuying Zhang
- Yunnan Agricultural University College of Horticulture and Landscape, Kunming, China
| | - Lin Lu
- Flower Research Institute Yunnan Agriculture Academy Science, Kunming, China
| | - Shenchong Li
- Flower Research Institute Yunnan Agriculture Academy Science, Kunming, China
| | - Xiang Tao
- Yunnan Agriculture Academy Science, Kunming, China
| | - WeiYin Zhu
- Fujian Forestry Science and Technology Experimental Center, Zhangzhou, China
| | - Jihua Wang
- Yunnan Agriculture Academy Science, Kunming, China
- *Correspondence: Lulin Ma, ; Jihua Wang,
| | - Lulin Ma
- Flower Research Institute Yunnan Agriculture Academy Science, Kunming, China
- *Correspondence: Lulin Ma, ; Jihua Wang,
| |
Collapse
|
22
|
Fu S, Deng Y, Zou K, Zhang S, Liu X, Liang Y. Flavonoids affect the endophytic bacterial community in Ginkgo biloba leaves with increasing altitude. FRONTIERS IN PLANT SCIENCE 2022; 13:982771. [PMID: 36035669 PMCID: PMC9410704 DOI: 10.3389/fpls.2022.982771] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/19/2022] [Indexed: 05/14/2023]
Abstract
Altitude affects plant growth and metabolism, but the effect of altitude on plant endophytic microorganisms is still unclear. In this study, we selected 16 Ginkgo biloba trees to study the response of leaves' endophytes to flavonoids and altitude (from 530 m to 1,310 m). HPLC results showed that flavonoids in Ginkgo biloba leaves increased by more than 150% with attitude rising from 530 m to 1,310 m, which revealed a positive correlation with altitude. Ginkgo biloba might regulate the increased flavonoids in leaves to resist the increasing light intensity. 16S rDNA sequencing results showed that the endophytic bacterial communities of Ginkgo biloba at different altitudes significantly differed. Ginkgo leaf endophytes' alpha diversity decreased with increasing flavonoids content and altitude. The increased flavonoids might increase the environmental pressure on endophytes and affect the endophytic community in Ginkgo biloba leaves. The bacterial network in Ginkgo biloba leaves became more complex with increasing altitude, which might be one of the strategies of leaf endophytes to cope with increasing flavonoids. Metagenomes results predicted with PICRUSt showed that the abundance of flavonoid biosynthesis and photosynthesis genes were significantly decreased with the increase of flavonoid contents. High flavonoid content in leaves appeared to inhibit microbial flavonoid synthesis. Our findings indicate that altitude can modulate microbial community structure through regulating plant metabolites, which is important to uncovering the interaction of microbes, host and the environment.
Collapse
Affiliation(s)
- Shaodong Fu
- School of Resource Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, China
| | - Yan Deng
- School of Resource Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, China
| | - Kai Zou
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, China
| | - Shuangfei Zhang
- School of Resource Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, China
| | - Xueduan Liu
- School of Resource Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, China
| | - Yili Liang
- School of Resource Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
23
|
Zhang L, Zeng Q, Zhu Q, Tan Y, Guo X. Essential Roles of Cupredoxin Family Proteins in Soybean Cyst Nematode Resistance. PHYTOPATHOLOGY 2022; 112:1545-1558. [PMID: 35050680 DOI: 10.1094/phyto-09-21-0391-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Soybean cyst nematode (SCN, Heterodera glycines), one of the most devastating soybean pathogens, causes a significant yield loss in soybean production. One of the most effective ways to manage SCN is to grow resistant cultivars. Therefore, comparative study using resistant and susceptible soybean cultivars provides a powerful tool to identify new genes involved in soybean SCN resistance. In the present study, a transcriptome analysis was carried out using both the resistant (PI88788) and susceptible (Williams 82) soybean cultivars to characterize the responses to nematode infection. Various defense-related genes and different pathways involved in nematode resistance were recognized as being highly expressed in resistant cultivar. Promoter-GUS analysis was conducted to monitor the spatial expression pattern of the genes highly induced by nematode infection. Two nematode-inducible promoters for Glyma.05g147000 (encoding caffeoyl-CoA O-methyltransferase) and Glyma.06g036700 (encoding cupredoxin superfamily protein) were characterized, and the promoters could efficiently drive the expression of known nematode resistance genes (α-SNAPRhg1HC or GmSHMT) to affect soybean SCN resistance. Interestingly, expression of the cupredoxin family genes was upregulated not only by SCN, but also by jasmonic acid treatment. DNA sequence analysis identified that a conserved motif (GGTGCATG) with high similarity to SCNbox1 and GC-rich element is enriched in their promoter regions, suggesting its potential to serve as a nematode-responsive regulatory element. Overexpression of Glyma.06g036700 significantly enhanced soybean resistance to cyst nematode. Overall, our findings not only highlight the essential role of cupredoxin family genes in SCN resistance, but also offer potential functional tools to develop nematode resistance in crops.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qian Zeng
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qun Zhu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuanhua Tan
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaoli Guo
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
24
|
Kihika-Opanda R, Tchouassi DP, Ng'ang'a MM, Beck JJ, Torto B. Chemo-Ecological Insights into the Use of the Non-Host Plant Vegetable Black-Jack to Protect Two Susceptible Solanaceous Crops from Root-Knot Nematode Parasitism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6658-6669. [PMID: 35613461 DOI: 10.1021/acs.jafc.2c01748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plant parasitic nematodes (PPNs) develop through three major stages in their life cycle: hatching, infection, and reproduction. Interruption of any of these stages can affect their growth and survival. We used screenhouse pot experiments, laboratory in vitro hatching and mortality assays, and chemical analysis to test the hypothesis that the non-host Asteraceae plant vegetable black-jack (Bidens pilosa) suppresses infection of the PPN Meloidogyne incognita in two susceptible Solanaceae host plants, tomato (Solanum lycopersicum) and black nightshade (S. nigrum). In intercrop and drip pot experiments, B. pilosa significantly reduced the number of galls and egg masses in root-knot nematode (RKN)-susceptible host plants by 3-9-fold compared to controls. Chemical analysis of the most bioactive fraction from the root exudates of B. pilosa identified several classes of compounds, including vitamins, a dicarboxylic acid, amino acids, aromatic acids, and a flavonoid. In in vitro assays, the vitamins and aromatic acids elicited the highest inhibition in egg hatching, whereas ascorbic acid (vitamin) and 2-hydroxybenzoic acid (aromatic acid) elicited strong nematicidal activity against M. incognita, with LC50/48 h values of 12 and 300 ng/μL, respectively. Our results provide insights into how certain non-host plants can be used as companion crops to disrupt PPN infestation.
Collapse
Affiliation(s)
- Ruth Kihika-Opanda
- Behavioral and Chemical Ecology Unit, International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100 Nairobi, Kenya
- Department of Chemistry, Kenyatta University, P.O. Box 43844-00100 Nairobi, Kenya
| | - David P Tchouassi
- Behavioral and Chemical Ecology Unit, International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100 Nairobi, Kenya
| | - Margaret M Ng'ang'a
- Department of Chemistry, Kenyatta University, P.O. Box 43844-00100 Nairobi, Kenya
| | - John J Beck
- Chemistry Research Unit, Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, U.S. Department of Agriculture, 1700 SW 23rd Drive, Gainesville, Florida 32608, United States
| | - Baldwyn Torto
- Behavioral and Chemical Ecology Unit, International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100 Nairobi, Kenya
| |
Collapse
|
25
|
Utilization of Fishery-Processing By-Product Squid Pens for Scale-Up Production of Phenazines via Microbial Conversion and Its Novel Potential Antinematode Effect. FISHES 2022. [DOI: 10.3390/fishes7030113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fishery by-products (FBPs) have been increasingly investigated for the extraction and production of a vast array of active molecules. The aim of this study was to produce phenazine compounds from FBPs via microbial fermentation and assess their novel antinematode effect. Among various FBPs, squid pen powder (SPP) was discovered as the most suitable substrate for phenazine production by Pseudomonas aeruginosa TUN03 fermentation. Various small-scale experiments conducted in flasks for phenazine production indicated that the most suitable was the newly designed liquid medium which included 1% SPP, 0.05% MgSO4, and 0.1% Ca3(PO4)2 (initial pH 7). Phenazines were further studied for scale-up bioproduction in a 14 L bioreactor system resulting in a high yield (22.73 µg/mL) in a much shorter cultivation time (12 h). In the fermented culture broth, hemi-pyocyanin (HPC) was detected as a major phenazine compound with an area percentage of 11.28% in the crude sample. In the bioactivity tests, crude phenazines and HPC demonstrate novel potential nematicidal activity against black pepper nematodes, inhibiting both juveniles (J2) nematodes and egg hatching. The results of this work suggest a novel use of SPP for cost-effective bioproduction of HPC, a novel potential nematodes inhibitor. Moreover, the combination of MgSO4 and Ca3(PO4)2 was also found to be a novel salt composition that significantly enhanced phenazine yield by P. aeruginosa fermentation in this work.
Collapse
|
26
|
Roots of invasive woody plants produce more diverse flavonoids than non-invasive taxa, a global analysis. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02812-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
27
|
RNA-Seq of Cyst Nematode Infestation of Potato (Solanum tuberosum L.): A Comparative Transcriptome Analysis of Resistant and Susceptible Cultivars. PLANTS 2022; 11:plants11081008. [PMID: 35448735 PMCID: PMC9025382 DOI: 10.3390/plants11081008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/02/2022]
Abstract
Potato (Solanum tuberosum L.) is an important food crop worldwide, and potato cyst nematodes (PCNs) are among the most serious pests. The identification of disease resistance genes and molecular markers for PCN infestation can aid in crop improvement research programs against PCN infestation. In the present study, we used high-throughput RNA sequencing to investigate the comprehensive resistance mechanisms induced by PCN infestation in the resistant cultivar Kufri Swarna and the susceptible cultivar Kufri Jyoti. PCN infestation induced 791 differentially expressed genes in resistant cultivar Kufri Swarna, comprising 438 upregulated and 353 downregulated genes. In susceptible cultivar Kufri Jyoti, 2225 differentially expressed genes were induced, comprising 1247 upregulated and 978 downregulated genes. We identified several disease resistance genes (KIN) and transcription factors (WRKY, HMG, and MYB) that were upregulated in resistant Kufri Swarna. The differentially expressed genes from several enriched KEGG pathways, including MAPK signaling, contributed to the disease resistance in Kufri Swarna. Functional network analysis showed that several cell wall biogenesis genes were induced in Kufri Swarna in response to infestation. This is the first study to identify underlying resistance mechanisms against PCN and host interaction in Indian potato varieties.
Collapse
|
28
|
Mwamula AO, Kabir MF, Lee D. A Review of the Potency of Plant Extracts and Compounds from Key Families as an Alternative to Synthetic Nematicides: History, Efficacy, and Current Developments. THE PLANT PATHOLOGY JOURNAL 2022; 38:53-77. [PMID: 35385913 PMCID: PMC9343895 DOI: 10.5423/ppj.rw.12.2021.0179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 03/10/2022] [Indexed: 06/02/2023]
Abstract
The global nematicides market is expected to continue growing. With an increasing demand for synthetic chemical-free organic foods, botanical nematicides are taking the lead as replacements. Consequently, in the recent years, there have been vigorous efforts towards identification of the active secondary metabolites from various plants. These include mostly glucosinolates and their hydrolysis products such as isothiocyanates; flavonoids, alkaloids, limonoids, quassinoids, saponins, and the more recently probed essential oils, among others. And despite their overwhelming potential, variabilities in quality, efficacy, potency and composition continue to persist, and commercialization of new botanical nematicides is still lagging. Herein, we have reviewed the history of botanical nematicides and regional progresses, the potency of the identified phytochemicals from the key important plant families, and deciphered some of the impediments involved in standardization of the active compounds in addition to the concerns over the safety of the purified compounds to non-target microbial communities.
Collapse
Affiliation(s)
- Abraham Okki Mwamula
- Department of Ecological Science, Kyungpook National University, Sangju 37224, Korea
- Department of Plant Protection and Quarantine, Graduate School of Plant Protection and Quarantine, Kyungpook National University, Daegu 41566, Korea
| | - Md. Faisal Kabir
- Agriculture and Natural Resources, Research and Knowledge Management Division, DM WATCH, Dhaka-1216, Bangladesh
| | - DongWoon Lee
- Department of Ecological Science, Kyungpook National University, Sangju 37224, Korea
- Department of Plant Protection and Quarantine, Graduate School of Plant Protection and Quarantine, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
29
|
Jeon S, Han J, Kim CW, Kim JG, Moon JH, Kim S. Identification of a candidate gene responsible for the G locus determining chartreuse bulb color in onion (Allium cepa L.) using bulked segregant RNA-Seq. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1025-1036. [PMID: 35034161 DOI: 10.1007/s00122-021-04016-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
A gene encoding a laccase responsible for chartreuse onion bulb color was identified. Markers tagging this gene showed perfect linkage with bulb colors among diverse germplasm. To identify a casual gene for the G locus determining chartreuse bulb color in onion (Allium cepa L.), bulked segregant RNA-Seq (BSR-Seq) was performed using yellow and chartreuse individuals of a segregating population. Through single nucleotide polymorphism (SNP) and differentially expressed gene (DEG) screening processes, 163 and 143 transcripts were selected, respectively. One transcript encoding a laccase-like protein was commonly identified from SNP and DEG screening. This transcript contained four highly conserved copper-binding domains known to be signature sequences of laccases. This gene was designated AcLAC12 since it showed high homology with Arabidopsis AtLAC12. A 4-bp deletion creating a premature stop codon was identified in exon 5 of the chartreuse allele. Another mutant allele in which an intact LTR-retrotransposon was transposed in exon 5 was identified from other chartreuse breeding lines. Genotypes of molecular markers tagging AcLAC12 were perfectly matched with bulb color phenotypes in segregating populations and diverse breeding lines. All chartreuse breeding lines contained inactive alleles of DFR-A gene determining red bulb color, indicating that chartreuse color appeared when both DFR-A and AcLAC12 genes were inactivated. Linkage maps showed that AcLAC12 was positioned at the end of chromosome 7. Transcription levels of structural genes encoding enzymes in anthocyanin biosynthesis pathway were generally reduced in chartreuse bulk compared with yellow bulk. Concentrations of total quercetins were also reduced in chartreuse onion. However, significant amounts of quercetins were detected in chartreuse onion, implying that AcLAC12 might be involved in modification of quercetin derivatives in onion.
Collapse
Affiliation(s)
- SeongChan Jeon
- Department of Horticulture, Biotechnology Research Institute, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - JiWon Han
- National Institute of Horticultural and Herbal Science, RDA, Muan, 58545, Republic of Korea
| | - Cheol-Woo Kim
- National Institute of Horticultural and Herbal Science, RDA, Muan, 58545, Republic of Korea
| | - Ju-Gyeong Kim
- Department of Food Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jae-Hak Moon
- Department of Food Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunggil Kim
- Department of Horticulture, Biotechnology Research Institute, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
30
|
Jeon HW, Park AR, Sung M, Kim N, Mannaa M, Han G, Kim J, Koo Y, Seo YS, Kim JC. Systemic Acquired Resistance-Mediated Control of Pine Wilt Disease by Foliar Application With Methyl Salicylate. FRONTIERS IN PLANT SCIENCE 2022; 12:812414. [PMID: 35069670 PMCID: PMC8767056 DOI: 10.3389/fpls.2021.812414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Pine wilt disease (PWD), caused by the pinewood nematode, is the most destructive disease in pine forest ecosystems worldwide. Extensive research has been done on PWD, but effective disease management is yet to be devised. Generally, plants can resist pathogen attack via a combination of constitutive and inducible defenses. Systemic acquired resistance (SAR) is an inducible defense that occurs by the localized infection of pathogens or treatment with elicitors. To manage PWD by SAR in pine trees, we tested previously known 12 SAR elicitors. Among them, methyl salicylate (MeSA) was found to induce resistance against PWD in Pinus densiflora seedlings. In addition, the foliar applications of the dispersible concentrate-type formulation of MeSA (MeSA 20 DC) and the emulsifiable concentrate-type formulation of MeSA (MeSA 20 EC) resulted in significantly reduced PWD in pine seedlings. In the field test using 10-year-old P. densiflora trees, MeSA 20 DC showed a 60% decrease in the development of PWD. Also, MeSA 20 EC gave the best results when applied at 0.1 mM concentration 2 and 1 weeks before pinewood nematode (PWN) inoculation in pine seedlings. qRT-PCR analysis confirmed that MeSA induced the expression of defense-related genes, indicating that MeSA can inhibit and delay the migration and reproduction of PWN in pine seedlings by modulating gene expression. These results suggest that foliar application of MeSA could reduce PWD incidence by inducing resistance and provide an economically feasible alternative to trunk-injection agents for PWD management.
Collapse
Affiliation(s)
- Hee Won Jeon
- Department of Agricultural Chemistry, College of Agriculture and Life Sciences, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, South Korea
| | - Ae Ran Park
- Department of Agricultural Chemistry, College of Agriculture and Life Sciences, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, South Korea
| | - Minjeong Sung
- Department of Agricultural Chemistry, College of Agriculture and Life Sciences, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, South Korea
| | - Namgyu Kim
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Busan, South Korea
| | - Mohamed Mannaa
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Busan, South Korea
| | - Gil Han
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Busan, South Korea
| | - Junheon Kim
- Forest Insect Pests and Diseases Division, National Institute of Forest Science, Seoul, South Korea
| | - Yeonjong Koo
- Department of Agricultural Chemistry, College of Agriculture and Life Sciences, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, South Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Busan, South Korea
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, College of Agriculture and Life Sciences, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
31
|
Marcolino MC, Sousa Júnior JCADE, Dias CHA, Naue CR, Melo FBDES, Campos MADAS. Bioprospection: in vitro antimicrobial potential of the leaf extract of mycorrhizal guava infected by Meloidogyne enterolobii on Klebsiella pneumoniae. AN ACAD BRAS CIENC 2021; 93:e20201559. [PMID: 34586180 DOI: 10.1590/0001-3765202120201559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/05/2021] [Indexed: 11/22/2022] Open
Abstract
Guava (Psidium guajava L.), is adapted to tropical and subtropical climates, and, in addition to its nutritional value, has great medicinal potential. One of the medicinal effects is antibacterial, and this can be identified from the phytochemicals present in its various parts, especially the leaf, which contains flavonoids, phenols, and tannins, as well as phytocomposites with antibacterial action. Therefore, the interaction of this plant with arbuscular mycorrhizal fungi and Meloidogyne enterolobii is a biotechnological resource that can increase the production of secondary metabolites so that the guava ethanolic extract is effective against multidrug-resistant bacterial strains. Therefore, the objective of this study was to test the inhibitory action of mycorrhizal guava leaf extract and Meloidogyne enterolobii on strains of Klebsiella pneumoniae carbapenemase. Guava seedlings from cuttings were inoculated with Acaulospora longula, and later with Meloidogyne enterolobii; the leaves were harvested at two maturation times of the plant and placed in an oven. Next, a leaf extract was prepared using ethanol as a solvent. The extract was tested in multidrug-resistant strains of K. pneumoniae carbapenemase from operative wounds using disc diffusion methodology. The plant-AMF-phytonematode interaction positively potentialize the inhibitory action of guava leaf ethanolic extract on multidrug-resistant bacterial strains.
Collapse
Affiliation(s)
- Maíra C Marcolino
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental (PPGCTA), Universidade de Pernambuco (UPE), Campus Petrolina, Laboratório de Culturas Agrícolas e Caatinga no Submédio São Francisco, BR 203, Km 2, 56328-903 Petrolina, PE, Brazil
| | - João C A DE Sousa Júnior
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental (PPGCTA), Universidade de Pernambuco (UPE), Campus Petrolina, Laboratório de Culturas Agrícolas e Caatinga no Submédio São Francisco, BR 203, Km 2, 56328-903 Petrolina, PE, Brazil
| | - Carlos Henrique A Dias
- Universidade Federal do Vale do São Francisco (UNIVASF), Campus Petrolina, Laboratório de Microbiologia, Av. José de Sá Maniçoba, s/n, 56304-205 Petrolina, PE, Brazil
| | - Carine R Naue
- Universidade Federal do Vale do São Francisco (UNIVASF), Campus Petrolina, Laboratório de Microbiologia, Av. José de Sá Maniçoba, s/n, 56304-205 Petrolina, PE, Brazil
| | - Flávia B DE Souza Melo
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental (PPGCTA), Universidade de Pernambuco (UPE), Campus Petrolina, Laboratório de Culturas Agrícolas e Caatinga no Submédio São Francisco, BR 203, Km 2, 56328-903 Petrolina, PE, Brazil
| | - Maryluce A DA Silva Campos
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental (PPGCTA), Universidade de Pernambuco (UPE), Campus Petrolina, Laboratório de Culturas Agrícolas e Caatinga no Submédio São Francisco, BR 203, Km 2, 56328-903 Petrolina, PE, Brazil
| |
Collapse
|
32
|
Rahaman MM, Zwart RS, Rupasinghe TWT, Hayden HL, Thompson JP. Metabolomic profiling of wheat genotypes resistant and susceptible to root-lesion nematode Pratylenchus thornei. PLANT MOLECULAR BIOLOGY 2021; 106:381-406. [PMID: 33973100 DOI: 10.1007/s11103-021-01156-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/28/2021] [Indexed: 05/05/2023]
Affiliation(s)
- Md Motiur Rahaman
- University of Southern Queensland, Centre for Crop Health, Toowoomba, QLD, 4350, Australia
| | - Rebecca S Zwart
- University of Southern Queensland, Centre for Crop Health, Toowoomba, QLD, 4350, Australia.
| | | | - Helen L Hayden
- Agriculture Victoria, Department of Jobs, Precincts and Regions, Bundoora, VIC, 3083, Australia
| | - John P Thompson
- University of Southern Queensland, Centre for Crop Health, Toowoomba, QLD, 4350, Australia
| |
Collapse
|
33
|
Modesto I, Sterck L, Arbona V, Gómez-Cadenas A, Carrasquinho I, Van de Peer Y, Miguel CM. Insights Into the Mechanisms Implicated in Pinus pinaster Resistance to Pinewood Nematode. FRONTIERS IN PLANT SCIENCE 2021; 12:690857. [PMID: 34178007 PMCID: PMC8222992 DOI: 10.3389/fpls.2021.690857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/17/2021] [Indexed: 05/27/2023]
Abstract
Pine wilt disease (PWD), caused by the plant-parasitic nematode Bursaphelenchus xylophilus, has become a severe environmental problem in the Iberian Peninsula with devastating effects in Pinus pinaster forests. Despite the high levels of this species' susceptibility, previous studies reported heritable resistance in P. pinaster trees. Understanding the basis of this resistance can be of extreme relevance for future programs aiming at reducing the disease impact on P. pinaster forests. In this study, we highlighted the mechanisms possibly involved in P. pinaster resistance to PWD, by comparing the transcriptional changes between resistant and susceptible plants after infection. Our analysis revealed a higher number of differentially expressed genes (DEGs) in resistant plants (1,916) when compared with susceptible plants (1,226). Resistance to PWN is mediated by the induction of the jasmonic acid (JA) defense pathway, secondary metabolism pathways, lignin synthesis, oxidative stress response genes, and resistance genes. Quantification of the acetyl bromide-soluble lignin confirmed a significant increase of cell wall lignification of stem tissues around the inoculation zone in resistant plants. In addition to less lignified cell walls, susceptibility to the pine wood nematode seems associated with the activation of the salicylic acid (SA) defense pathway at 72 hpi, as revealed by the higher SA levels in the tissues of susceptible plants. Cell wall reinforcement and hormone signaling mechanisms seem therefore essential for a resistance response.
Collapse
Affiliation(s)
- Inês Modesto
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia e Tecnologia Experimental, Oeiras, Portugal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, Spain
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, Spain
| | - Isabel Carrasquinho
- Instituto Nacional Investigaciao Agraria e Veterinaria, Oeiras, Portugal
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Célia M. Miguel
- Instituto de Biologia e Tecnologia Experimental, Oeiras, Portugal
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
34
|
Rodrigues JM, Coutinho FS, Dos Santos DS, Vital CE, Ramos JRLS, Reis PB, Oliveira MGA, Mehta A, Fontes EPB, Ramos HJO. BiP-overexpressing soybean plants display accelerated hypersensitivity response (HR) affecting the SA-dependent sphingolipid and flavonoid pathways. PHYTOCHEMISTRY 2021; 185:112704. [PMID: 33640683 DOI: 10.1016/j.phytochem.2021.112704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/09/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Biotic and abiotic environmental stresses have limited the increase in soybean productivity. Overexpression of the molecular chaperone BiP in transgenic plants has been associated with the response to osmotic stress and drought tolerance by maintaining cellular homeostasis and delaying hypersensitive cell death. Here, we evaluated the metabolic changes in response to the hypersensitivity response (HR) caused by the non-compatible bacteria Pseudomonas syringae pv. tomato in BiP-overexpressing plants. The HR-modified metabolic profiles in BiP-overexpressing plants were significantly distinct from the wild-type untransformed. The transgenic plants displayed a lower abundance of HR-responsive metabolites as amino acids, sugars, carboxylic acids and signal molecules, including p-aminobenzoic acid (PABA) and dihydrosphingosine (DHS), when compared to infected wild-type plants. In contrast, salicylic acid (SA) biosynthetic and signaling pathways were more stimulated in transgenic plants, and both pathogenesis-related genes (PRs) and transcriptional factors controlling the SA pathway were more induced in the BiP-overexpressing lines. Furthermore, the long-chain bases (LCBs) and ceramide biosynthetic pathways showed alterations in gene expression and metabolite abundance. Thus, as a protective pathway against pathogens, HR regulation by sphingolipids and SA may account at least in part by the enhanced resistance of transgenic plants. GmNAC32 transcriptional factor was more induced in the transgenic plants and it has also been reported to regulate flavonoid synthesis in response to SA. In fact, the BiP-overexpressing plants showed an increase in flavonoids, mainly prenylated isoflavones, as precursors for phytoalexins. Our results indicate that the BiP-mediated acceleration in the hypersensitive response may be a target for metabolic engineering of plant resistance against pathogens.
Collapse
Affiliation(s)
- Juliano Mendonça Rodrigues
- Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil
| | - Flaviane Silva Coutinho
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil
| | - Danilo Silva Dos Santos
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil
| | - Camilo Elber Vital
- Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil
| | - Juliana Rocha Lopes Soares Ramos
- Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil
| | - Pedro Braga Reis
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil
| | - Maria Goreti Almeida Oliveira
- Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, CENARGEN, Brasília, DF, Brazil
| | - Elizabeth Pacheco Batista Fontes
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil
| | - Humberto Josué Oliveira Ramos
- Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil; Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil; Núcleo de Análise de Biomoléculas, NuBioMol, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
35
|
Costa SR, Ng JLP, Mathesius U. Interaction of Symbiotic Rhizobia and Parasitic Root-Knot Nematodes in Legume Roots: From Molecular Regulation to Field Application. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:470-490. [PMID: 33471549 DOI: 10.1094/mpmi-12-20-0350-fi] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Legumes form two types of root organs in response to signals from microbes, namely, nodules and root galls. In the field, these interactions occur concurrently and often interact with each other. The outcomes of these interactions vary and can depend on natural variation in rhizobia and nematode populations in the soil as well as abiotic conditions. While rhizobia are symbionts that contribute fixed nitrogen to their hosts, parasitic root-knot nematodes (RKN) cause galls as feeding structures that consume plant resources without a contribution to the plant. Yet, the two interactions share similarities, including rhizosphere signaling, repression of host defense responses, activation of host cell division, and differentiation, nutrient exchange, and alteration of root architecture. Rhizobia activate changes in defense and development through Nod factor signaling, with additional functions of effector proteins and exopolysaccharides. RKN inject large numbers of protein effectors into plant cells that directly suppress immune signaling and manipulate developmental pathways. This review examines the molecular control of legume interactions with rhizobia and RKN to elucidate shared and distinct mechanisms of these root-microbe interactions. Many of the molecular pathways targeted by both organisms overlap, yet recent discoveries have singled out differences in the spatial control of expression of developmental regulators that may have enabled activation of cortical cell division during nodulation in legumes. The interaction of legumes with symbionts and parasites highlights the importance of a comprehensive view of root-microbe interactions for future crop management and breeding strategies.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Sofia R Costa
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jason Liang Pin Ng
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| | - Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
36
|
Ochieno DMW, Karoney EM, Muge EK, Nyaboga EN, Baraza DL, Shibairo SI, Naluyange V. Rhizobium-Linked Nutritional and Phytochemical Changes Under Multitrophic Functional Contexts in Sustainable Food Systems. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.604396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rhizobia are bacteria that exhibit both endophytic and free-living lifestyles. Endophytic rhizobial strains are widely known to infect leguminous host plants, while some do infect non-legumes. Infection of leguminous roots often results in the formation of root nodules. Associations between rhizobia and host plants may result in beneficial or non-beneficial effects. Such effects are linked to various biochemical changes that have far-reaching implications on relationships between host plants and the dependent multitrophic biodiversity. This paper explores relationships that exist between rhizobia and various plant species. Emphasis is on nutritional and phytochemical changes that occur in rhizobial host plants, and how such changes affect diverse consumers at different trophic levels. The purpose of this paper is to bring into context various aspects of such interactions that could improve knowledge on the application of rhizobia in different fields. The relevance of rhizobia in sustainable food systems is addressed in context.
Collapse
|
37
|
Wang Y, Yang R, Feng Y, Sikandar A, Zhu X, Fan H, Liu X, Chen L, Duan Y. iTRAQ-Based Proteomic Analysis Reveals the Role of the Biological Control Agent, Sinorhizobium fredii Strain Sneb183, in Enhancing Soybean Resistance Against the Soybean Cyst Nematode. FRONTIERS IN PLANT SCIENCE 2020; 11:597819. [PMID: 33362829 PMCID: PMC7759536 DOI: 10.3389/fpls.2020.597819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/20/2020] [Indexed: 05/12/2023]
Abstract
The soybean cyst nematode (SCN), Heterodera glycines Ichinohe, poses a serious threat to soybean production worldwide. Biological control agents have become eco-friendly candidates to control pathogens. Our previous study indicated that the biocontrol agent, Sinorhizobium fredii strain Sneb183, may induce soybean resistance to SCN. To study the mechanisms underlying induced disease resistance in the plant by Sneb183, an iTRAQ (isobaric tag for relative and absolute quantitation)-based proteomics approach was used to identify proteomic changes in SCN-infected soybean roots derived from seeds coated with the Sneb183 fermentation broth or water. Among a total of 456 identified differentially expressed proteins, 212 and 244 proteins were upregulated and downregulated, respectively, in Sneb183 treated samples in comparison to control samples. Some identified differentially expressed proteins are likely to be involved in the biosynthesis of phenylpropanoid, flavone, flavanol, and isoflavonoid and have a role in disease resistance and adaptation to environmental stresses. We used quantitative real-time PCR (qRT-PCR) to analyze key genes, including GmPAL (phenylalanine ammonia-lyase), GmCHR (chalcone reductase), GmCHS (chalcone synthase), and GmIFS (isoflavone synthase), that are involved in isoflavonoid biosynthesis in Sneb183-treated and control samples. The results showed that these targeted genes have higher expression levels in Sneb183-treated than in control samples. High performance liquid chromatography (HPLC) analysis further showed that the contents of daidzein in Sneb183-treated samples were 7.24 times higher than those in control samples. These results suggested that the Sinorhizobium fredii strain Sneb183 may have a role in inducing isoflavonoid biosynthesis, thereby resulting in enhanced resistance to SCN infection in soybean.
Collapse
Affiliation(s)
- Yuanyuan Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
| | - Ruowei Yang
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
| | - Yaxing Feng
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
| | - Aatika Sikandar
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
| | - Xiaofeng Zhu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
| | - Haiyan Fan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
| | - Xiaoyu Liu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Sciences, Shenyang Agricultural University, Shenyang, China
| | - Lijie Chen
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
| | - Yuxi Duan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
38
|
Khan R, Naz I, Hussain S, Khan RAA, Ullah S, Rashid MU, Siddique I. Phytochemical management of root knot nematode (Meloidogyne incognita) kofoid and white chitwood by Artemisia spp. in tomato (Lycopersicon esculentum L.). BRAZ J BIOL 2020; 80:829-838. [PMID: 31800766 DOI: 10.1590/1519-6984.222040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/12/2019] [Indexed: 12/26/2022] Open
Abstract
In vitro and screen house experiments were conducted to investigate the effectiveness of thirteen phytochemicals from Artemisia elegantissimia and A. incisa on root knot nematode, Meloidogyne incognita in tomato (Lycopersicon esculentum L.) cv. Rio Grande. A positive control (Carbofuran) and negative control (H2O) were also used for comparison. Effectiveness of phytochemicals against juveniles (J2s) mortality and egg hatch inhibition were evaluated after 24, 48 and 72 hours of incubation at three concentrations viz; 0.1, 0.2 and 0.3 mg/mL in vitro conditions. Amongst thirteen phytochemicals, Isoscopletin (Coumarin), Carbofuran and Apigenin (Flavonoid) showed the highest mortality and egg hatch inhibition of M. incognita at all intervals. Inhibition of eggs and J2s mortality were the greatest (90.0%) and (96.0%) at 0.3 mg/mL concentration. Application of phytochemicals caused reduction in number of galls, galling index, and egg masses on tomato plant and enhanced plant growth parameters under screen house conditions. Gall numbers (1.50), galling index (1.00), number of juveniles (4.83) and egg masses (4.00) were greatly reduced and plant growth parameters such as; plant height (28.48 cm), fresh (72.13 g) and dry shoot weights (35.99 g), and root fresh (6.58 g) and dry weights (1.43 g) were increased significantly by using Isoscopletin. In structure activity relationship, juveniles of M. incognita, exhibited variations in their shape and postures upon death when exposed to different concentrations of phytochemicals of Artemisia spp. The present study suggests that Artemisia based phytochemicals possess strong nematicidal effects and can be used effectively in an integrated disease management program against root knot nematodes.
Collapse
Affiliation(s)
- R Khan
- Department of Plant Pathology, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - I Naz
- Department of Plant Pathology, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - S Hussain
- Department of Plant Pathology, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - R A A Khan
- Institute of Vegetable and Flowers, Graduate School of Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - S Ullah
- Department of Plant Pathology, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - M U Rashid
- Department of Chemistry, Faculty of Arts & Basic Sciences, Balochistan University of Information Technology, Engineering and Management Sciences, Pakistan
| | - I Siddique
- Department of Plant Pathology, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
39
|
Desmedt W, Mangelinckx S, Kyndt T, Vanholme B. A Phytochemical Perspective on Plant Defense Against Nematodes. FRONTIERS IN PLANT SCIENCE 2020; 11:602079. [PMID: 33281858 PMCID: PMC7691236 DOI: 10.3389/fpls.2020.602079] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/21/2020] [Indexed: 05/23/2023]
Abstract
Given the large yield losses attributed to plant-parasitic nematodes and the limited availability of sustainable control strategies, new plant-parasitic nematode control strategies are urgently needed. To defend themselves against nematode attack, plants possess sophisticated multi-layered immune systems. One element of plant immunity against nematodes is the production of small molecules with anti-nematode activity, either constitutively or after nematode infection. This review provides an overview of such metabolites that have been identified to date and groups them by chemical class (e.g., terpenoids, flavonoids, glucosinolates, etc.). Furthermore, this review discusses strategies that have been used to identify such metabolites and highlights the ways in which studying anti-nematode metabolites might be of use to agriculture and crop protection. Particular attention is given to emerging, high-throughput approaches for the identification of anti-nematode metabolites, in particular the use of untargeted metabolomics techniques based on nuclear magnetic resonance (NMR) and mass spectrometry (MS).
Collapse
Affiliation(s)
- Willem Desmedt
- Research Group Epigenetics and Defense, Department of Biotechnology, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Sven Mangelinckx
- Research Group Synthesis, Bioresources and Bioorganic Chemistry (SynBioC), Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Tina Kyndt
- Research Group Epigenetics and Defense, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Bartel Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
40
|
Qiu W, Su W, Cai Z, Dong L, Li C, Xin M, Fang W, Liu Y, Wang X, Huang Z, Ren H, Wu Z. Combined Analysis of Transcriptome and Metabolome Reveals the Potential Mechanism of Coloration and Fruit Quality in Yellow and Purple Passiflora edulis Sims. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12096-12106. [PMID: 32936632 DOI: 10.1021/acs.jafc.0c03619] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Passion fruit (Passiflora edulis Sims) can be divided into yellow and purple varieties. However, information about coloration and fruit quality between the two varieties is limited. To reveal the underlying mechanism of color formation in this fruit, a combined analysis of the metabolome and transcriptome was conducted in this study. The results showed that most of the evaluated flavonols, anthocyanins, and flavanols were significantly upregulated in purple fruit compared to their levels in yellow fruit. Flavonoid and flavonoid carbonoside accumulation was markedly higher in yellow fruit than in purple fruit. The accumulation of organic acids, phenolic acids, lipids, sugars, and lignans was significantly different in the yellow and purple varieties. These results were consistent with the results from the RNA-Seq profile. This study will enable us to identify genes for targeted genetic engineering to improve the nutritional and market value of passion fruit. In addition, the peel and pulp of passion fruit contained certain health-promoting compounds, highlighting the potential application of passion fruit as a functional food and providing direction for future breeding programs and production.
Collapse
Affiliation(s)
- Wenwu Qiu
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Weiqiang Su
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Zhaoyan Cai
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Long Dong
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Changbao Li
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Ming Xin
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Weikuan Fang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Yeqiang Liu
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Xiaomei Wang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Zhangbao Huang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Hui Ren
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Zhijiang Wu
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| |
Collapse
|
41
|
Zanzarin DM, Hernandes CP, Leme LM, Silva E, Porto C, Martin do Prado R, Meyer MC, Favoreto L, Nunes EDO, Pilau EJ. Metabolomics of soybean green stem and foliar retention (GSFR) disease using mass spectrometry and molecular networking. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 3:e8655. [PMID: 31721333 DOI: 10.1002/rcm.8655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/10/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE The nematode Aphelenchoides besseyi is the causal agent of green stem and foliar retention, a soybean disease recently described in Brazil. This condition can reduce soybean yield by up to 100%. However, little is known about chemical interactions between the plant and pathogen. Therefore, this work aimed to investigate metabolites from healthy soybean roots and from soybean roots that were inoculated with A. besseyi. METHODS A. besseyi were multiplied in vitro with Fusarium sp. colonies in Petri dishes for 25 days, and were axenically inoculated into hydroponics healthy soybean plants. The metabolites were extracted from the roots of healthy and A. besseyi-infected plants 16 days post-inoculation. These extracts were analyzed using an untargeted metabolomic method with an ultra-high-performance liquid chromatography/electrospray ionization /tandem mass spectrometry (UHPLC/ESI-MS/MS) and molecular networking approach. RESULTS Roots from infected plants showed morphological alterations such as shrinkage, darkening, and arching. Similarly, they also showed an increased presence of flavonoids, compared with healthy roots. Compounds such as neobavaisoflavone, glycitin, genistin, and genistein were putatively identified and had greater intensity in inoculated roots. These compounds are linked to the defensive mechanisms in plants against nematodes. Moreover, coumaric acid, also exclusively putatively identified in inoculated roots, shows activity related to inhibition of root growth. CONCLUSIONS Liquid chromatography, mass spectrometry, and molecular networking approaches proved to be a powerful tool for the metabolomic study of GSFR. This study showed metabolomics differences of protective substances in the roots, evidencing a quick response of the plant to the attack of A. besseyi.
Collapse
Affiliation(s)
- Daniele Maria Zanzarin
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, Maringá, PR, Brazil
- Graduate Program in Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | | | | | - Evandro Silva
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, Maringá, PR, Brazil
| | - Carla Porto
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, Maringá, PR, Brazil
- Master in Science, Technology and Food Safety, Cesumar Institute of Science, Technology, and Innovation-ICETI, University Center of Maringá-UNICESUMAR, Maringá, PR, Brazil
| | - Rodolpho Martin do Prado
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, Maringá, PR, Brazil
- Department of Animal Science, State University of Maringá, Maringá, PR, Brazil
| | - Mauricio C Meyer
- Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina, PR, Brazil
| | - Luciany Favoreto
- Minas Gerais State Agricultural Research Corporation-Epamig Oeste, Uberaba, MG, Brazil
| | | | - Eduardo Jorge Pilau
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, Maringá, PR, Brazil
- Graduate Program in Cell Biology, State University of Maringá, Maringá, PR, Brazil
| |
Collapse
|
42
|
Park J, Jeon HW, Jung H, Lee HH, Kim J, Park AR, Kim N, Han G, Kim JC, Seo YS. Comparative Transcriptome Analysis of Pine Trees Treated with Resistance-Inducing Substances against the Nematode Bursaphelenchus xylophilus. Genes (Basel) 2020; 11:genes11091000. [PMID: 32858932 PMCID: PMC7564552 DOI: 10.3390/genes11091000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 01/04/2023] Open
Abstract
The pinewood nematode (PWN) Bursaphelenchus xylophilus causes pine wilt disease, which results in substantial economic and environmental losses across pine forests worldwide. Although systemic acquired resistance (SAR) is effective in controlling PWN, the detailed mechanisms underlying the resistance to PWN are unclear. Here, we treated pine samples with two SAR elicitors, acibenzolar-S-methyl (ASM) and methyl salicylic acid (MeSA) and constructed an in vivo transcriptome of PWN-infected pines under SAR conditions. A total of 252 million clean reads were obtained and mapped onto the reference genome. Compared with untreated pines, 1091 and 1139 genes were differentially upregulated following the ASM and MeSA treatments, respectively. Among these, 650 genes showed co-expression patterns in response to both SAR elicitors. Analysis of these patterns indicated a functional linkage among photorespiration, peroxisome, and glycine metabolism, which may play a protective role against PWN infection-induced oxidative stress. Further, the biosynthesis of flavonoids, known to directly control parasitic nematodes, was commonly upregulated under SAR conditions. The ASM- and MeSA-specific expression patterns revealed functional branches for myricetin and quercetin production in flavonol biosynthesis. This study will enhance the understanding of the dynamic interactions between pine hosts and PWN under SAR conditions.
Collapse
Affiliation(s)
- Jungwook Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (J.P.); (H.J.); (H.-H.L.); (N.K.); (G.H.)
- Environmental Microbiology Research Team, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, Korea
| | - Hee Won Jeon
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (H.W.J.); (A.R.P.)
| | - Hyejung Jung
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (J.P.); (H.J.); (H.-H.L.); (N.K.); (G.H.)
| | - Hyun-Hee Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (J.P.); (H.J.); (H.-H.L.); (N.K.); (G.H.)
| | - Junheon Kim
- Forest Insect Pests and Diseases Division, National Institute of Forest Science, Seoul 02455, Korea;
| | - Ae Ran Park
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (H.W.J.); (A.R.P.)
| | - Namgyu Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (J.P.); (H.J.); (H.-H.L.); (N.K.); (G.H.)
| | - Gil Han
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (J.P.); (H.J.); (H.-H.L.); (N.K.); (G.H.)
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (H.W.J.); (A.R.P.)
- Correspondence: (J.-C.K.); (Y.-S.S.)
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (J.P.); (H.J.); (H.-H.L.); (N.K.); (G.H.)
- Correspondence: (J.-C.K.); (Y.-S.S.)
| |
Collapse
|
43
|
Flavonoids in Agriculture: Chemistry and Roles in, Biotic and Abiotic Stress Responses, and Microbial Associations. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10081209] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The current world of climate change, global warming and a constantly changing environment have made life very stressful for living entities, which has driven the evolution of biochemical processes to cope with stressed environmental and ecological conditions. As climate change conditions continue to develop, we anticipate more frequent occurrences of abiotic stresses such as drought, high temperature and salinity. Living plants, which are sessile beings, are more exposed to environmental extremes. However, plants are equipped with biosynthetic machinery operating to supply thousands of bio-compounds required for maintaining internal homeostasis. In addition to chemical coordination within a plant, these compounds have the potential to assist plants in tolerating, resisting and escaping biotic and abiotic stresses generated by the external environment. Among certain biosynthates, flavonoids are an important example of these stress mitigators. Flavonoids are secondary metabolites and biostimulants; they play a key role in plant growth by inducing resistance against certain biotic and abiotic stresses. In addition, the function of flavonoids as signal compounds to communicate with rhizosphere microbes is indispensable. In this review, the significance of flavonoids as biostimulants, stress mitigators, mediators of allelopathy and signaling compounds is discussed. The chemical nature and biosynthetic pathway of flavonoid production are also highlighted.
Collapse
|
44
|
Costa SR, Chin S, Mathesius U. Infection of Medicago truncatula by the Root-Knot Nematode Meloidogyne javanica Does Not Require Early Nodulation Genes. FRONTIERS IN PLANT SCIENCE 2020; 11:1050. [PMID: 32733526 PMCID: PMC7363973 DOI: 10.3389/fpls.2020.01050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/25/2020] [Indexed: 05/27/2023]
Abstract
Because of the developmental similarities between root nodules induced by symbiotic rhizobia and root galls formed by parasitic nematodes, we investigated the involvement of nodulation genes in the infection of Medicago truncatula by the root knot nematode (RKN), Meloidogyne javanica. We found that gall formation, including giant cell formation, pericycle and cortical cell division, as well as egg laying, occurred successfully in the non-nodulating mutants nfp1 (nod factor perception1), nin1 (nodule inception1) and nsp2 (nodulation signaling pathway2) and the cytokinin perception mutant cre1 (cytokinin receptor1). Gall and egg formation were significantly reduced in the ethylene insensitive, hypernodulating mutant skl (sickle), and to a lesser extent, in the low nodulation, abscisic acid insensitive mutant latd/nip (lateral root-organ defective/numerous infections and polyphenolics). Despite its supernodulation phenotype, the sunn4 (super numeric nodules4) mutant, which has lost the ability to autoregulate nodule numbers, did not form excessive numbers of galls. Co-inoculation of roots with nematodes and rhizobia significantly reduced nodule numbers compared to rhizobia-only inoculated roots, but only in the hypernodulation mutant skl. Thus, this effect is likely to be influenced by ethylene signaling, but is not likely explained by resource competition between galls and nodules. Co-inoculation with rhizobia also reduced gall numbers compared to nematode-only infected roots, but only in the wild type. Therefore, the protective effect of rhizobia on nematode infection does not clearly depend on nodule number or on Nod factor signaling. Our study demonstrates that early nodulation genes that are essential for successful nodule development are not necessary for nematode-induced gall formation, that gall formation is not under autoregulation of nodulation control, and that ethylene signaling plays a positive role in successful RKN parasitism in M. truncatula.
Collapse
Affiliation(s)
- Sofia R. Costa
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
- CBMA—Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - Sabrina Chin
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
45
|
Ntalli N, Kasiotis KM, Baira E, Stamatis CL, Machera K. Nematicidal Activity of Stevia rebaudiana (Bertoni) Assisted by Phytochemical Analysis. Toxins (Basel) 2020; 12:toxins12050319. [PMID: 32408606 PMCID: PMC7290675 DOI: 10.3390/toxins12050319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 12/11/2022] Open
Abstract
To date, there has been great demand for ecofriendly nematicides with beneficial properties to the nematode hosting plants. Great efforts are made towards the chemical characterization of botanical extracts exhibiting nematicidal activity against Meloidogyne spp., but only a small percentage of these data are actually used by the chemical industry in order to develop new formulates. On the other hand, the ready to use farmer produced water extracts based on edible plants could be a sustainable and economic solution for low income countries. Herein, we evaluate the nematicidal potential of Stevia rebaudiana grown in Greece against Meloidogyne incognita and Meloidogyne javanica, two most notorious phytoparasitic nematode species causing great losses in tomato cultivation worldwide. In an effort to recycle the plant’s remnants, after leaves selection for commercial use, we use both leaves and wooden stems to test for activity. In vitro tests demonstrate significant paralysis activity of both plant parts’ water extracts against the second-stage juvenile (J2) of the parasites; while, in vivo bioassays demonstrated the substantial efficacy of leaves’ powder (95% at 1 g kg−1) followed by stems. Interestingly, the incorporation of up to 50 g powder/kg of soil is not phytotoxic, which demonstrates the ability to elevate the applied concentration of the nematicidal stevia powder under high inoculum level. Last but not least, the chemical composition analyses using cutting edge analytical methodologies, demonstrated amongst components molecules of already proven nematicidal activity, was exemplified by several flavonoids and essential oil components. Interestingly, and to our knowledge, for the flavonoids, morin and robinin, the anthocyanidin, keracyanin, and a napthalen-2-ol derivative is their first report in Stevia species.
Collapse
Affiliation(s)
- Nikoletta Ntalli
- Laboratory of Biological Control of Pesticides, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, 14561 Athens, Greece
- Correspondence: ; Tel.: +30-2108-180-343
| | - Konstantinos M. Kasiotis
- Laboratory of Pesticides’ Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, 14561 Athens, Greece; (K.M.K.); (E.B.); (K.M.)
| | - Eirini Baira
- Laboratory of Pesticides’ Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, 14561 Athens, Greece; (K.M.K.); (E.B.); (K.M.)
| | | | - Kyriaki Machera
- Laboratory of Pesticides’ Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, 14561 Athens, Greece; (K.M.K.); (E.B.); (K.M.)
| |
Collapse
|
46
|
D’Addabbo T, Argentieri MP, Żuchowski J, Biazzi E, Tava A, Oleszek W, Avato P. Activity of Saponins from Medicago Species against Phytoparasitic Nematodes. PLANTS 2020; 9:plants9040443. [PMID: 32252361 PMCID: PMC7238174 DOI: 10.3390/plants9040443] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/02/2023]
Abstract
Content of bioactive saponins of Medicago species suggests that they may also exert, as previously demonstrated on M. sativa, nematicidal properties exploitable for the formulation of new products for sustainable phytoparasitic nematode management. This study was addressed to highlight the bioactivity of saponins from five different Medicago species still poorly known for their biological efficacy, i.e., M. heyniana, M. hybrida, M. lupulina, M. murex and M. truncatula, against the plant parasitic nematodes Meloidogyne incognita, Xiphinema index and Globodera rostochiensis. The bioactivity of the extracts from the five Medicago species was assessed by in vitro assays on the juveniles (J2) and eggs of M. incognita and G. rostochiensis and the adult females of X. index. The suppressiveness to M. incognita of soil treatments with the Medicago plant biomasses was also investigated in a tomato experiment. The nematicidal activity of the five Medicago species was reported and discussed in relation to their phytochemical profile.
Collapse
Affiliation(s)
- Trifone D’Addabbo
- Institute for Sustainable Plant Protection, National Council of Research, 70125 Bari, Italy
- Correspondence:
| | - Maria Pia Argentieri
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (M.P.A.); (P.A.)
| | - Jerzy Żuchowski
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation–State Research Institute, 24-100 Pulawi, Poland; (J.Ż.); (W.O.)
| | - Elisa Biazzi
- CREA-Research Centre for Animal Production and Acquaculture, 26900 Lodi, Italy; (E.B.); (A.T.)
| | - Aldo Tava
- CREA-Research Centre for Animal Production and Acquaculture, 26900 Lodi, Italy; (E.B.); (A.T.)
| | - Wieslaw Oleszek
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation–State Research Institute, 24-100 Pulawi, Poland; (J.Ż.); (W.O.)
| | - Pinarosa Avato
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (M.P.A.); (P.A.)
| |
Collapse
|
47
|
Modulation of Arabidopsis Flavonol Biosynthesis Genes by Cyst and Root-Knot Nematodes. PLANTS 2020; 9:plants9020253. [PMID: 32079157 PMCID: PMC7076660 DOI: 10.3390/plants9020253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/28/2020] [Accepted: 02/07/2020] [Indexed: 12/02/2022]
Abstract
Although it is well established that flavonoid synthesis is induced in diverse plant species during nematode parasitism, little is known about the regulation of genes controlling flavonol biosynthesis during the plant–nematode interaction. In this study, expression of the Arabidopsis thaliana flavonol-specific transcription factor, AtMYB12, the flavonol synthase genes, AtFLS1, 2, 3, 4, and 5, and the gene encoding the central flavonoid enzyme, chalcone synthase (AtCHS), were examined in plant roots during infection by Heterodera schachtii (sugar beet cyst) and Meloidogyne incognita (root-knot) nematodes. These experiments showed that AtMYB12 was transiently upregulated at 9 dpi in syncytia associated with sugar beet cyst nematode infection and that an Atmyb12-deficient line was less susceptible to the parasite. This suggests that, rather than contributing to plant defense, this gene is essential for productive infection. However, the AtCHS and AtFLS1 genes, which are controlled by AtMYB12, did not exhibit a similar transient increase, but rather were expressly downregulated in syncytia relative to adjacent uninfected root tissue. Genetic analyses further indicated that AtFLS1 contributes to plant defense against Cyst nematode infection, while other AtFLS gene family members do not, consistent with prior reports that these other genes encode little or no enzyme activity. Together, these findings indicate a role of AtMyb12 in promoting the early stages of Cyst nematode infection, while flavonols produced through the action of AtFLS1 are essential for plant defense. On the other hand, a transient induction of AtMYB12 was not observed in galls produced during root-knot nematode infection, but this gene was instead substantially downregulated, starting at the 9 dpi sampling point, as were AtCHS and AtFLS1. In addition, both the AtMYB12- and AtFLS1-deficient lines were more susceptible to infection by this parasite. There was again little evidence for contributions from the other AtFLS gene family members, although an AtFLS5-deficient line appeared to be somewhat more susceptible to infection. Taken together, this study shows that sugar-beet cyst and root-knot nematodes modulate differently the genes involved in flavonol biosynthesis in order to successfully infect host roots and that AtFLS1 may be involved in the plant basal defense response against nematode infection.
Collapse
|
48
|
Miraeiz E, Chaiprom U, Afsharifar A, Karegar A, M Drnevich J, E Hudson M. Early transcriptional responses to soybean cyst nematode HG Type 0 show genetic differences among resistant and susceptible soybeans. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:87-102. [PMID: 31570969 DOI: 10.1007/s00122-019-03442-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/18/2019] [Indexed: 05/24/2023]
Abstract
KEY MESSAGE Root transcriptome profiling of three soybean cultivars and a wild relative infected with soybean cyst nematode at migratory phase revealed differential resistance pathway responses between resistant and susceptible genotypes. The soybean cyst nematode (SCN), Heterodera glycines, is the most serious pathogen of soybean production throughout the world. Using resistant cultivars is the primary management strategy against SCN infestation. To gain insight into the still obscure mechanisms of genetic resistance to nematodes in different soybean genotypes, RNA-Seq profiling of the roots of Glycine max cv. Peking, Fayette, Williams 82, and a wild relative (Glycine soja PI 468916) was performed during SCN infection at the migratory phase. The analysis showed statistically significant changes of expression beginning at eight hours after inoculation in genes associated with defense mechanisms and pathways, such as the phenylpropanoid biosynthesis pathway, plant innate immunity and hormone signaling. Our results indicate the importance of the early plant response to migratory phase nematodes in pathogenicity determination. The transcriptome changes occurring during early SCN infection included a number of genes and pathways specific to the different resistant genotypes. We observed the most extensive resistant transcriptome reaction in PI 468916, where the resistant response was qualitatively different from that of commonly used G. max varieties.
Collapse
Affiliation(s)
- Esmaeil Miraeiz
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Usawadee Chaiprom
- PhD Program in Informatics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alireza Afsharifar
- Plant Virology Research Center, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Akbar Karegar
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Jenny M Drnevich
- High Performance Biological Computing (HPCBio), Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matthew E Hudson
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
49
|
Jo C, Kim S. Transposition of a non-autonomous DNA transposon in the gene coding for a bHLH transcription factor results in a white bulb color of onions (Allium cepa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:317-328. [PMID: 31637460 DOI: 10.1007/s00122-019-03460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
A DNA transposon was found in the gene encoding a bHLH transcription factor. Genotypes of the marker tagging this DNA transposon perfectly co-segregated with color phenotypes in large F2:3 populations A combined approach of bulked segregant analysis and RNA-Seq was used to isolate causal gene for C locus controlling white bulb color in onions (Allium cepa L.). A total of 114 contigs containing homozygous single nucleotide polymorphisms (SNPs) between white and yellow bulked RNAs were identified. Four of them showed high homologies with loci clustered in the middle of chromosome 5. SNPs in 34 contigs were confirmed by sequencing of PCR products. One of these contigs showed perfect linkage to the C locus in F2:3 populations consisting of 2491 individuals. However, genotypes of molecular marker tagging this contig were inconsistent with color phenotypes of diverse breeding lines. A total of 146 contigs showed differential expression between yellow and white bulks. Among them, transcription levels of B2 gene encoding a bHLH transcription factor were significantly reduced in white RNA bulk and F2:3 individuals, although there was no SNP in the coding region. Phylogenetic analysis showed that onion B2 was orthologous to bHLH-coding genes regulating anthocyanin biosynthesis pathway in other plant species. Promoter regions of B2 gene were obtained by genome walking and a 577-bp non-autonomous DNA transposon designated as AcWHITE was found in the white allele. Molecular marker tagging AcWHITE showed perfect linkage with the C locus. Marker genotypes of the white allele were detected in some white accessions. However, none of tested red or yellow onions contained AcWHITE insertion, implying that B2 gene was likely to be a casual gene for the C locus.
Collapse
Affiliation(s)
- Changyeong Jo
- Department of Horticulture, Biotechnology Research Institute, Chonnam National University, Gwangju, 500-757, Korea
| | - Sunggil Kim
- Department of Horticulture, Biotechnology Research Institute, Chonnam National University, Gwangju, 500-757, Korea.
| |
Collapse
|
50
|
Activity and reproductive capability of Meloidogyne incognita and sunflower growth response as influenced by root exudates of some medicinal plants. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|