1
|
Adaskaveg JA, Lee C, Wei Y, Wang F, Grilo FS, Mesquida‐Pesci SD, Davis M, Wang SC, Marino G, Ferguson L, Brown PJ, Drakakaki G, Morales AM, Marchese A, Giovino A, Burgos EM, Marra FP, Cuevas LM, Cattivelli L, Bagnaresi P, Carbonell‐Bejerano P, Monroe JG, Blanco‐Ulate B. In a nutshell: pistachio genome and kernel development. THE NEW PHYTOLOGIST 2025; 246:1032-1048. [PMID: 40107319 PMCID: PMC11982797 DOI: 10.1111/nph.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Pistachio is a sustainable nut crop with exceptional climate resilience and nutritional value. However, the molecular processes underlying pistachio nut development and nutritional traits are largely unknown, compounded by limited genomic and molecular resources. To advance pistachios as a future food source and a model system for hard-shelled fruits, we generated a chromosome-scale reference genome of the most widely grown pistachio cultivar (Pistacia vera 'Kerman') and a spatiotemporal study of nut development. We integrated tissue-level physiological data from thousands of nuts over three growing seasons with transcriptomic data encompassing 14 developmental time points of the hull, shell, and kernel to assemble gene modules associated with physiological changes. Our study defined four distinct stages of pistachio nut growth and maturation. We then focused on the kernel to identify transcriptional and metabolic changes in molecular pathways governing nutritional quality, such as the accumulation of unsaturated fatty acids, which are vital for shelf life and dietary value. These findings revealed key candidate conserved regulatory genes, such as PvAP2-WRI1 and PvNFYB-LEC1, likely involved in oil accumulation in kernels. This work yields new knowledge and resources that will inform other woody crops and facilitate further improvement of pistachio as a globally significant, sustainable, and nutritious crop.
Collapse
Affiliation(s)
| | - Chaehee Lee
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
| | - Yiduo Wei
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
| | - Fangyi Wang
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
| | - Filipa S. Grilo
- Corto OliveLodiCA95212USA
- Department of Food Science and TechnologyUniversity of California DavisDavisCA95616USA
| | | | - Matthew Davis
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
| | - Selina C. Wang
- Department of Food Science and TechnologyUniversity of California DavisDavisCA95616USA
| | - Giulia Marino
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
| | - Louise Ferguson
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
| | - Patrick J. Brown
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
| | | | - Adela Mena Morales
- Regional Institute of Agri‐Food and Forestry Research and Development of Castilla‐La Mancha (IRIAF), IVICAM, CTRAToledo‐Albacete s/n, 13700Tomelloso (Ciudad Real)13700Spain
| | - Annalisa Marchese
- Department of Agricultural, Food and Forest SciencesUniversity of PalermoViale delle Scienze – Ed. 4Palermo90128Italy
| | - Antonio Giovino
- CREA for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification (CREA‐DC)Viale delle ScienzePalermo90128Italy
| | - Esaú Martínez Burgos
- Regional Institute of Agri‐Food and Forestry Research and Development of Castilla‐La Mancha (IRIAF), IVICAM, CTRAToledo‐Albacete s/n, 13700Tomelloso (Ciudad Real)13700Spain
| | - Francesco Paolo Marra
- Department of Agricultural, Food and Forest SciencesUniversity of PalermoViale delle Scienze – Ed. 4Palermo90128Italy
| | - Lourdes Marchante Cuevas
- Regional Institute of Agri‐Food and Forestry Research and Development of Castilla‐La Mancha (IRIAF), IVICAM, CTRAToledo‐Albacete s/n, 13700Tomelloso (Ciudad Real)13700Spain
| | - Luigi Cattivelli
- CREA Research Centre for Genomics and BioinformaticsFiorenzuola d'Arda29017Italy
| | - Paolo Bagnaresi
- CREA Research Centre for Genomics and BioinformaticsFiorenzuola d'Arda29017Italy
| | - Pablo Carbonell‐Bejerano
- Instituto de Ciencias de la Vid y del Vino, ICVV, for Grape and Wine Sciences ICVV, CSIC – Universidad de La Rioja – Gobierno de La RiojaLogroño26007Spain
| | - J. Grey Monroe
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
| | | |
Collapse
|
2
|
Zhu K, Wei L, Hussain H, Tan P, Wei G, Zhao J, Zhou S, Liu H, Peng F. Metabolome and Transcriptome Analyses Reveal Metabolomic Variations and Key Transcription Factors Involved in Lipid Biosynthesis During Seed Development in Carya illinoinensis. Int J Mol Sci 2024; 25:11571. [PMID: 39519123 PMCID: PMC11546405 DOI: 10.3390/ijms252111571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Plant oils are a large group of neutral lipids that play a vital role in the food and oleochemical industries. The pecan (Carya illinoinensis) is a promising woody oil crop known for its high-quality sources of essential fatty acids and various bioactive compounds that may aid in preventing heart diseases. However, there is still a lack of understanding regarding the accumulation of lipids and the molecular mechanism of lipid biosynthesis during seed development. This study aims to analyze the metabolite variations and molecular mechanisms of lipid biosynthesis by integrating untargeted metabolomics and transcriptomics during pecan seed development. A total of 293 differentially accumulated metabolites were identified and further categorized into 13 groups, with lipids and lipid-like molecules constituting the largest group. The oil content and fatty acid compositions of pecan embryos were assessed at three stages of seed development. Oleic acid (c18:1) and linoleic acid (c18:2n6) were found to be the most abundant unsaturated fatty acid components in pecan embryos. Additionally, a comprehensive analysis revealed 15,990 differentially expressed genes, with a focus on the key genes related to lipid metabolism. Furthermore, the study identified 1201 transcription factors from differentially expressed genes. These transcription factors were divided into 65 families, with different members in the same family exhibiting different expression patterns during seed development. The expression patterns of ten transcription factor genes during seed development were verified by qRT-PCR. Two key genes, CiABI3 and CiFUS3 were further cloned and found to be localized in the nucleus. This study used metabolome and transcriptome analysis during key periods of pecan seed development to identify the key genes associated with seed development and fatty acid biosynthesis.
Collapse
Affiliation(s)
- Kaikai Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (K.Z.); (L.W.); (P.T.); (J.Z.); (S.Z.)
| | - Lu Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (K.Z.); (L.W.); (P.T.); (J.Z.); (S.Z.)
| | - Hammad Hussain
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (H.H.); (G.W.)
| | - Pengpeng Tan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (K.Z.); (L.W.); (P.T.); (J.Z.); (S.Z.)
| | - Guo Wei
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (H.H.); (G.W.)
| | - Juan Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (K.Z.); (L.W.); (P.T.); (J.Z.); (S.Z.)
| | - Sichen Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (K.Z.); (L.W.); (P.T.); (J.Z.); (S.Z.)
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Fangren Peng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (K.Z.); (L.W.); (P.T.); (J.Z.); (S.Z.)
| |
Collapse
|
3
|
Zou Z, Fu X, Huang J, Zhao Y. Molecular characterization of CeOLE6, a diverged SH oleosin gene, preferentially expressed in Cyperus esculentus tubers. PLANTA 2024; 260:122. [PMID: 39438351 DOI: 10.1007/s00425-024-04553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
MAIN CONCLUSION CeOLE6, a tuber-specific gene in tigernut, encodes a diverged SH oleosin that functions in oil accumulation via homo and heteromultimerization. Tigernut (Cyperus esculentus L.) is a rare example accumulating high levels of triacylglycerols (TAGs) in underground tubers; however, the mechanism underlying is poorly understood. Given essential roles of oleosins (OLEs) in oil accumulation, in this study, structural and functional analyses were conducted for CeOLE6, an oleosin gene preferentially expressed in tigernut tubers. Phylogenetic analysis revealed that CeOLE6 encodes a diverged oleosin in Clade SH, which also includes CeOLE4 and -5. Further synteny analysis and sequence comparison indicated that CeOLE6 is more likely to be a whole-genome duplication (WGD) repeat of CeOLE4, which underwent rapid evolution and deletion of the typical C-terminal insertion for SHs. Nevertheless, CeOLE6 retains the capacity of oligomerization and oil accumulation, because (i) CeOLE6 could not only interact with itself but also with CeOLE2 and -5, two tuber-dominant members belonging to Clades SL and SH, respectively, and (ii) overexpressing CeOLE6 in tobacco leaves could significantly enhance the TAG content. Though CeWRI1 exhibits a similar expression pattern as CeOLE6 during tuber development, both CeWRI1 and -3 could not activate the CeOLE6 promoter, implying that they are not transcription factors contributing tuber-specific activation of CeOLE6. These findings not only provide insights into CeOLE genes in tuber oil accumulation, but also lay a foundation for further genetic improvement in tigernut and other species.
Collapse
Affiliation(s)
- Zhi Zou
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China.
| | - Xiaowen Fu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China
| | - Jiaquan Huang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication) and College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, Hainan, People's Republic of China
| | - Yongguo Zhao
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Asadi A, Tavakol E, Shariati V, Hosseini Mazinani M. Unraveling the genetic basis of oil quality in olives: a comparative transcriptome analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1467102. [PMID: 39411654 PMCID: PMC11473408 DOI: 10.3389/fpls.2024.1467102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024]
Abstract
Introduction The balanced fatty acid profile of olive oil not only enhances its stability but also contributes to its positive effects on health, making it a valuable dietary choice. Olive oil's high content of unsaturated fatty acids and low content of saturated fatty acids contribute to its beneficial effects on cardiovascular diseases and cancer. The quantities of these fatty acids in olive oil may fluctuate due to various factors, with genotype being a crucial determinant of the oil's quality. Methods This study investigated the genetic basis of oil quality by comparing the transcriptome of two Iranian cultivars with contrasting oil profiles: Mari, known for its high oleic acid content, and Shengeh, characterized by high linoleic acid at Jaén index four. Results and discussion Gas chromatography confirmed a significant difference in fatty acid composition between the two cultivars. Mari exhibited significantly higher oleic acid content (78.48%) compared to Shengeh (48.05%), while linoleic acid content was significantly lower in Mari (4.76%) than in Shengeh (26.69%). Using RNA sequencing at Jaén index four, we analyzed genes involved in fatty acid biosynthesis. Differential expression analysis identified 2775 genes showing statistically significant differences between the cultivars. Investigating these genes across nine fundamental pathways involved in oil quality led to the identification of 25 effective genes. Further analysis revealed 78 transcription factors and 95 transcription binding sites involved in oil quality, with BPC6 and RGA emerging as unique factors. This research provides a comprehensive understanding of the genetic and molecular mechanisms underlying oil quality in olive cultivars. The findings have practical implications for olive breeders and producers, potentially streamlining cultivar selection processes and contributing to the production of high-quality olive oil.
Collapse
Affiliation(s)
- AliAkbar Asadi
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Elahe Tavakol
- Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Vahid Shariati
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mehdi Hosseini Mazinani
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
5
|
Imran M, Franková L, Qaisar U, Fry SC. Using a cellulose-complementary oligosaccharide as a tool to probe exposed cellulosic surfaces in cotton fibres and growing plant cell walls. Biochem J 2024; 481:1221-1240. [PMID: 39207824 PMCID: PMC11555694 DOI: 10.1042/bcj20240296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/08/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Cellulosic microfibrils in plant cell walls are largely ensheathed and probably tethered by hydrogen-bonded hemicelluloses. Ensheathing may vary developmentally as hemicelluloses are peeled to enable cell expansion. We characterised a simple method to quantify ensheathed versus naked cellulosic surfaces based on the ability to adsorb a radiolabelled 'cellulose-complementary oligosaccharide', [3H]cellopentaitol. Filter-paper (cellulose) adsorbed 40% and >80% of aqueous 5 nM [3H]cellopentaitol within ∼1 and ∼20 h respectively. When [3H]cellopentaitol was rapidly dried onto filter-paper, ∼50% of it was desorbable by water, whereas after ∼1 day annealing in aqueous medium the adsorption became too strong to be reversible in water. 'Strongly' adsorbed [3H]cellopentaitol was, however, ∼98% desorbed by 6 M NaOH, ∼50% by 0.2 M cellobiose, and ∼30% by 8 M urea, indicating a role for hydrogen-bonding reinforced by complementarity of shape. Gradual adsorption was promoted by kosmotropes (1.4 M Na2SO4 or 30% methanol), and inhibited by chaotropes (8 M urea), supporting a role for hydrogen-bonding. [3H]Cellopentaitol adsorption was strongly competed by non-radioactive cello-oligosaccharides (Cell2-6), the IC50 (half-inhibitory concentration) being highly size-dependent: Cell2, ∼70 mM; Cell3, ∼7 mM; and Cell4-6, ∼0.05 mM. Malto-oligosaccharides (400 mM) had no effect, confirming the role of complementarity. The quantity of adsorbed [3H]cellopentaitol was proportional to mass of cellulose. Of seven cottons tested, wild-type Gossypium arboreum fibres were least capable of adsorbing [3H]cellopentaitol, indicating ensheathment of their microfibrillar surfaces, confirmed by their resistance to cellulase digestion, and potentially attributable to a high glucuronoarabinoxylan content. In conclusion, [3H]cellopentaitol adsorption is a simple, sensitive and quantitative way of titrating 'naked' cellulose surfaces.
Collapse
Affiliation(s)
- Mahnoor Imran
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Lenka Franková
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Uzma Qaisar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Stephen C. Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| |
Collapse
|
6
|
Yang D, Wang R, Lai H, He Y, Chen Y, Xun C, Zhang Y, He Z. Comparative Transcriptomic and Lipidomic Analysis of Fatty Acid Accumulation in Three Camellia oleifera Varieties During Seed Maturing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18257-18270. [PMID: 39084609 PMCID: PMC11328181 DOI: 10.1021/acs.jafc.4c03614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Camellia oleifera, a major woody oil crop in China, produces tea oil rich in unsaturated fatty acids, earning it names like liquid gold and eastern olive oil. This study provides an integrated investigation of the transcriptome and lipidome within seeds at the maturing process across three C. oleifera varieties, revealing a significant relationship between fatty acid production and genes involved in lipid synthesis. Through transcriptomic analysis, 26,344 genes with varied expression were found. Functional enrichment analysis highlighted that pathways related to starch and sucrose metabolism, plant hormone signal transduction, and lipid accumulation were highly enriched among the differentially expressed genes. Coordinated high expression of key genes (ACCase, KAS I, KAS II, KAS III, KAR, HAD, EAR, SAD, LPAAT, LACS, DGAT, PDAT) during the late maturation stage contributes largely to high oil content. Additionally, expression variations of SAD and FADs among different varieties were explored. The analysis suggests that high expression of genes such as FAD3, FAD7, and FAD8 notably increased linolenic acid content. This research provides new insights into the molecular mechanisms of oil biosynthesis in C. oleifera, offering valuable references for improving yield and quality.
Collapse
Affiliation(s)
- Dayu Yang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Rui Wang
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha 410004, China
- National Engineering Research Center for Oil-Tea Camellia, State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410116, China
| | - Hanggui Lai
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yimin He
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yongzhong Chen
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha 410004, China
- National Engineering Research Center for Oil-Tea Camellia, State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410116, China
| | - Chengfeng Xun
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha 410004, China
- National Engineering Research Center for Oil-Tea Camellia, State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410116, China
| | - Ying Zhang
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha 410004, China
- National Engineering Research Center for Oil-Tea Camellia, State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410116, China
| | - Zhilong He
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha 410004, China
- National Engineering Research Center for Oil-Tea Camellia, State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410116, China
| |
Collapse
|
7
|
Anaokar S, Liang Y, Yu XH, Cai Y, Cai Y, Shanklin J. The expression of genes encoding novel Sesame oleosin variants facilitates enhanced triacylglycerol accumulation in Arabidopsis leaves and seeds. THE NEW PHYTOLOGIST 2024; 243:271-283. [PMID: 38329350 DOI: 10.1111/nph.19548] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024]
Abstract
Triacylglycerols (TAG), accumulate within lipid droplets (LD), predominantly surrounded by OLEOSINs (OLE), that protect TAG from hydrolysis. We tested the hypothesis that identifying and removing degradation signals from OLE would promote its abundance, preventing TAG degradation and enhancing TAG accumulation. We tested whether mutating potential ubiquitin-conjugation sites in a previously reported improved Sesamum indicum OLE (SiO) variant, o3-3 Cys-OLE (SiCO herein), would stabilize it and increase its lipogenic potential. SiCOv1 was created by replacing all five lysines in SiCO with arginines. Separately, six cysteine residues within SiCO were deleted to create SiCOv2. SiCOv1 and SiCOv2 mutations were combined to create SiCOv3. Transient expression of SiCOv3 in Nicotiana benthamiana increased TAG by two-fold relative to SiCO. Constitutive expression of SiCOv3 or SiCOv5, containing the five predominant TAG-increasing mutations from SiCOv3, in Arabidopsis along with mouse DGAT2 (mD) increased TAG accumulation by 54% in leaves and 13% in seeds compared with control lines coexpressing SiCO and mD. Lipid synthesis rates increased, consistent with an increase in lipid sink strength that sequesters newly synthesized TAG, thereby relieving the constitutive BADC-dependent inhibition of ACCase reported for WT Arabidopsis. These OLE variants represent novel factors for potentially increasing TAG accumulation in a variety of oil crops.
Collapse
Affiliation(s)
- Sanket Anaokar
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Yuanxue Liang
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Xiao-Hong Yu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Yingqi Cai
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Yuanheng Cai
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| |
Collapse
|
8
|
Yang R, Chen H, Zhang D, Zhang Q, Huang Y. Integrated transcriptomic and lipidomic analysis provides key insights into lipid content changes during pecan (Carya illinoensis) fruit development. THE PLANT GENOME 2024; 17:e20449. [PMID: 38602083 DOI: 10.1002/tpg2.20449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024]
Abstract
Pecans [Carya illinoinensis (Wangenh.) K. Koch] are highly valued for their abundance of quality healthy lipids, positively impacting human health and making themselves a preferred choice for nutritionally rich foods. However, a comprehensive understanding of the high-resolution characteristics of pecan fruit lipid composition and its dynamic changes, as well as the transfer between embryo and pericarp during development, remains incomplete. In this study, through integrated multi-omics analysis, we observed significant spatiotemporal heterogeneity in lipid changes between the pericarp and embryo. It showed smaller fluctuations and more stable lipid levels in the pericarp while exhibiting a dynamic pattern of initially increasing and then decreasing lipid content in the embryo. In this study, a total of 52 differentially expressed genes were identified, related to fatty acid synthesis and metabolism pathways in the two tissues, with changes in oleic acid and linoleic acid composition being the primary features of the embryo. This research lays the foundation for further understanding the differential regulation mechanisms of lipid metabolism between embryo and pericarp. Overall, this study filled the knowledge gap regarding dynamic changes in pericarp lipid metabolites, provided crucial insights into the lipid metabolism network during pecan fruit development, and established a scientific basis for the genetic improvement of pecan crops.
Collapse
Affiliation(s)
- Ruifeng Yang
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A and F University, Dong Hu Campus, Hangzhou, China
| | - Hongyi Chen
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A and F University, Dong Hu Campus, Hangzhou, China
| | - Da Zhang
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A and F University, Dong Hu Campus, Hangzhou, China
| | - Qixiang Zhang
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A and F University, Dong Hu Campus, Hangzhou, China
| | - Youjun Huang
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A and F University, Dong Hu Campus, Hangzhou, China
| |
Collapse
|
9
|
Liao W, Guo R, Qian K, Shi W, Whelan J, Shou H. The acyl-acyl carrier protein thioesterases GmFATA1 and GmFATA2 are essential for fatty acid accumulation and growth in soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:823-838. [PMID: 38224529 DOI: 10.1111/tpj.16638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/17/2024]
Abstract
Acyl-acyl carrier protein (ACP) thioesterases (FAT) hydrolyze acyl-ACP complexes to release FA in plastids, which ultimately affects FA biosynthesis and profiles. Soybean GmFATA1 and GmFATA2 are homoeologous genes encoding oleoyl-ACP thioesterases whose role in seed oil accumulation and plant growth has not been defined. Using CRISPR/Cas9 gene editing mutation of Gmfata1 or 2 led to reduced leaf FA content and growth defect at the early seedling stage. In contrast, no homozygous double mutants were obtained. Combined this indicates that GmFATA1 and GmFATA2 display overlapping, but not complete functional redundancy. Combined transcriptomic and lipidomic analysis revealed a large number of genes involved in FA synthesis and FA chain elongation are expressed at reduced level in the Gmfata1 mutant, accompanied by a lower triacylglycerol abundance at the early seedling stage. Further analysis showed that the Gmfata1 or 2 mutants had increased composition of the beneficial FA, oleic acid. The growth defect of Gmfata1 could be at least partially attributed to reduced acetyl-CoA carboxylase activity, reduced abundance of five unsaturated monogalactosyldiacylglycerol lipids, and altered chloroplast morphology. On the other hand, overexpression of GmFATA in soybean led to significant increases in leaf FA content by 5.7%, vegetative growth, and seed yield by 26.9%, and seed FA content by 23.2%. Thus, overexpression of GmFATA is an effective strategy to enhance soybean oil content and yield.
Collapse
Affiliation(s)
- Wenying Liao
- State Key Lab of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Runze Guo
- State Key Lab of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Kun Qian
- State Key Lab of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Wanxuan Shi
- State Key Lab of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - James Whelan
- State Key Lab of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, 314400, China
| | - Huixia Shou
- State Key Lab of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, 314400, China
- Hainan Institute, Zhejiang University, Sanya, Hainan, 572025, China
| |
Collapse
|
10
|
Mi C, Zhang Y, Zhao Y, Lin L. Mechanisms of low nighttime temperature promote oil accumulation in Brassica napus L. based on in-depth transcriptome analysis. PHYSIOLOGIA PLANTARUM 2024; 176:e14372. [PMID: 38812077 DOI: 10.1111/ppl.14372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/08/2024] [Indexed: 05/31/2024]
Abstract
Rape (Brassica napus L.; AACC) is an important oil-bearing crop worldwide. Temperature significantly affects the production of oil crops; however, the mechanisms underlying temperature-promoted oil biosynthesis remain largely unknown. In this study, we found that a temperature-sensitive cultivar (O) could accumulate higher seed oil content under low nighttime temperatures (LNT,13°C) compared with a temperature-insensitive cultivar (S). We performed an in-depth transcriptome analysis of seeds from both cultivars grown under different nighttime temperatures. We found that low nighttime temperatures induced significant changes in the transcription patterns in the seeds of both cultivars. In contrast, the expression of genes associated with fatty acid and lipid pathways was higher in the O cultivar than in the S cultivar under low nighttime temperatures. Among these genes, we identified 14 genes associated with oil production, especially BnLPP and ACAA1, which were remarkably upregulated in the O cultivar in response to low nighttime temperatures compared to S. Further, a WGCNA analysis and qRT-PCR verification revealed that these genes were mainly regulated by five transcription factors, WRKY20, MYB86, bHLH144, bHLH95, and NAC12, whose expression was also increased in O compared to S under LNT. These results allowed the elucidation of the probable molecular mechanism of oil accumulation under LNT conditions in the O cultivar. Subsequent biochemical assays verified that BnMYB86 transcriptionally activated BnLPP expression, contributing to oil accumulation. Meanwhile, at LNT, the expression levels of these genes in the O plants were higher than at high nighttime temperatures, DEGs (SUT, PGK, PK, GPDH, ACCase, SAD, KAS II, LACS, FAD2, FAD3, KCS, KAR, ECR, GPAT, LPAAT, PAP, DGAT, STERO) related to lipid biosynthesis were also upregulated, most of which are used in oil accumulation.
Collapse
Affiliation(s)
- Chao Mi
- Agricultural Research Institute, Xizang Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yusong Zhang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yanning Zhao
- Vegetable Research Institute, Xizang Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Liangbin Lin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
11
|
Lu Q, Huang L, Liu H, Garg V, Gangurde SS, Li H, Chitikineni A, Guo D, Pandey MK, Li S, Liu H, Wang R, Deng Q, Du P, Varshney RK, Liang X, Hong Y, Chen X. A genomic variation map provides insights into peanut diversity in China and associations with 28 agronomic traits. Nat Genet 2024; 56:530-540. [PMID: 38378864 DOI: 10.1038/s41588-024-01660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 01/09/2024] [Indexed: 02/22/2024]
Abstract
Peanut (Arachis hypogaea L.) is an important allotetraploid oil and food legume crop. China is one of the world's largest peanut producers and consumers. However, genomic variations underlying the migration and divergence of peanuts in China remain unclear. Here we reported a genome-wide variation map based on the resequencing of 390 peanut accessions, suggesting that peanuts might have been introduced into southern and northern China separately, forming two cultivation centers. Selective sweep analysis highlights asymmetric selection between the two subgenomes during peanut improvement. A classical pedigree from South China offers a context for the examination of the impact of artificial selection on peanut genome. Genome-wide association studies identified 22,309 significant associations with 28 agronomic traits, including candidate genes for plant architecture and oil biosynthesis. Our findings shed light on peanut migration and diversity in China and provide valuable genomic resources for peanut improvement.
Collapse
Affiliation(s)
- Qing Lu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China.
| | - Lu Huang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Hao Liu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Vanika Garg
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Sunil S Gangurde
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Haifen Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Annapurna Chitikineni
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Dandan Guo
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Shaoxiong Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Haiyan Liu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Runfeng Wang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Quanqing Deng
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Puxuan Du
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| | - Xuanqiang Liang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China.
| | - Yanbin Hong
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China.
| | - Xiaoping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China.
| |
Collapse
|
12
|
Wu D, Zhang K, Li CY, Xie GW, Lu MT, Qian Y, Shu YP, Shen Q. Genome-wide comprehensive characterization and transcriptomic analysis of AP2/ERF gene family revealed its role in seed oil and ALA formation in perilla (Perilla frutescens). Gene 2023; 889:147808. [PMID: 37722611 DOI: 10.1016/j.gene.2023.147808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Perilla (Perilla frutescens) is a potential specific oilseed crop with an extremely high α-linolenic acid (ALA) content in its seeds. AP2/ERF transcription factors (TFs) play important roles in multiple biological processes. However, limited information is known about the regulatory mechanism of the AP2/ERF family in perilla's oil accumulation. In this research, we identified 212 AP2/ERF family members in the genome of perilla, and their domain characteristics, collinearity, and sub-genome differentiation were comprehensively analyzed. Transcriptome sequencing revealed that genes encoding key enzymes involved in oil biosynthesis (e.g., ACCs, KASII, GPAT, PDAT and LPAAT) were up-regulated in the high-oil variety. Moreover, the endoplasmic reticulum-localized FAD2 and FAD3 were significantly up-regulated in the high-ALA variety. To investigate the roles of AP2/ERFs in lipid biosynthesis, we conducted a correlation analysis between non-redundant AP2/ERFs and key lipid metabolism genes using WGCNA. A significant correlation was found between 36 AP2/ERFs and 90 lipid metabolism genes. Among them, 12 AP2/ERFs were identified as hub genes and showed significant correlation with lipid synthase genes (e.g., FADs, GPAT and ACSL) and key regulatory TFs (e.g., LEC2, IAA, MYB, UPL3). Furthermore, gene expression analysis identified three AP2/ERFs (WRI, ABI4, and RAVI) potentially playing an important role in the regulation of oil accumulation in perilla. Our study suggests that PfAP2/ERFs are important regulatory TFs in the lipid biosynthesis pathway, providing a foundation for the molecular understanding of oil accumulation in perilla and other oilseed crops.
Collapse
Affiliation(s)
- Duan Wu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Ke Zhang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Chun-Yu Li
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Guan-Wen Xie
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Ming-Ting Lu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Yong Qian
- Shanghai Standard Technology Co., Ltd, Building 25, 15 Gudan Road, Pudong, Shanghai 201314, China.
| | - Ya-Ping Shu
- Shanghai Standard Technology Co., Ltd, Building 25, 15 Gudan Road, Pudong, Shanghai 201314, China.
| | - Qi Shen
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
13
|
Qin D, Xing J, Cheng P, Yu G. Genome-wide association and RNA-seq analyses reveal a potential gene related to linolenic acid in soybean seeds. PeerJ 2023; 11:e16138. [PMID: 37933254 PMCID: PMC10625760 DOI: 10.7717/peerj.16138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/29/2023] [Indexed: 11/08/2023] Open
Abstract
Linolenic acid (LA) has poor oxidative stability since it is a polyunsaturated fatty acid. Soybean oil has a high LA content and thus has poor oxidative stability. To identify candidate genes that affect the linolenic acid (LA) content in soybean seeds, a genome-wide association study (GWAS) was performed with 1,060 soybean cultivars collected in China between 2019-2021 and which LA content was measured using matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI-TOF IMS). A candidate gene, GmWRI14, encoding an APETALA2 (AP2)-type transcription factor, was detected by GWAS in cultivars from all three study years. Multiple sequence alignments showed that GmWRI14 belongs to the plant WRI1 family. The fatty acid contents of different soybean lines were evaluated in transgenic lines with a copy of GmWRI14, control lines without GmWRI14, and the gmwri14 mutant. MALDI-TOF IMS revealed that GmWRI14 transgenic soybeans had a lower LA content with a significant effect on seed size and shape, whereas gmwri14 mutants had a higher LA content. compared to control. The RNA-seq results showed that GmWRI14 suppresses GmFAD3s (GmFAD3B and GmFAD3C) and GmbZIP54 expression in soybean seeds, leading to decreased LA content. Based on the RNA-seq data, yeast one-hybrid (Y1H) and qRT-PCR were performed to confirm the transcriptional regulation of FAD3s by GmWRI14. Our results suggest that FAD3 is indirectly regulated by GmWRI14, representing a new molecular mechanism of fatty acid biosynthesis, in which GmWRI14 regulates LA content in soybean seeds.
Collapse
Affiliation(s)
- Di Qin
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, Gongdong, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou University, Guangzhou, Guangdong, China
| | - Jiehua Xing
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, Gongdong, China
| | - Ping Cheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, Gongdong, China
| | - Guohui Yu
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, Gongdong, China
| |
Collapse
|
14
|
Zou Z, Zheng Y, Zhang Z, Xiao Y, Xie Z, Chang L, Zhang L, Zhao Y. Molecular characterization of oleosin genes in Cyperus esculentus, a Cyperaceae plant producing oil in underground tubers. PLANT CELL REPORTS 2023; 42:1791-1808. [PMID: 37747544 DOI: 10.1007/s00299-023-03066-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
KEY MESSAGE CeOLE genes exhibit a tuber-predominant expression pattern and their mRNA/protein abundances are positively correlated with oil accumulation during tuber development. Overexpression could significantly increase the oil content of tobacco leaves. Oleosins (OLEs) are abundant structural proteins of lipid droplets (LDs) that function in LD formation and stabilization in seeds of oil crops. However, little information is available on their roles in vegetative tissues. In this study, we present the first genome-wide characterization of the oleosin family in tigernut (Cyperus esculentus L., Cyperaceae), a rare example accumulating high amounts of oil in underground tubers. Six members identified represent three previously defined clades (i.e. U, SL and SH) or six out of seven orthogroups (i.e. U, SL1, SL2, and SH1-3) proposed in this study. Comparative genomics analysis reveals that lineage-specific expansion of Clades SL and SH was contributed by whole-genome duplication and dispersed duplication, respectively. Moreover, presence of SL2 and SH3 in Juncus effuses implies their appearance sometime before Cyperaceae-Juncaceae divergence, whereas SH2 appears to be Cyperaceae specific. Expression analysis showed that CeOLE genes exhibit a tuber-predominant expression pattern and transcript levels are considerably more abundant than homologs in the close relative Cyperus rotundus. Moreover, CeOLE mRNA and protein abundances were shown to positively correlate with oil accumulation during tuber development. Additionally, two dominant isoforms (i.e. CeOLE2 and -5) were shown to locate in LDs as well as the endoplasmic reticulum of tobacco (Nicotiana benthamiana) leaves, and are more likely to function in homo and heteromultimers. Furthermore, overexpression of CeOLE2 and -5 in tobacco leaves could significantly increase the oil content, supporting their roles in oil accumulation. These findings provide insights into lineage-specific family evolution and putative roles of CeOLE genes in oil accumulation of vegetative tissues, which facilitate further genetic improvement for tigernut.
Collapse
Affiliation(s)
- Zhi Zou
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China.
| | - Yujiao Zheng
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China
| | - Zhongtian Zhang
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China
| | - Yanhua Xiao
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China
| | - Zhengnan Xie
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China
| | - Lili Chang
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China
| | - Li Zhang
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China.
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Science, South-Central Minzu University, Wuhan, 430074, Hubei, People's Republic of China.
| | - Yongguo Zhao
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China.
- Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, People's Republic of China.
| |
Collapse
|
15
|
Yang Y, Kong Q, Tee WT, Li Y, Low PM, Patra B, Guo L, Yuan L, Ma W. Transcription factor bZIP52 modulates Arabidopsis seed oil biosynthesis through interaction with WRINKLED1. PLANT PHYSIOLOGY 2023; 192:2628-2639. [PMID: 37148285 DOI: 10.1093/plphys/kiad270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
Transcriptional regulation mediated by combinatorial interaction of transcription factors (TFs) is a key molecular mechanism modulating plant development and metabolism. Basic leucine zipper (bZIP) TFs play important roles in various plant developmental and physiological processes. However, their involvement in fatty acid biosynthesis is largely unknown. Arabidopsis (Arabidopsis thaliana) WRINKLED1 (WRI1) is a pivotal TF in regulation of plant oil biosynthesis and interacts with other positive and negative regulators. In this study, we identified two bZIP TFs, bZIP21 and bZIP52, as interacting partners of AtWRI1 by yeast-two-hybrid (Y2H)-based screening of an Arabidopsis TF library. We found that coexpression of bZIP52, but not bZIP21, with AtWRI1 reduced AtWRI1-mediated oil biosynthesis in Nicotiana benthamiana leaves. The AtWRI1-bZIP52 interaction was further verified by Y2H, in vitro pull-down, and bimolecular fluorescence complementation assays. Transgenic Arabidopsis plants overexpressing bZIP52 showed reduced seed oil accumulation, while the CRISPR/Cas9-edited bzip52 knockout mutant exhibited increased seed oil accumulation. Further analysis revealed that bZIP52 represses the transcriptional activity of AtWRI1 on the fatty acid biosynthetic gene promoters. Together, our findings suggest that bZIP52 represses fatty acid biosynthesis genes through interaction with AtWRI1, resulting in a reduction of oil production. Our work reports a previously uncharacterized regulatory mechanism that enables fine-tuning of seed oil biosynthesis.
Collapse
Affiliation(s)
- Yuzhou Yang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Que Kong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Wan Ting Tee
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yuqing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Pui Man Low
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Barunava Patra
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
16
|
Jin Y, Hu J, Su J, Aslan S, Lin Y, Jin L, Isaksson S, Liu C, Wang F, Schnürer A, Sitbon F, Hofvander P, Sun C. Improved bioenergy value of residual rice straw by increased lipid levels from upregulation of fatty acid biosynthesis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:90. [PMID: 37245032 DOI: 10.1186/s13068-023-02342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/13/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Rice (Oryza sativa) straw is a common waste product that represents a considerable amount of bound energy. This energy can be used for biogas production, but the rate and level of methane produced from rice straw is still low. To investigate the potential for an increased biogas production from rice straw, we have here utilized WRINKLED1 (WRI1), a plant AP2/ERF transcription factor, to increase triacylglycerol (TAG) biosynthesis in rice plants. Two forms of Arabidopsis thaliana WRI1 were evaluated by transient expression and stable transformation of rice plants, and transgenic plants were analyzed both for TAG levels and biogas production from straw. RESULTS Both full-length AtWRI1, and a truncated form lacking the initial 141 amino acids (including the N-terminal AP2 domain), increased fatty acid and TAG levels in vegetative and reproductive tissues of Indica rice. The stimulatory effect of the truncated AtWRI1 was significantly lower than that of the full-length protein, suggesting a role for the deleted AP2 domain in WRI1 activity. Full-length AtWRI1 increased TAG levels also in Japonica rice, indicating a conserved effect of WRI1 in rice lipid biosynthesis. The bio-methane production from rice straw was 20% higher in transformants than in the wild type. Moreover, a higher producing rate and final yield of methane was obtained for rice straw compared with rice husks, suggesting positive links between methane production and a high amount of fatty acids. CONCLUSIONS Our results suggest that heterologous WRI1 expression in transgenic plants can be used to improve the metabolic potential for bioenergy purposes, in particular methane production.
Collapse
Affiliation(s)
- Yunkai Jin
- Department of Plant Biology, The Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P. O. Box 7080, 75007, Uppsala, Sweden
| | - Jia Hu
- Department of Plant Biology, The Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P. O. Box 7080, 75007, Uppsala, Sweden
| | - Jun Su
- Department of Plant Biology, The Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P. O. Box 7080, 75007, Uppsala, Sweden
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Selcuk Aslan
- Department of Plant Biology, The Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P. O. Box 7080, 75007, Uppsala, Sweden
| | - Yan Lin
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Lu Jin
- Department of Plant Biology, The Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P. O. Box 7080, 75007, Uppsala, Sweden
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Simon Isaksson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P. O. Box 7015, 750 07, Uppsala, Sweden
| | - Chunlin Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Feng Wang
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Anna Schnürer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P. O. Box 7015, 750 07, Uppsala, Sweden
| | - Folke Sitbon
- Department of Plant Biology, The Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P. O. Box 7080, 75007, Uppsala, Sweden.
| | - Per Hofvander
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, 23422, Lomma, Sweden
| | - Chuanxin Sun
- Department of Plant Biology, The Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P. O. Box 7080, 75007, Uppsala, Sweden.
| |
Collapse
|
17
|
Kim S, Lee KR, Suh MC. Ectopic Expression of Perilla frutescens WRI1 Enhanced Storage Oil Accumulation in Nicotiana benthamiana Leaves. PLANTS (BASEL, SWITZERLAND) 2023; 12:1081. [PMID: 36903941 PMCID: PMC10005204 DOI: 10.3390/plants12051081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Vegetable oils are indispensable in human and animal diets and have been widely used for the production of detergents, lubricants, cosmetics, and biofuels. The seeds of an allotetraploid Perilla frutescens contain approximately 35 to 40% oils with high levels of polyunsaturated fatty acids (PUFAs). WRINKELD1 (WRI1) encoding an AP2/ERF-type transcription factor is known to upregulate the expression of genes involved in glycolysis and fatty acid biosynthesis and TAG assembly. In this study, two WRI1 isoforms, PfWRI1A, and PfWRI1B were isolated from Perilla and predominantly expressed in developing Perilla seeds. The fluorescent signals from PfWRI1A:eYFP and PfWRI1B:eYFP driven by the CaMV 35S promoter were detected in the nucleus of the Nicotiana benthamiana leaf epidermis. Ectopic expression of each of PfWRI1A and PfWRI1B increased the levels of TAG by approximately 2.9- and 2.7-fold in N. benthamiana leaves and particularly, the enhanced levels (mol%) of C18:2, and C18:3 in the TAGs were prominent with the concomitant reduction in the amounts of saturated fatty acids. The expression levels of NbPl-PKβ1, NbKAS1, and NbFATA, which were known to be target genes of WRI1, significantly increased in tobacco leaves overexpressing PfWRI1A or PfWRI1B. Therefore, newly characterized PfWRI1A and PfWRI1B can be potentially useful for the enhanced accumulation of storage oils with increased PUFAs in oilseed crops.
Collapse
Affiliation(s)
- Semi Kim
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
| | - Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju 54875, Republic of Korea
| | - Mi Chung Suh
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
18
|
Liang M, Zhang X, Dong Q, Li H, Guo S, Luan H, Jia P, Yang M, Qi G. Metabolomics and Transcriptomics Provide Insights into Lipid Biosynthesis in the Embryos of Walnut ( Juglans regia L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:538. [PMID: 36771622 PMCID: PMC9921657 DOI: 10.3390/plants12030538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Walnut (Juglans regia L.) is an important woody oilseed tree species due to its commercial value. However, the regulation mechanism of walnut oil accumulation is still poorly understood, which restricted the breeding and genetic improvement of high-quality oil-bearing walnuts. In order to explore the metabolic mechanism that regulates the synthesis of walnut oil, we used transcriptome sequencing technology and metabolome technology to comprehensively analyze the key genes and metabolites involved in oil synthesis of the walnut embryo at 60, 90, and 120 days after pollination (DAP). The results showed that the oil and protein contents increased gradually during fruit development, comprising 69.61% and 18.32% of the fruit, respectively, during ripening. Conversely, the contents of soluble sugar and starch decreased gradually during fruit development, comprising 2.14% and 0.84%, respectively, during ripening. Transcriptome sequencing generated 40,631 unigenes across 9 cDNA libraries. We identified 51 and 25 candidate unigenes related to the biosynthesis of fatty acid and the biosynthesis of triacylglycerol (TAG), respectively. The expression levels of the genes encoding Acetyl-CoA carboxylase (ACCase), long-chain acyl-CoA synthetases (LACS), 3-oxoacyl-ACP synthase II (KASII), and glycerol-3-phosphate acyl transfer (GPAT) were upregulated at 60 DAP relative to the levels at 90 and 120 DAP, while the stearoyl-ACP-desaturase (SAD) and fatty acid desaturase 2 (FAD2) genes were highly abundantly expressed during all walnut developmental periods. We found that ABSCISIC ACID INSENSEITIVE3 (ABI3), WRINKLEDl (WRI1), LEAFY COTYLEDON1 (LEC1), and FUSCA3 (FUS3) may be key transcription factors involved in lipid synthesis. Additionally, the metabolomics analysis detected 706 metabolites derived from 18 samples, among which, 4 are implicated in the TAG synthesis, 2 in the glycolysis pathway, and 5 in the tricarboxylic acid cycle (TCA cycle) pathway. The combined analysis of the related genes and metabolites in TAG synthesis showed that phospholipid:diacylglycerol acyltransferase (PDAT) genes were highly abundantly expressed across walnut fruit developmental periods, and their downstream metabolite TAG gradually accumulated with the progression of fruit development. The FAD2 gene showed consistently higher expression during fruit development, and its downstream metabolites 18:2-PC and 18:3-PC gradually accumulated. The ACCase, LACS, SAD, FAD2, and PDAT genes may be crucial genes required for walnut oil synthesis. Our data will enrich public databases and provide new insights into functional genes related to lipid metabolism in walnut.
Collapse
Affiliation(s)
- Manman Liang
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Xuemei Zhang
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
- Technology Innovation Center of Hebei Province, Xingtai 054000, China
- Institute of Walnut Industry Technology of Hebei Province (Xingtai), Lincheng 054300, China
| | - Qinglong Dong
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
- Technology Innovation Center of Hebei Province, Xingtai 054000, China
- Institute of Walnut Industry Technology of Hebei Province (Xingtai), Lincheng 054300, China
| | - Han Li
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
- Technology Innovation Center of Hebei Province, Xingtai 054000, China
- Institute of Walnut Industry Technology of Hebei Province (Xingtai), Lincheng 054300, China
| | - Suping Guo
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
- Technology Innovation Center of Hebei Province, Xingtai 054000, China
- Institute of Walnut Industry Technology of Hebei Province (Xingtai), Lincheng 054300, China
| | - Haoan Luan
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
- Technology Innovation Center of Hebei Province, Xingtai 054000, China
- Institute of Walnut Industry Technology of Hebei Province (Xingtai), Lincheng 054300, China
| | - Peng Jia
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
- Technology Innovation Center of Hebei Province, Xingtai 054000, China
- Institute of Walnut Industry Technology of Hebei Province (Xingtai), Lincheng 054300, China
| | - Minsheng Yang
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Guohui Qi
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
- Technology Innovation Center of Hebei Province, Xingtai 054000, China
- Institute of Walnut Industry Technology of Hebei Province (Xingtai), Lincheng 054300, China
| |
Collapse
|
19
|
Tang S, Guo N, Tang Q, Peng F, Liu Y, Xia H, Lu S, Guo L. Pyruvate transporter BnaBASS2 impacts seed oil accumulation in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2406-2417. [PMID: 36056567 PMCID: PMC9674310 DOI: 10.1111/pbi.13922] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 05/11/2023]
Abstract
Bile acid: sodium symporter family protein 2 (BASS2) is a sodium-dependent pyruvate transporter, which transports pyruvate from cytosol into plastid in plants. In this study, we investigated the function of chloroplast envelope membrane-localized BnaBASS2 in seed metabolism and seed oil accumulation of Brassica napus (B. napus). Four BASS2 genes were identified in the genome of B. napus. BnaA05.BASS2 was overexpressed while BnaA05.BASS2 and BnaC04.BASS2-1 were mutated by CRISPR in B. napus. Metabolite analysis revealed that the manipulation of BnaBASS2 caused significant changes in glycolysis-, fatty acid synthesis-, and energy-related metabolites in the chloroplasts of 31 day-after-flowering (DAF) seeds. The analysis of fatty acids and lipids in developing seeds showed that BnaBASS2 could affect lipid metabolism and oil accumulation in developing seeds. Moreover, the overexpression (OE) of BnaA05.BASS2 could promote the expression level of multiple genes involved in the synthesis of oil and the formation of oil body during seed development. Disruption of BnaA05.BASS2 and BnaC04.BASS2-1 resulted in decreasing the seed oil content (SOC) by 2.8%-5.0%, while OE of BnaA05.BASS2 significantly promoted the SOC by 1.4%-3.4%. Together, our results suggest that BnaBASS2 is a potential target gene for breeding B. napus with high SOC.
Collapse
Affiliation(s)
- Shan Tang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Ning Guo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Qingqing Tang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Fei Peng
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Yunhao Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Hui Xia
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Liang Guo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
20
|
Zheng L, Otani M, Kanno Y, Seo M, Yoshitake Y, Yoshimoto K, Sugimoto K, Kawakami N. Seed dormancy 4 like1 of Arabidopsis is a key regulator of phase transition from embryo to vegetative development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:460-475. [PMID: 36036886 DOI: 10.1111/tpj.15959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Seed dormancy is an adaptive trait that enables plants to survive adverse conditions and restart growth in a season and location suitable for vegetative and reproductive growth. Control of seed dormancy is also important for crop production and food quality because it can help induce uniform germination and prevent preharvest sprouting. Rice preharvest sprouting quantitative trait locus analysis has identified Seed dormancy 4 (Sdr4) as a positive regulator of dormancy development. Here, we analyzed the loss-of-function mutant of the Arabidopsis ortholog, Sdr4 Like1 (SFL1), and found that the sfl1-1 seeds showed precocious germination at the mid- to late-maturation stage similar to rice sdr4 mutant, but converted to become more dormant than the wild type during maturation drying. Coordinated with the dormancy levels, expression levels of the seed maturation and dormancy master regulator genes, ABI3, FUS3, and DOG1 in sfl1-1 seeds were lower than in wild type at early- and mid-maturation stages, but higher at the late-maturation stage. In addition to the seed dormancy phenotype, sfl1-1 seedlings showed a growth arrest phenotype and heterochronic expression of LAFL (LEC1, ABI3, FUS3, LEC2) and DOG1 in the seedlings. These data suggest that SFL1 is a positive regulator of initiation and termination of the seed dormancy program. We also found genetic interaction between SFL1 and the SFL2, SFL3, and SFL4 paralogs of SFL1, which impacts on the timing of the phase transition from embryo maturation to seedling growth.
Collapse
Affiliation(s)
- Lipeng Zheng
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Masahiko Otani
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Yushi Yoshitake
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kohki Yoshimoto
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kazuhiko Sugimoto
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Naoto Kawakami
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| |
Collapse
|
21
|
Li W, Wang L, Qi Y, Xie Y, Zhao W, Dang Z, Zhang J. Overexpression of WRINKLED1 improves the weight and oil content in seeds of flax ( Linum usitatissimum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1003758. [PMID: 36247608 PMCID: PMC9562325 DOI: 10.3389/fpls.2022.1003758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Seeds of flax (Linum usitatissimum L.) are highly rich in both oil and linolenic acid (LIN). It is crucial for flax agricultural production to identify positive regulators of fatty acid biosynthesis. In this study, we find that WRINKLED1 transcription factors play important positive roles during flax seed oil accumulation. Two WRINKLED1 genes, LuWRI1a and LuWRI1b, were cloned from flax, and LuWRI1a was found be expressed predominantly in developing seeds during maturation. Overexpression of LuWRI1a increased seed size, weight, and oil content in Arabidopsis and increased seed storage oil content in transgenic flax without affecting seed production or seed oil quality. The rise in oil content in transgenic flax seeds was primarily attributable to the increase in seed weight, according to a correlational analysis. Furthermore, overexpression or interference of LuWRI1a upregulated the expression of genes in the fatty acid biosynthesis pathway and LAFL genes, and the expression level of WRI1 was highly significantly positively associated between L1L, LEC1, and BCCP2. Our findings give a theoretical scientific foundation for the future application of genetic engineering to enhance the oil content of plant seeds.
Collapse
|
22
|
Yang Y, Kong Q, Lim ARQ, Lu S, Zhao H, Guo L, Yuan L, Ma W. Transcriptional regulation of oil biosynthesis in seed plants: Current understanding, applications, and perspectives. PLANT COMMUNICATIONS 2022; 3:100328. [PMID: 35605194 PMCID: PMC9482985 DOI: 10.1016/j.xplc.2022.100328] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/28/2022] [Accepted: 04/14/2022] [Indexed: 05/11/2023]
Abstract
Plants produce and accumulate triacylglycerol (TAG) in their seeds as an energy reservoir to support the processes of seed germination and seedling development. Plant seed oils are vital not only for the human diet but also as renewable feedstocks for industrial use. TAG biosynthesis consists of two major steps: de novo fatty acid biosynthesis in the plastids and TAG assembly in the endoplasmic reticulum. The latest advances in unraveling transcriptional regulation have shed light on the molecular mechanisms of plant oil biosynthesis. We summarize recent progress in understanding the regulatory mechanisms of well-characterized and newly discovered transcription factors and other types of regulators that control plant fatty acid biosynthesis. The emerging picture shows that plant oil biosynthesis responds to developmental and environmental cues that stimulate a network of interacting transcriptional activators and repressors, which in turn fine-tune the spatiotemporal regulation of the pathway genes.
Collapse
Affiliation(s)
- Yuzhou Yang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Que Kong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Audrey R Q Lim
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| |
Collapse
|
23
|
Qiao Z, Kong Q, Tee WT, Lim ARQ, Teo MX, Olieric V, Low PM, Yang Y, Qian G, Ma W, Gao YG. Molecular basis of the key regulator WRINKLED1 in plant oil biosynthesis. SCIENCE ADVANCES 2022; 8:eabq1211. [PMID: 36001661 PMCID: PMC9401623 DOI: 10.1126/sciadv.abq1211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/08/2022] [Indexed: 05/20/2023]
Abstract
Vegetable oils are not only major components of human diet but also vital for industrial applications. WRINKLED1 (WRI1) is a pivotal transcription factor governing plant oil biosynthesis, but the underlying DNA-binding mechanism remains incompletely understood. Here, we resolved the structure of Arabidopsis WRI1 (AtWRI1) with its cognate double-stranded DNA (dsDNA), revealing two antiparallel β sheets in the tandem AP2 domains that intercalate into the adjacent major grooves of dsDNA to determine the sequence recognition specificity. We showed that AtWRI1 represented a previously unidentified structural fold and DNA-binding mode. Mutations of the key residues interacting with DNA element affected its binding affinity and oil biosynthesis when these variants were transiently expressed in tobacco leaves. Seed oil content was enhanced in stable transgenic wri1-1 expressing an AtWRI1 variant (W74R). Together, our findings offer a structural basis explaining WRI1 recognition and binding of DNA and suggest an alternative strategy to increase oil yield in crops through WRI1 bioengineering.
Collapse
Affiliation(s)
- Zhu Qiao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Que Kong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Wan Ting Tee
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Audrey R. Q. Lim
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Miao Xuan Teo
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Pui Man Low
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yuzhou Yang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Guoliang Qian
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- Corresponding author. (Y.-G.G.); (W.M.)
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
- Corresponding author. (Y.-G.G.); (W.M.)
| |
Collapse
|
24
|
Kuczynski C, McCorkle S, Keereetaweep J, Shanklin J, Schwender J. An expanded role for the transcription factor WRINKLED1 in the biosynthesis of triacylglycerols during seed development. FRONTIERS IN PLANT SCIENCE 2022; 13:955589. [PMID: 35991420 PMCID: PMC9389262 DOI: 10.3389/fpls.2022.955589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/28/2022] [Indexed: 06/12/2023]
Abstract
The transcription factor WRINKLED1 (WRI1) is known as a master regulator of fatty acid synthesis in developing oilseeds of Arabidopsis thaliana and other species. WRI1 is known to directly stimulate the expression of many fatty acid biosynthetic enzymes and a few targets in the lower part of the glycolytic pathway. However, it remains unclear to what extent and how the conversion of sugars into fatty acid biosynthetic precursors is controlled by WRI1. To shortlist possible gene targets for future in-planta experimental validation, here we present a strategy that combines phylogenetic foot printing of cis-regulatory elements with additional layers of evidence. Upstream regions of protein-encoding genes in A. thaliana were searched for the previously described DNA-binding consensus for WRI1, the ASML1/WRI1 (AW)-box. For about 900 genes, AW-box sites were found to be conserved across orthologous upstream regions in 11 related species of the crucifer family. For 145 select potential target genes identified this way, affinity of upstream AW-box sequences to WRI1 was assayed by Microscale Thermophoresis. This allowed definition of a refined WRI1 DNA-binding consensus. We find that known WRI1 gene targets are predictable with good confidence when upstream AW-sites are phylogenetically conserved, specifically binding WRI1 in the in vitro assay, positioned in proximity to the transcriptional start site, and if the gene is co-expressed with WRI1 during seed development. When targets predicted in this way are mapped to central metabolism, a conserved regulatory blueprint emerges that infers concerted control of contiguous pathway sections in glycolysis and fatty acid biosynthesis by WRI1. Several of the newly predicted targets are in the upper glycolysis pathway and the pentose phosphate pathway. Of these, plastidic isoforms of fructokinase (FRK3) and of phosphoglucose isomerase (PGI1) are particularly corroborated by previously reported seed phenotypes of respective null mutations.
Collapse
|
25
|
Tang S, Peng F, Tang Q, Liu Y, Xia H, Yao X, Lu S, Guo L. BnaPPT1 is essential for chloroplast development and seed oil accumulation in Brassica napus. J Adv Res 2022; 42:29-40. [PMID: 35907629 PMCID: PMC9788935 DOI: 10.1016/j.jare.2022.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/05/2022] [Accepted: 07/23/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Phosphoenolpyruvate/phosphate translocator (PPT) transports phosphoenolpyruvate from the cytosol into the plastid for fatty acid (FA) and other metabolites biosynthesis. OBJECTIVES This study investigated PPTs' functions in plant growth and seed oil biosynthesis in oilseed crop Brassica napus. METHODS We created over-expression and mutant material of BnaPPT1. The plant development, oil content, lipids, metabolites and ultrastructure of seeds were compared to evaluate the gene function. RESULTS The plastid membrane localized BnaPPT1 was found to be required for normal growth of B. napus. The plants grew slower with yellowish leaves in BnaA08.PPT1 and BnaC08.PPT1 double mutant plants. The results of chloroplast ultrastructural observation and lipid analysis show that BnaPPT1 plays an essential role in membrane lipid synthesis and chloroplast development in leaves, thereby affecting photosynthesis. Moreover, the analysis of primary metabolites and lipids in developing seeds showed that BnaPPT1 could impact seed glycolytic metabolism and lipid level. Knockout of BnaA08.PPT1 and BnaC08.PPT1 resulted in decreasing of the seed oil content by 2.2 to 9.1%, while overexpression of BnaC08.PPT1 significantly promoted the seed oil content by 2.1 to 3.3%. CONCLUSION Our results suggest that BnaPPT1 is necessary for plant chloroplast development, and it plays an important role in maintaining plant growth and promoting seed oil accumulation in B. napus.
Collapse
Affiliation(s)
- Shan Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China,Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Fei Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China,Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qingqing Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China,Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yunhao Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China,Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hui Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China,Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China,Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China,Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China,Hubei Hongshan Laboratory, Wuhan 430070, China,Corresponding author at: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
26
|
Nam JW, Lee HG, Do H, Kim HU, Seo PJ. Transcriptional regulation of triacylglycerol accumulation in plants under environmental stress conditions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2905-2917. [PMID: 35560201 DOI: 10.1093/jxb/erab554] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/15/2021] [Indexed: 06/15/2023]
Abstract
Triacylglycerol (TAG), a major energy reserve in lipid form, accumulates mainly in seeds. Although TAG concentrations are usually low in vegetative tissues because of the repression of seed maturation programs, these programs are derepressed upon the exposure of vegetative tissues to environmental stresses. Metabolic reprogramming of TAG accumulation is driven primarily by transcriptional regulation. A substantial proportion of transcription factors regulating seed TAG biosynthesis also participates in stress-induced TAG accumulation in vegetative tissues. TAG accumulation leads to the formation of lipid droplets and plastoglobules, which play important roles in plant tolerance to environmental stresses. Toxic lipid intermediates generated from environmental-stress-induced lipid membrane degradation are captured by TAG-containing lipid droplets and plastoglobules. This review summarizes recent advances in the transcriptional control of metabolic reprogramming underlying stress-induced TAG accumulation, and provides biological insight into the plant adaptive strategy, linking TAG biosynthesis with plant survival.
Collapse
Affiliation(s)
- Jeong-Won Nam
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Hong Gil Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Hyungju Do
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
27
|
Wang Z, Wang Y, Shang P, Yang C, Yang M, Huang J, Ren B, Zuo Z, Zhang Q, Li W, Song B. Overexpression of Soybean GmWRI1a Stably Increases the Seed Oil Content in Soybean. Int J Mol Sci 2022; 23:5084. [PMID: 35563472 PMCID: PMC9102168 DOI: 10.3390/ijms23095084] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
WRINKLED1 (WRI1), an APETALA2/ethylene-responsive-element-binding protein (AP2/EREBP) subfamily transcription factor, plays a crucial role in the transcriptional regulation of plant fatty acid biosynthesis. In this study, GmWRI1a was overexpressed in the soybean cultivar 'Dongnong 50' using Agrobacterium-mediated transformation to generate three transgenic lines with high seed oil contents. PCR and Southern blotting analysis showed that the T-DNA was inserted into the genome at precise insertion sites and was stably inherited by the progeny. Expression analysis using qRT-PCR and Western blotting indicated that GmWRI1a and bar driven by the CaMV 35S promoter were significantly upregulated in the transgenic plants at different developmental stages. Transcriptome sequencing results showed there were obvious differences in gene expression between transgenic line and transgenic receptor during seed developmental stages. KEGG analysis found that the differentially expressed genes mainly annotated to metabolic pathways, such as carbohydrated metabolism and lipid metabolism. A 2-year single-location field trial revealed that three transgenic lines overexpressing GmWRI1a (GmWRI1a-OE) showed a stable increase in seed oil content of 4.97-10.35%. Importantly, no significant effect on protein content and yield was observed. Overexpression of GmWRI1a changed the fatty acid composition by increasing the linoleic acid (C18:2) content and decreasing the palmitic acid (C16:0) content in the seed. The three GmWRI1a-OE lines showed no significant changes in agronomic traits. The results demonstrated that the three GmWRI1a overexpression lines exhibited consistent increases in seed oil content compared with that of the wild type and did not significantly affect the seed yield and agronomic traits. The genetic engineering of GmWRI1a will be an effective strategy for the improvement of seed oil content and value in soybean.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Wenbin Li
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (Z.W.); (Y.W.); (P.S.); (C.Y.); (M.Y.); (J.H.); (B.R.); (Z.Z.); (Q.Z.)
| | - Bo Song
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (Z.W.); (Y.W.); (P.S.); (C.Y.); (M.Y.); (J.H.); (B.R.); (Z.Z.); (Q.Z.)
| |
Collapse
|
28
|
Kim I, Lee K, Park M, Kim HU. The seed-specific transcription factor DPBF2 modulates the fatty acid composition in seeds. PLANT DIRECT 2022; 6:e395. [PMID: 35388372 PMCID: PMC8977579 DOI: 10.1002/pld3.395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 06/01/2023]
Abstract
Triacylglycerol (TAG), an ester derived from glycerol and three fatty acids (FAs), is synthesized during seed development and controlled by transcriptional regulation. We examined the mechanism regulating the FA composition of developing Arabidopsis thaliana seeds. The seed-specific DC3 PROMOTER-BINDING FACTOR2 (DPBF2) transcription factor was upregulated by LEAFY COTYLEDON2 (LEC2). DPBF2 showed transcriptional activity in yeast and localized to the nucleus in Arabidopsis protoplast cells. The Arabidopsis dpbf2-1 homozygous T-DNA mutant and transgenic lines overexpressing of DPBF2 using a seed-specific phaseolin promoter in wild-type (WT) Arabidopsis and in dpbf2-1 showed similar FA composition profiles in their seeds. Their 18:2 and 20:1 FA contents were higher, but 18:1 and 18:3 contents were lower than that of WT. Transcript levels of FATTY ACID DESATURASE2 (FAD2), FAD3, LYSOPHOSPHATIDYLCHOLINE ACYLTRANSFERASE1 (LPCAT1), LPCAT2, PHOSPHATIDYLCHOLINE DIACYLGLYCEROL CHOLINEPHOSPHOTRANSFERASE (PDCT), and FATTY ACID ELONGASE 1 (FAE1) are increased in DPBF2-overexpressing seeds. Besides, PDCT and FAE1 were upregulated by DPBF2, LEC1-LIKE (L1L), and NUCLEAR FACTOR-YC2 (NF-YC2) transcriptional complex based on tobacco protoplast transcriptional activation assay. These results suggest that DPBF2 effectively modulates the expression of genes encoding FA desaturases, elongase, and acyl-editing enzymes for modifying the unsaturated FA composition in seeds.
Collapse
Affiliation(s)
- Inyoung Kim
- Department of Molecular BiologySejong UniversitySeoulRepublic of Korea
| | - Kyeong‐Ryeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural SciencesRural Development AdministrationJeonjuRepublic of Korea
| | - Mid‐Eum Park
- Department of Molecular BiologySejong UniversitySeoulRepublic of Korea
| | - Hyun Uk Kim
- Department of Molecular BiologySejong UniversitySeoulRepublic of Korea
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research InstituteSejong UniversitySeoulRepublic of Korea
| |
Collapse
|
29
|
Verma S, Attuluri VPS, Robert HS. Transcriptional control of Arabidopsis seed development. PLANTA 2022; 255:90. [PMID: 35318532 PMCID: PMC8940821 DOI: 10.1007/s00425-022-03870-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/04/2022] [Indexed: 05/04/2023]
Abstract
The entire process of embryo development is under the tight control of various transcription factors. Together with other proteins, they act in a combinatorial manner and control distinct events during embryo development. Seed development is a complex process that proceeds through sequences of events regulated by the interplay of various genes, prominent among them being the transcription factors (TFs). The members of WOX, HD-ZIP III, ARF, and CUC families have a preferential role in embryonic patterning. While WOX TFs are required for initiating body axis, HD-ZIP III TFs and CUCs establish bilateral symmetry and SAM. And ARF5 performs a major role during embryonic root, ground tissue, and vasculature development. TFs such as LEC1, ABI3, FUS3, and LEC2 (LAFL) are considered the master regulators of seed maturation. Furthermore, several new TFs involved in seed storage reserves and dormancy have been identified in the last few years. Their association with those master regulators has been established in the model plant Arabidopsis. Also, using chromatin immunoprecipitation (ChIP) assay coupled with transcriptomics, genome-wide target genes of these master regulators have recently been proposed. Many seed-specific genes, including those encoding oleosins and albumins, have appeared as the direct target of LAFL. Also, several other TFs act downstream of LAFL TFs and perform their function during maturation. In this review, the function of different TFs in different phases of early embryogenesis and maturation is discussed in detail, including information about their genetic and molecular interactors and target genes. Such knowledge can further be leveraged to understand and manipulate the regulatory mechanisms involved in seed development. In addition, the genomics approaches and their utilization to identify TFs aiming to study embryo development are discussed.
Collapse
Affiliation(s)
- Subodh Verma
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Venkata Pardha Saradhi Attuluri
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Hélène S. Robert
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
30
|
Lim ARQ, Kong Q, Singh SK, Guo L, Yuan L, Ma W. Sunflower WRINKLED1 Plays a Key Role in Transcriptional Regulation of Oil Biosynthesis. Int J Mol Sci 2022; 23:ijms23063054. [PMID: 35328473 PMCID: PMC8951541 DOI: 10.3390/ijms23063054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Sunflower (Helianthus annuus) is one of the most important oilseed crops worldwide. However, the transcriptional regulation underlying oil accumulation in sunflower is not fully understood. WRINKLED1 (WRI1) is an essential transcription factor governing oil accumulation in plant cells. Here, we identify and characterize a sunflower ortholog of WRI1 (HaWRI1), which is highly expressed in developing seeds. Transient production of HaWRI1 stimulated substantial oil accumulation in Nicotiana benthamiana leaves. Dual-luciferase reporter assay, electrophoretic mobility shift assay, fatty acid quantification, and gene expression analysis demonstrate that HaWRI1 acts as a pivotal transcription factor controlling the expression of genes involved in late glycolysis and fatty acid biosynthesis. HaWRI1 directly binds to the cis-element, AW-box, in the promoter of biotin carboxyl carrier protein isoform 2 (BCCP2). In addition, we characterize an 80 amino-acid C-terminal domain of HaWRI1 that is crucial for transactivation. Moreover, seed-specific overexpression of HaWRI1 in Arabidopsis plants leads to enhanced seed oil content as well as upregulation of the genes involved in fatty acid biosynthesis. Taken together, our work demonstrates that HaWRI1 plays a pivotal role in the transcriptional control of seed oil accumulation, providing a potential target for bioengineering sunflower oil yield improvement.
Collapse
Affiliation(s)
- Audrey R. Q. Lim
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (A.R.Q.L.); (Q.K.)
| | - Que Kong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (A.R.Q.L.); (Q.K.)
| | - Sanjay K. Singh
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA; (S.K.S.); (L.Y.)
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China;
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA; (S.K.S.); (L.Y.)
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (A.R.Q.L.); (Q.K.)
- Correspondence:
| |
Collapse
|
31
|
Wu M, Pei W, Wedegaertner T, Zhang J, Yu J. Genetics, Breeding and Genetic Engineering to Improve Cottonseed Oil and Protein: A Review. FRONTIERS IN PLANT SCIENCE 2022; 13:864850. [PMID: 35360295 PMCID: PMC8961181 DOI: 10.3389/fpls.2022.864850] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 05/17/2023]
Abstract
Upland cotton (Gossypium hirsutum) is the world's leading fiber crop and one of the most important oilseed crops. Genetic improvement of cotton has primarily focused on fiber yield and quality. However, there is an increased interest and demand for enhanced cottonseed traits, including protein, oil, fatty acids, and amino acids for broad food, feed and biofuel applications. As a byproduct of cotton production, cottonseed is an important source of edible oil in many countries and could also be a vital source of protein for human consumption. The focus of cotton breeding on high yield and better fiber quality has substantially reduced the natural genetic variation available for effective cottonseed quality improvement within Upland cotton. However, genetic variation in cottonseed oil and protein content exists within the genus of Gossypium and cultivated cotton. A plethora of genes and quantitative trait loci (QTLs) (associated with cottonseed oil, fatty acids, protein and amino acids) have been identified, providing important information for genetic improvement of cottonseed quality. Genetic engineering in cotton through RNA interference and insertions of additional genes of other genetic sources, in addition to the more recent development of genome editing technology has achieved considerable progress in altering the relative levels of protein, oil, fatty acid profile, and amino acids composition in cottonseed for enhanced nutritional value and expanded industrial applications. The objective of this review is to summarize and discuss the cottonseed oil biosynthetic pathway and major genes involved, genetic basis of cottonseed oil and protein content, genetic engineering, genome editing through CRISPR/Cas9, and QTLs associated with quantity and quality enhancement of cottonseed oil and protein.
Collapse
Affiliation(s)
- Man Wu
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute, Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute, Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | | | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute, Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
32
|
Kong Q, Low PM, Lim ARQ, Yang Y, Yuan L, Ma W. Functional Antagonism of WRI1 and TCP20 Modulates GH3.3 Expression to Maintain Auxin Homeostasis in Roots. PLANTS 2022; 11:plants11030454. [PMID: 35161435 PMCID: PMC8840716 DOI: 10.3390/plants11030454] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022]
Abstract
Auxin is a well-studied phytohormone, vital for diverse plant developmental processes. The GH3 genes are one of the major auxin responsive genes, whose expression changes lead to modulation of plant development and auxin homeostasis. However, the transcriptional regulation of these GH3 genes remains largely unknown. WRI1 is an essential transcriptional regulator governing plant fatty acid biosynthesis. Recently, we identified that the expression of GH3.3 is increased in the roots of wri1-1 mutant. Nevertheless, in this study we found that AtWRI1 did not activate or repress the promoter of GH3.3 (proGH3.3) despite of its binding to proGH3.3. Cross-family transcription factor interactions play pivotal roles in plant gene regulatory networks. To explore the molecular mechanism by which WRI1 controls GH3.3 expression, we screened an Arabidopsis transcription factor library and identified TCP20 as a novel AtWRI1-interacting regulator. The interaction between AtWRI1 and TCP20 was further verified by several approaches. Importantly, we found that TCP20 directly regulates GH3.3 expression via binding to TCP binding element. Furthermore, AtWRI1 repressed the TCP20-mediated transactivation of proGH3.3. EMSAs demonstrated that AtWRI1 antagonized TCP20 from binding to proGH3.3. Collectively, we provide new insights that WRI1 attenuates GH3.3 expression through interaction with TCP20, highlighting a new mechanism that contributes to fine-tuning auxin homeostasis.
Collapse
Affiliation(s)
- Que Kong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (Q.K.); (P.M.L.); (A.R.Q.L.); (Y.Y.)
| | - Pui Man Low
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (Q.K.); (P.M.L.); (A.R.Q.L.); (Y.Y.)
| | - Audrey R. Q. Lim
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (Q.K.); (P.M.L.); (A.R.Q.L.); (Y.Y.)
| | - Yuzhou Yang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (Q.K.); (P.M.L.); (A.R.Q.L.); (Y.Y.)
| | - Ling Yuan
- Kentucky Tobacco Research and Development Center, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA;
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (Q.K.); (P.M.L.); (A.R.Q.L.); (Y.Y.)
- Correspondence:
| |
Collapse
|
33
|
Di Q, Piersanti A, Zhang Q, Miceli C, Li H, Liu X. Genome-Wide Association Study Identifies Candidate Genes Related to the Linoleic Acid Content in Soybean Seeds. Int J Mol Sci 2021; 23:454. [PMID: 35008885 PMCID: PMC8745128 DOI: 10.3390/ijms23010454] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/02/2023] Open
Abstract
Soybean (Glycine max (L.) Merrill) oil is a complex mixture of five fatty acids (palmitic, stearic, oleic, linoleic, and linolenic). The high content of linoleic acid (LA) contributes to the oil having poor oxidative stability. Therefore, soybean seed with a lower LA content is desirable. To investigate the genetic architecture of LA, we performed a genome-wide association study (GWAS) using 510 soybean cultivars collected from China. The phenotypic identification results showed that the content of LA varied from 36.22% to 72.18%. The GWAS analysis showed that there were 37 genes related to oleic acid content, with a contribution rate of 7%. The candidate gene Glyma.04G116500.1 (GmWRI14) on chromosome 4 was detected in three consecutive years. The GmWRI14 showed a negative correlation with the LA content and the correlation coefficient was -0.912. To test whether GmWRI14 can lead to a lower LA content in soybean, we introduced GmWRI14 into the soybean genome. Matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI-TOF IMS) showed that the overexpression of GmWRI14 leads to a lower LA content in soybean seeds. Meanwhile, RNA-seq verified that GmWRI14-overexpressed soybean lines showed a lower accumulation of GmFAD2-1A and GmFAD2-1B than control lines. Our results indicate that the down-regulation of the FAD2 gene triggered by the transcription factor GmWRI14 is the underlying mechanism reducing the LA level of seed. Our results provide novel insights into the genetic architecture of LA and pinpoint potential candidate genes for further in-depth studies.
Collapse
Affiliation(s)
- Qin Di
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (A.P.); (C.M.)
| | - Angela Piersanti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (A.P.); (C.M.)
| | - Qi Zhang
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Cristina Miceli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (A.P.); (C.M.)
| | - Hui Li
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
| | - Xiaoyi Liu
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (A.P.); (C.M.)
| |
Collapse
|
34
|
Singer SD, Jayawardhane KN, Jiao C, Weselake RJ, Chen G. The effect of AINTEGUMENTA-LIKE 7 over-expression on seed fatty acid biosynthesis, storage oil accumulation and the transcriptome in Arabidopsis thaliana. PLANT CELL REPORTS 2021; 40:1647-1663. [PMID: 34215912 DOI: 10.1007/s00299-021-02715-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
AIL7 over-expression modulates fatty acid biosynthesis and triacylglycerol accumulation in Arabidopsis developing seeds through the transcriptional regulation of associated genes. Seed fatty acids (FAs) and triacylglycerol (TAG) contribute to many functions in plants, and seed lipids have broad food, feed and industrial applications. As a result, an enormous amount of attention has been dedicated towards uncovering the regulatory cascade responsible for the fine-tuning of the lipid biosynthetic pathway in seeds, which is regulated in part through the action of LEAFY COTYLEDON1, ABSCISSIC ACID INSENSITIVE 3, FUSCA3 and LEC2 (LAFL) transcription factors. Although AINTEGUMENTA-LIKE 7 (AIL7) is involved in meristematic function and shoot phyllotaxy, its effect in the context of lipid biosynthesis has yet to be assessed. Here, we generated AIL7 seed-specific over-expression lines and found that they exhibited significant alterations in FA composition and decreased total lipid accumulation in seeds. Seeds and seedlings from transgenic lines also exhibited morphological deviations compared to wild type. Correspondingly, RNA-Seq analysis demonstrated that the expression of many genes related to FA biosynthesis and TAG breakdown were significantly altered in developing siliques from transgenic lines compared to wild-type plants. The seed-specific over-expression of AIL7 also altered the expression profiles of many genes related to starch metabolism, photosynthesis and stress response, suggesting further roles for AIL7 in plants. These findings not only advance our understanding of the lipid biosynthetic pathway in seeds, but also provide evidence for additional functions of AIL7, which could prove valuable in downstream breeding and/or metabolic engineering endeavors.
Collapse
Affiliation(s)
- Stacy D Singer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada.
| | - Kethmi N Jayawardhane
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Chen Jiao
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
35
|
Behera JR, Rahman MM, Bhatia S, Shockey J, Kilaru A. Functional and Predictive Structural Characterization of WRINKLED2, A Unique Oil Biosynthesis Regulator in Avocado. FRONTIERS IN PLANT SCIENCE 2021; 12:648494. [PMID: 34168663 PMCID: PMC8218904 DOI: 10.3389/fpls.2021.648494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/03/2021] [Indexed: 06/01/2023]
Abstract
WRINKLED1 (WRI1), a member of the APETALA2 (AP2) class of transcription factors regulates fatty acid biosynthesis and triacylglycerol (TAG) accumulation in plants. Among the four known Arabidopsis WRI1 paralogs, only WRI2 was unable to complement and restore fatty acid content in wri1-1 mutant seeds. Avocado (Persea americana) mesocarp, which accumulates 60-70% dry weight oil content, showed high expression levels for orthologs of WRI2, along with WRI1 and WRI3, during fruit development. While the role of WRI1 as a master regulator of oil biosynthesis is well-established, the function of WRI1 paralogs is poorly understood. Comprehensive and comparative in silico analyses of WRI1 paralogs from avocado (a basal angiosperm) with higher angiosperms Arabidopsis (dicot), maize (monocot) revealed distinct features. Predictive structural analyses of the WRI orthologs from these three species revealed the presence of AP2 domains and other highly conserved features, such as intrinsically disordered regions associated with predicted PEST motifs and phosphorylation sites. Additionally, avocado WRI proteins also contained distinct features that were absent in the nonfunctional Arabidopsis ortholog AtWRI2. Through transient expression assays, we demonstrated that both avocado WRI1 and WRI2 are functional and drive TAG accumulation in Nicotiana benthamiana leaves. We predict that the unique features and activities of ancestral PaWRI2 were likely lost in orthologous genes such as AtWRI2 during evolution and speciation, leading to at least partial loss of function in some higher eudicots. This study provides us with new targets to enhance oil biosynthesis in plants.
Collapse
Affiliation(s)
- Jyoti R. Behera
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| | - Md. Mahbubur Rahman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Shina Bhatia
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| | - Jay Shockey
- United States Department of Agriculture, Agricultural Research Service, New Orleans, LA, United States
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
36
|
Genome-Wide Mapping of Histone H3 Lysine 4 Trimethylation (H3K4me3) and Its Involvement in Fatty Acid Biosynthesis in Sunflower Developing Seeds. PLANTS 2021; 10:plants10040706. [PMID: 33917507 PMCID: PMC8067477 DOI: 10.3390/plants10040706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 01/23/2023]
Abstract
Histone modifications are of paramount importance during plant development. Investigating chromatin remodeling in developing oilseeds sheds light on the molecular mechanisms controlling fatty acid metabolism and facilitates the identification of new functional regions in oil crop genomes. The present study characterizes the epigenetic modifications H3K4me3 in relationship with the expression of fatty acid-related genes and transcription factors in developing sunflower seeds. Two master transcriptional regulators identified in this analysis, VIV1 (homologous to Arabidopsis ABI3) and FUS3, cooperate in the regulation of WRINKLED 1, a transcriptional factor regulating glycolysis, and fatty acid synthesis in developing oilseeds.
Collapse
|
37
|
Salladini E, Jørgensen MLM, Theisen FF, Skriver K. Intrinsic Disorder in Plant Transcription Factor Systems: Functional Implications. Int J Mol Sci 2020; 21:E9755. [PMID: 33371315 PMCID: PMC7767404 DOI: 10.3390/ijms21249755] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 01/07/2023] Open
Abstract
Eukaryotic cells are complex biological systems that depend on highly connected molecular interaction networks with intrinsically disordered proteins as essential components. Through specific examples, we relate the conformational ensemble nature of intrinsic disorder (ID) in transcription factors to functions in plants. Transcription factors contain large regulatory ID-regions with numerous orphan sequence motifs, representing potential important interaction sites. ID-regions may affect DNA-binding through electrostatic interactions or allosterically as for the bZIP transcription factors, in which the DNA-binding domains also populate ensembles of dynamic transient structures. The flexibility of ID is well-suited for interaction networks requiring efficient molecular adjustments. For example, Radical Induced Cell Death1 depends on ID in transcription factors for its numerous, structurally heterogeneous interactions, and the JAZ:MYC:MED15 regulatory unit depends on protein dynamics, including binding-associated unfolding, for regulation of jasmonate-signaling. Flexibility makes ID-regions excellent targets of posttranslational modifications. For example, the extent of phosphorylation of the NAC transcription factor SOG1 regulates target gene expression and the DNA-damage response, and phosphorylation of the AP2/ERF transcription factor DREB2A acts as a switch enabling heat-regulated degradation. ID-related phase separation is emerging as being important to transcriptional regulation with condensates functioning in storage and inactivation of transcription factors. The applicative potential of ID-regions is apparent, as removal of an ID-region of the AP2/ERF transcription factor WRI1 affects its stability and consequently oil biosynthesis. The highlighted examples show that ID plays essential functional roles in plant biology and has a promising potential in engineering.
Collapse
Affiliation(s)
| | | | | | - Karen Skriver
- REPIN and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (E.S.); (M.L.M.J.); (F.F.T.)
| |
Collapse
|
38
|
Zhao X, Yang G, Liu X, Yu Z, Peng S. Integrated Analysis of Seed microRNA and mRNA Transcriptome Reveals Important Functional Genes and microRNA-Targets in the Process of Walnut ( Juglans regia) Seed Oil Accumulation. Int J Mol Sci 2020; 21:ijms21239093. [PMID: 33260456 PMCID: PMC7731449 DOI: 10.3390/ijms21239093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/17/2020] [Accepted: 11/27/2020] [Indexed: 11/30/2022] Open
Abstract
Walnut (Juglans regia) is known as a promising woody oil crop with abundant polyunsaturated fatty acids in its kernel. However, the regulation mechanism of walnut oil accumulation and fatty acid metabolism is still poorly understood, which restricted the breeding and genetic improvement of high-quality oil-bearing walnuts. To reveal the molecular mechanism of walnut oil accumulation, considering the potential regulation of microRNA (miRNA) in seed development, in this study, the oil content of walnut kernel on the 80th, 100th and 120th day after flowering (DAF) was tested and the corresponding proportions are 11.51%, 40.40% and 53.20%. Between DAF of 80th~120th, the content of stearic acid and oleic acid tended to increase, but the proportion of other fatty acids tended to decrease. Meanwhile, comparative transcriptome and sRNA-seq analysis on three stages (80th, 100th and 120th DAF), found 204 conserved miRNAs and 554 novel miRNAs in walnut kernels, among which 104 key genes related to walnut oil accumulation were screened. The phospholipid:diacylglycerol acyltransferase metabolic pathway may contribute more to oil accumulation in walnut. 16 miRNA-mRNA regulatory modules related to walnut oil accumulation and fatty acid synthesis were constructed. 8 known miRNAs and 9 novel miRNAs regulate 28 genes involved in fatty acid (FA) metabolism and lipid synthesis. Among them, jre-miRn105, jre-miRn434, jre-miR477d and jre-miR156a.2 are key miRNAs that regulate walnut FA synthesis. Jre-miRn411 and jre-miR399a.1 are closely related to oil accumulation. These data provide new insights and lay the foundation for subsequent studies on walnut FA synthesis and oil accumulation.
Collapse
Affiliation(s)
- Xinchi Zhao
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling 712100, Shaanxi, China; (X.Z.); (G.Y.); (Z.Y.)
| | - Guiyan Yang
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling 712100, Shaanxi, China; (X.Z.); (G.Y.); (Z.Y.)
| | - Xiaoqiang Liu
- Department of Foreign Languages, Northwest A & F University, Yangling 712100, Shaanxi, China;
| | - Zhongdong Yu
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling 712100, Shaanxi, China; (X.Z.); (G.Y.); (Z.Y.)
| | - Shaobing Peng
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling 712100, Shaanxi, China; (X.Z.); (G.Y.); (Z.Y.)
- Correspondence: ; Tel.: +86-135-7293-1369
| |
Collapse
|
39
|
Kong Q, Yang Y, Low PM, Guo L, Yuan L, Ma W. The function of the WRI1-TCP4 regulatory module in lipid biosynthesis. PLANT SIGNALING & BEHAVIOR 2020; 15:1812878. [PMID: 32880205 PMCID: PMC7588184 DOI: 10.1080/15592324.2020.1812878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 05/20/2023]
Abstract
The plant-specific TCP transcription factors play pivotal roles in various processes of plant growth and development. However, little is known regarding the functions of TCPs in plant oil biosynthesis. Our recent work showed that TCP4 mediates oil production via interaction with WRINKLED1 (WRI1), an essential transcription factor governing plant fatty acid biosynthesis. Arabidopsis WRI1 (AtWRI1) physically interacts with multiple TCPs, including TCP4, TCP10, and TCP24. Transient co-expression of AtWRI1 with TCP4, but not TCP10 or TCP24, represses oil accumulation in Nicotiana benthamiana leaves. Increased TCP4 in transgenic plants overexpressing a miR319-resistant TCP4 (rTCP4) decreased the expression of AtWRI1 target genes. The tcp4 knockout mutant, the jaw-D mutant with significant reduction of TCP4 expression, and a tcp2 tcp4 tcp10 triple mutant, display increased seed oil contents compared to the wild-type Arabidopsis. The APETALA2 (AP2) transcription factor WRI1 is characterized by regulating fatty acid biosynthesis through cross-family interactions with multiple transcriptional, post-transcriptional, and post-translational regulators. The interacting regulator modules control the range of AtWRI1 transcriptional activity, allowing spatiotemporal modulation of lipid production. Interaction of TCP4 with AtWRI1, which results in a reduction of AtWRI1 activity, represents a newly discovered mechanism that enables the fine-tuning of plant oil biosynthesis.
Collapse
Affiliation(s)
- Que Kong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yuzhou Yang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Pui Man Low
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- CONTACT Wei Ma School of Biological Sciences, Nanyang Technological University, Singapore637551, Singapore
| |
Collapse
|
40
|
Nissim Y, Shlosberg M, Biton I, Many Y, Doron-Faigenboim A, Hovav R, Kerem Z, Avidan B, Ben-Ari G. A High Temperature Environment Regulates the Olive Oil Biosynthesis Network. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9091135. [PMID: 32882997 PMCID: PMC7569966 DOI: 10.3390/plants9091135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Climate change has been shown to have a substantial impact on agriculture and high temperatures and heat stress are known to have many negative effects on the vegetative and reproductive phases of plants. In a previous study, we addressed the effects of high temperature environments on olive oil yield and quality, by comparing the fruit development and oil accumulation and quality of five olive cultivars placed in high temperature and moderate temperature environments. The aim of the current study was to explore the molecular mechanism resulting in the negative effect of a high temperature environment on oil quantity and quality. We analyzed the transcriptome of two extreme cultivars, 'Barnea', which is tolerant to high temperatures in regard to quantity of oil production, but sensitive regarding its quality, and 'Souri', which is heat sensitive regarding quantity of oil produced, but relatively tolerant regarding its quality. Transcriptome analyses have been carried out at three different time points during fruit development, focusing on the genes involved in the oil biosynthesis pathway. We found that heat-shock protein expression was induced by the high temperature environment, but the degree of induction was cultivar dependent. The 'Barnea' cultivar, whose oil production showed greater tolerance to high temperatures, exhibited a larger degree of induction than the heat sensitive 'Souri'. On the other hand, many genes involved in olive oil biosynthesis were found to be repressed as a response to high temperatures. OePDCT as well as OeFAD2 genes showed cultivar dependent expression patterns according to their heat tolerance characteristics. The transcription factors OeDof4.3, OeWRI1.1, OeDof4.4 and OeWRI1.2 were identified as key factors in regulating the oil biosynthesis pathway in response to heat stress, based on their co-expression characteristics with other genes involved in this pathway. Our results may contribute to identifying or developing a more heat tolerant cultivar, which will be able to produce high yield and quality oil in a future characterized by global warming.
Collapse
Affiliation(s)
- Yael Nissim
- Institute of Plant Sciences, ARO, The Volcani Center, Rishon LeZion 7528809, Israel; (Y.N.); (M.S.); (I.B.); (Y.M.); (A.D.-F.); (R.H.); (B.A.)
| | - Maya Shlosberg
- Institute of Plant Sciences, ARO, The Volcani Center, Rishon LeZion 7528809, Israel; (Y.N.); (M.S.); (I.B.); (Y.M.); (A.D.-F.); (R.H.); (B.A.)
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel;
| | - Iris Biton
- Institute of Plant Sciences, ARO, The Volcani Center, Rishon LeZion 7528809, Israel; (Y.N.); (M.S.); (I.B.); (Y.M.); (A.D.-F.); (R.H.); (B.A.)
| | - Yair Many
- Institute of Plant Sciences, ARO, The Volcani Center, Rishon LeZion 7528809, Israel; (Y.N.); (M.S.); (I.B.); (Y.M.); (A.D.-F.); (R.H.); (B.A.)
| | - Adi Doron-Faigenboim
- Institute of Plant Sciences, ARO, The Volcani Center, Rishon LeZion 7528809, Israel; (Y.N.); (M.S.); (I.B.); (Y.M.); (A.D.-F.); (R.H.); (B.A.)
| | - Ran Hovav
- Institute of Plant Sciences, ARO, The Volcani Center, Rishon LeZion 7528809, Israel; (Y.N.); (M.S.); (I.B.); (Y.M.); (A.D.-F.); (R.H.); (B.A.)
| | - Zohar Kerem
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel;
| | - Benjamin Avidan
- Institute of Plant Sciences, ARO, The Volcani Center, Rishon LeZion 7528809, Israel; (Y.N.); (M.S.); (I.B.); (Y.M.); (A.D.-F.); (R.H.); (B.A.)
| | - Giora Ben-Ari
- Institute of Plant Sciences, ARO, The Volcani Center, Rishon LeZion 7528809, Israel; (Y.N.); (M.S.); (I.B.); (Y.M.); (A.D.-F.); (R.H.); (B.A.)
| |
Collapse
|
41
|
Abstract
In plants, lipids function in a variety of ways. Lipids are a major component of biological membranes and are used as a compact energy source for seed germination. Fatty acids, the major lipids in plants, are synthesized in plastid and assembled by glycerolipids or triacylglycerols in endoplasmic reticulum. The metabolism of fatty acids and triacylglycerols is well studied in most Arabidopsis model plants by forward and reverse genetics methods. However, research on the diverse functions of lipids in plants, including various crops, has yet to be completed. The papers of this Special Issue cover the core of the field of plant lipid research on the role of galactolipids in the chloroplast biogenesis from etioplasts and the role of acyltransferases and transcription factors involved in fatty acid and triacylglycerol synthesis. This information will contribute to the expansion of plant lipid research.
Collapse
|
42
|
Yarra R, Cao H, Jin L, Mengdi Y, Zhou L. CRISPR/Cas mediated base editing: a practical approach for genome editing in oil palm. 3 Biotech 2020; 10:306. [PMID: 32566443 DOI: 10.1007/s13205-020-02302-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/11/2020] [Indexed: 10/24/2022] Open
Abstract
The improvement of the yield and quality of oil palm via precise genome editing has been indispensable goal for oil palm breeders. Genome editing via the CRISPR/Cas9 (CRISPR-associated protein 9) system, ZFN (zinc finger nucleases) and TALEN (transcription activator-like effector nucleases) has flourished as an efficient technology for precise target modifications in the genomes of various crops. Among the genome editing technologies, base editing approach has emerged as novel technology that could generate single base changes i.e. irreversible conversion of one target base in to other in a programmable manner. A base editor (adenine or cytosine) is a fusion of catalytically inactive CRISPR-Cas9 domain (Cas9 variants) and cytosine or adenosine deaminase domain that introduces desired point mutations. However, till date no such genetic modifications have ever been developed in oil palm via base editing technology. Precise genome editing via base editing approach can be a challenging task in oil palm due to its complex genome as well as difficulties in tissue culture and genetic transformation methods. However, availability of whole genome sequencing data in oil palm provides a platform for developing the base editing technology. Here, we briefly review the potential application and future implications of base editing technology for the genetic improvement of oil palm.
Collapse
|
43
|
Kong Q, Yang Y, Guo L, Yuan L, Ma W. Molecular Basis of Plant Oil Biosynthesis: Insights Gained From Studying the WRINKLED1 Transcription Factor. FRONTIERS IN PLANT SCIENCE 2020; 11:24. [PMID: 32117370 PMCID: PMC7011094 DOI: 10.3389/fpls.2020.00024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/10/2020] [Indexed: 05/25/2023]
Abstract
Most plant species generate and store triacylglycerol (TAG) in their seeds, serving as a core supply of carbon and energy to support seedling development. Plant seed oils have a wide variety of applications, from being essential for human diets to serving as industrial renewable feedstock. WRINKLED1 (WRI1) transcription factor plays a central role in the transcriptional regulation of plant fatty acid biosynthesis. Since the discovery of Arabidopsis WRI1 gene (AtWRI1) in 2004, the function of WRI1 in plant oil biosynthesis has been studied intensively. In recent years, the identification of WRI1 co-regulators and deeper investigations of the structural features and molecular functions of WRI1 have advanced our understanding of the mechanism of the transcriptional regulation of plant oil biosynthesis. These advances also help pave the way for novel approaches that will better utilize WRI1 for bioengineering oil production in crops.
Collapse
Affiliation(s)
- Que Kong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yuzhou Yang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
44
|
The functional diversity of structural disorder in plant proteins. Arch Biochem Biophys 2019; 680:108229. [PMID: 31870661 DOI: 10.1016/j.abb.2019.108229] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022]
Abstract
Structural disorder in proteins is a widespread feature distributed in all domains of life, particularly abundant in eukaryotes, including plants. In these organisms, intrinsically disordered proteins (IDPs) perform a diversity of functions, participating as integrators of signaling networks, in transcriptional and post-transcriptional regulation, in metabolic control, in stress responses and in the formation of biomolecular condensates by liquid-liquid phase separation. Their roles impact the perception, propagation and control of various developmental and environmental cues, as well as the plant defense against abiotic and biotic adverse conditions. In this review, we focus on primary processes to exhibit a broad perspective of the relevance of IDPs in plant cell functions. The information here might help to incorporate this knowledge into a more dynamic view of plant cells, as well as open more questions and promote new ideas for a better understanding of plant life.
Collapse
|