1
|
Kosová K, Nešporová T, Vítámvás P, Vítámvás J, Klíma M, Ovesná J, Prášil IT. How to survive mild winters: Cold acclimation, deacclimation, and reacclimation in winter wheat and barley. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109541. [PMID: 39862458 DOI: 10.1016/j.plaphy.2025.109541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Cold acclimation and vernalization represent the major evolutionary adaptive responses to ensure winter survival of temperate plants. Due to climate change, mild winters can paradoxically worsen plant winter survival due to cold deacclimation induced by warm periods during winter. It seems that the ability of cold reacclimation in overwintering Triticeae cereals is limited, especially in vernalized plants. In the present review, the major factors determining cold acclimation (CA), deacclimation (DA) and reacclimation (RA) processes in winter-type Triticeae, namely wheat and barley, are discussed. Recent knowledge on cold sensing and signaling is briefly summarized. The impacts of chilling temperatures, photoperiod and light spectrum quality as the major environmental factors, and the roles of soluble proteins and sugars (carbohydrates) as well as cold stress memory molecular mechanisms as the major plant-based factors determining CA, DA, and RA processes are discussed. The roles of plant stress memory mechanisms and development processes, namely vernalization, in winter Triticeae reacclimation are elucidated. Recent findings about the role of O-glucose N-acetylation of target proteins during vernalization and their impacts on the expression of VRN1 gene and other target proteins resulting in cold-responsive modules reprogramming are presented.
Collapse
Affiliation(s)
- Klára Kosová
- Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic.
| | - Tereza Nešporová
- Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic; Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Pavel Vítámvás
- Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic
| | - Jan Vítámvás
- Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic; Faculty of Forestry and Wood Science, Czech University of Life Sciences, Prague, Czech Republic
| | - Miroslav Klíma
- Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic
| | - Jaroslava Ovesná
- Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic
| | - Ilja Tom Prášil
- Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic
| |
Collapse
|
2
|
Caccialupi G, Milc J, Caradonia F, Nasar MF, Francia E. The Triticeae CBF Gene Cluster-To Frost Resistance and Beyond. Cells 2023; 12:2606. [PMID: 37998341 PMCID: PMC10670769 DOI: 10.3390/cells12222606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The pivotal role of CBF/DREB1 transcriptional factors in Triticeae crops involved in the abiotic stress response has been highlighted. The CBFs represent an important hub in the ICE-CBF-COR pathway, which is one of the most relevant mechanisms capable of activating the adaptive response to cold and drought in wheat, barley, and rye. Understanding the intricate mechanisms and regulation of the cluster of CBF genes harbored by the homoeologous chromosome group 5 entails significant potential for the genetic improvement of small grain cereals. Triticeae crops seem to share common mechanisms characterized, however, by some peculiar aspects of the response to stress, highlighting a combined landscape of single-nucleotide variants and copy number variation involving CBF members of subgroup IV. Moreover, while chromosome 5 ploidy appears to confer species-specific levels of resistance, an important involvement of the ICE factor might explain the greater tolerance of rye. By unraveling the genetic basis of abiotic stress tolerance, researchers can develop resilient varieties better equipped to withstand extreme environmental conditions. Hence, advancing our knowledge of CBFs and their interactions represents a promising avenue for improving crop resilience and food security.
Collapse
Affiliation(s)
- Giovanni Caccialupi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; (J.M.); (F.C.); (M.F.N.); (E.F.)
| | | | | | | | | |
Collapse
|
3
|
Ai P, Xue J, Zhu Y, Tan W, Wu Y, Wang Y, Li Z, Shi Z, Kang D, Zhang H, Jiang L, Wang Z. Comparative analysis of two kinds of garlic seedings: qualities and transcriptional landscape. BMC Genomics 2023; 24:87. [PMID: 36829121 PMCID: PMC9951544 DOI: 10.1186/s12864-023-09183-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Facility cultivation is widely applied to meet the increasing demand for high yield and quality, with light intensity and light quality being major limiting factors. However, how changes in the light environment affect development and quality are unclear in garlic. When garlic seedlings are grown, they can also be exposed to blanching culture conditions of darkness or low-light intensity to ameliorate their appearance and modify their bioactive compounds and flavor. RESULTS In this study, we determined the quality and transcriptomes of 14-day-old garlic and blanched garlic seedlings (green seedlings and blanched seedlings) to explore the mechanisms by which seedlings integrate light signals. The findings revealed that blanched garlic seedlings were taller and heavier in fresh weight compared to green garlic seedlings. In addition, the contents of allicin, cellulose, and soluble sugars were higher in the green seedlings. We also identified 3,872 differentially expressed genes between green and blanched garlic seedlings. The Kyoto Encyclopedia of Genes and Genomes analysis suggested enrichment for plant-pathogen interactions, phytohormone signaling, mitogen-activated protein kinase signaling, and other metabolic processes. In functional annotations, pathways related to the growth and formation of the main compounds included phytohormone signaling, cell wall metabolism, allicin biosynthesis, secondary metabolism and MAPK signaling. Accordingly, we identified multiple types of transcription factor genes involved in plant-pathogen interactions, plant phytohormone signaling, and biosynthesis of secondary metabolites among the differentially expressed genes between green and blanched garlic seedlings. CONCLUSIONS Blanching culture is one facility cultivation mode that promotes chlorophyll degradation, thus changing the outward appearance of crops, and improves their flavor. The large number of DEGs identified confirmed the difference of the regulatory machinery under two culture system. This study increases our understanding of the regulatory network integrating light and darkness signals in garlic seedlings and provides a useful resource for the genetic manipulation and cultivation of blanched garlic seedlings.
Collapse
Affiliation(s)
- Penghui Ai
- grid.256922.80000 0000 9139 560XState Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004 Henan China
| | - Jundong Xue
- grid.256922.80000 0000 9139 560XState Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004 Henan China
| | - Yifei Zhu
- grid.256922.80000 0000 9139 560XState Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004 Henan China
| | - Wenchao Tan
- grid.256922.80000 0000 9139 560XState Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004 Henan China
| | - Yifei Wu
- grid.256922.80000 0000 9139 560XState Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004 Henan China
| | - Ying Wang
- grid.256922.80000 0000 9139 560XState Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004 Henan China
| | - Zhongai Li
- grid.256922.80000 0000 9139 560XState Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004 Henan China
| | - Zhongya Shi
- grid.256922.80000 0000 9139 560XState Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004 Henan China
| | - Dongru Kang
- grid.256922.80000 0000 9139 560XState Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004 Henan China
| | - Haoyi Zhang
- grid.256922.80000 0000 9139 560XState Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004 Henan China
| | - Liwen Jiang
- grid.256922.80000 0000 9139 560XState Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004 Henan China
| | - Zicheng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China.
| |
Collapse
|
4
|
Miao Y, Gao X, Li B, Wang W, Bai L. Low red to far-red light ratio promotes salt tolerance by improving leaf photosynthetic capacity in cucumber. FRONTIERS IN PLANT SCIENCE 2023; 13:1053780. [PMID: 36684769 PMCID: PMC9853560 DOI: 10.3389/fpls.2022.1053780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Soil salinity severely inhibits leaf photosynthesis and limits agricultural production. Red to far-red light ratio (R/FR) affects leaf photosynthesis under salt stress, however, its regulation mechanism is still largely unknown. This study investigated the effects of different R/FR on plant growth, gas exchange parameters, photosynthetic electron transport, Calvin cycle and key gene expression under salt stress. Cucumber seedlings were exposed to four treatments including 0 mM NaCl and R/FR=7 (L7, control), 0 mM NaCl and R/FR=0.7 (L0.7), 80 mM NaCl and R/FR=7 (H7) and 80 mM NaCl and R/FR=0.7 (H0.7) for 9 days in an artificial climate chamber. The results showed that compared to L7 treatment, H7 treatment significantly reduced relative growth rate (RGR), CO2 assimilation rate (P n), maximum photochemical efficiency PSII (F v/F m), most JIP-test parameters and total Rubisco activity, indicating that salt stress severely inhibited photosynthetic electron transport from PSII to PSI and blocked Calvin cycle in cucumber leaves. However, these suppressions were effectively alleviated by low R/FR addition (H0.7 treatment). Compared to H7 treatment, H0.7 treatment significantly increased RGR and P n by 209.09% and 7.59%, respectively, enhanced F v/F m, maximum quantum yield for primary photochemistry (φ Po), quantum yield for electron transport (φ Eo) and total Rubisco activity by 192.31%, 17.6%, 36.84% and 37.08%, respectively, and largely up-regulated expressions of most key genes involved in electron transport and Calvin cycle. In conclusion, low R/FR effectively alleviated the negative effects of salt stress on leaf photosynthesis by accelerating photosynthetic electron transport from PSII to PQ pool and promoting Calvin cycle in cucumber plants. It provides a novel environmentally friendly light-quality regulation technology for high efficiency salt-resistant vegetable production.
Collapse
Affiliation(s)
- Yanxiu Miao
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for Improving Quality and Increase profits of Protected Vegetables in Shanxi, Shanxi Agricultural University, Jinzhong, China
| | - Xingxing Gao
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Bin Li
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for Improving Quality and Increase profits of Protected Vegetables in Shanxi, Shanxi Agricultural University, Jinzhong, China
| | - Wenjiao Wang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for Improving Quality and Increase profits of Protected Vegetables in Shanxi, Shanxi Agricultural University, Jinzhong, China
| | - Longqiang Bai
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for Improving Quality and Increase profits of Protected Vegetables in Shanxi, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
5
|
Ahres M, Pálmai T, Kovács T, Kovács L, Lacek J, Vankova R, Galiba G, Borbély P. The Effect of White Light Spectrum Modifications by Excess of Blue Light on the Frost Tolerance, Lipid- and Hormone Composition of Barley in the Early Pre-Hardening Phase. PLANTS (BASEL, SWITZERLAND) 2022; 12:40. [PMID: 36616169 PMCID: PMC9823678 DOI: 10.3390/plants12010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
It is well established that cold acclimation processes are highly influenced, apart from cold ambient temperatures, by light-dependent environmental factors. In this study we investigated whether an extra blue (B) light supplementation would be able to further improve the well-documented freezing tolerance enhancing effect of far-red (FR) enriched white (W) light. The impact of B and FR light supplementation to white light (WFRB) on hormone levels and lipid contents were determined in winter barley at moderate (15 °C) and low (5 °C) temperatures. Low R:FR ratio effectively induced frost tolerance in barley plantlets, but additional B light further enhanced frost hardiness at both temperatures. Supplementation of WFR (white light enriched with FR light) with B had a strong positive effect on abscisic acid accumulation while the suppression of salicylic acid and jasmonic acid levels were observed at low temperature which resembles the shade avoidance syndrome. We also observed clear lipidomic differences between the individual light and temperature treatments. WFRB light changed the total lipid content negatively, but monogalactosyldiacylglycerol (MGDG) content was increased, nonetheless. Our results prove that WFRB light can greatly influence phytohormone dynamics and lipid contents, which eventually leads to more efficient pre-hardening to avoid frost damage.
Collapse
Affiliation(s)
- Mohamed Ahres
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary
| | - Tamás Pálmai
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary
| | - Terézia Kovács
- Biological Research Centre, Institute of Plant Biology, H-6701 Szeged, Hungary
| | - László Kovács
- Biological Research Centre, Institute of Plant Biology, H-6701 Szeged, Hungary
| | - Jozef Lacek
- Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Radomira Vankova
- Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague, Czech Republic
| | - Gábor Galiba
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary
- Department of Agronomy, GEORGIKON Campus, Hungarian University of Agricultural and Life Sciences, 8360 Keszthely, Hungary
| | - Péter Borbély
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary
| |
Collapse
|
6
|
Overview of Identified Genomic Regions Associated with Various Agronomic and Physiological Traits in Barley under Abiotic Stresses. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105189] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Climate change has caused breeders to focus on varieties that are able to grow under unfavorable conditions, such as drought, high and low temperatures, salinity, and other stressors. In recent decades, progress in biotechnology and its related tools has provided opportunities to dissect and decipher the genetic basis of tolerance to various stress conditions. One such approach is the identification of genomic regions that are linked with specific or multiple characteristics. Cereal crops have a key role in supplying the energy required for human and animal populations. However, crop products are dramatically affected by various environmental stresses. Barley (Hordeum vulgare L.) is one of the oldest domesticated crops that is cultivated globally. Research has shown that, compared with other cereals, barley is well adapted to various harsh environmental conditions. There is ample literature regarding these responses to abiotic stressors, as well as the genomic regions associated with the various morpho-physiological and biochemical traits of stress tolerance. This review focuses on (i) identifying the tolerance mechanisms that are important for stable growth and development, and (ii) the applicability of QTL mapping and association analysis in identifying genomic regions linked with stress-tolerance traits, in order to help breeders in marker-assisted selection (MAS) to quickly screen tolerant germplasms in their breeding cycles. Overall, the information presented here will inform and assist future barley breeding programs.
Collapse
|
7
|
Kameniarová M, Černý M, Novák J, Ondrisková V, Hrušková L, Berka M, Vankova R, Brzobohatý B. Light Quality Modulates Plant Cold Response and Freezing Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:887103. [PMID: 35755673 PMCID: PMC9221075 DOI: 10.3389/fpls.2022.887103] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/02/2022] [Indexed: 05/04/2023]
Abstract
The cold acclimation process is regulated by many factors like ambient temperature, day length, light intensity, or hormonal status. Experiments with plants grown under different light quality conditions indicate that the plant response to cold is also a light-quality-dependent process. Here, the role of light quality in the cold response was studied in 1-month-old Arabidopsis thaliana (Col-0) plants exposed for 1 week to 4°C at short-day conditions under white (100 and 20 μmol m-2s-1), blue, or red (20 μmol m-2s-1) light conditions. An upregulated expression of CBF1, inhibition of photosynthesis, and an increase in membrane damage showed that blue light enhanced the effect of low temperature. Interestingly, cold-treated plants under blue and red light showed only limited freezing tolerance compared to white light cold-treated plants. Next, the specificity of the light quality signal in cold response was evaluated in Arabidopsis accessions originating from different and contrasting latitudes. In all but one Arabidopsis accession, blue light increased the effect of cold on photosynthetic parameters and electrolyte leakage. This effect was not found for Ws-0, which lacks functional CRY2 protein, indicating its role in the cold response. Proteomics data confirmed significant differences between red and blue light-treated plants at low temperatures and showed that the cold response is highly accession-specific. In general, blue light increased mainly the cold-stress-related proteins and red light-induced higher expression of chloroplast-related proteins, which correlated with higher photosynthetic parameters in red light cold-treated plants. Altogether, our data suggest that light modulates two distinct mechanisms during the cold treatment - red light-driven cell function maintaining program and blue light-activated specific cold response. The importance of mutual complementarity of these mechanisms was demonstrated by significantly higher freezing tolerance of cold-treated plants under white light.
Collapse
Affiliation(s)
- Michaela Kameniarová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- *Correspondence: Jan Novák
| | - Vladěna Ondrisková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Lenka Hrušková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czechia
| | - Bretislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
8
|
Janda T, Prerostová S, Vanková R, Darkó É. Crosstalk between Light- and Temperature-Mediated Processes under Cold and Heat Stress Conditions in Plants. Int J Mol Sci 2021; 22:ijms22168602. [PMID: 34445308 PMCID: PMC8395339 DOI: 10.3390/ijms22168602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/25/2022] Open
Abstract
Extreme temperatures are among the most important stressors limiting plant growth and development. Results indicate that light substantially influences the acclimation processes to both low and high temperatures, and it may affect the level of stress injury. The interaction between light and temperature in the regulation of stress acclimation mechanisms is complex, and both light intensity and spectral composition play an important role. Higher light intensities may lead to overexcitation of the photosynthetic electron transport chain; while different wavelengths may act through different photoreceptors. These may induce various stress signalling processes, leading to regulation of stomatal movement, antioxidant and osmoregulation capacities, hormonal actions, and other stress-related pathways. In recent years, we have significantly expanded our knowledge in both light and temperature sensing and signalling. The present review provides a synthesis of results for understanding how light influences the acclimation of plants to extreme low or high temperatures, including the sensing mechanisms and molecular crosstalk processes.
Collapse
Affiliation(s)
- Tibor Janda
- Centre for Agricultural Research, Department of Plant Physiology and Metabolomics, Agricultural Institute, ELKH, H-2462 Martonvásár, Hungary;
- Correspondence:
| | - Sylva Prerostová
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague, Czech Republic; (S.P.); (R.V.)
| | - Radomíra Vanková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague, Czech Republic; (S.P.); (R.V.)
| | - Éva Darkó
- Centre for Agricultural Research, Department of Plant Physiology and Metabolomics, Agricultural Institute, ELKH, H-2462 Martonvásár, Hungary;
| |
Collapse
|
9
|
Stockinger EJ. The Breeding of Winter-Hardy Malting Barley. PLANTS 2021; 10:plants10071415. [PMID: 34371618 PMCID: PMC8309344 DOI: 10.3390/plants10071415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
In breeding winter malting barley, one recurring strategy is to cross a current preferred spring malting barley to a winter barley. This is because spring malting barleys have the greatest amalgamation of trait qualities desirable for malting and brewing. Spring barley breeding programs can also cycle their material through numerous generations each year-some managing even six-which greatly accelerates combining desirable alleles to generate new lines. In a winter barley breeding program, a single generation per year is the limit when the field environment is used and about two generations per year if vernalization and greenhouse facilities are used. However, crossing the current favored spring malting barley to a winter barley may have its downsides, as winter-hardiness too may be an amalgamation of desirable alleles assembled together that confers the capacity for prolonged cold temperature conditions. In this review I touch on some general criteria that give a variety the distinction of being a malting barley and some of the general trends made in the breeding of spring malting barleys. But the main objective of this review is to pull together different aspects of what we know about winter-hardiness from the seemingly most essential aspect, which is survival in the field, to molecular genetics and gene regulation, and then finish with ideas that might help further our insight for predictability purposes.
Collapse
Affiliation(s)
- Eric J Stockinger
- Ohio Agricultural Research and Development Center (OARDC), Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH 44691, USA
| |
Collapse
|
10
|
Kosová K, Klíma M, Prášil IT, Vítámvás P. COR/LEA Proteins as Indicators of Frost Tolerance in Triticeae: A Comparison of Controlled versus Field Conditions. PLANTS 2021; 10:plants10040789. [PMID: 33923804 PMCID: PMC8073581 DOI: 10.3390/plants10040789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022]
Abstract
Low temperatures in the autumn induce enhanced expression/relative accumulation of several cold-inducible transcripts/proteins with protective functions from Late-embryogenesis-abundant (LEA) superfamily including dehydrins. Several studies dealing with plants grown under controlled conditions revealed a correlation (significant quantitative relationship) between dehydrin transcript/protein relative accumulation and plant frost tolerance. However, to apply these results in breeding, field experiments are necessary. The aim of the review is to provide a summary of the studies dealing with the relationships between plant acquired frost tolerance and COR/LEA transcripts/proteins relative accumulation in cereals grown in controlled and field conditions. The impacts of cold acclimation and vernalisation processes on the ability of winter-type Triticeae to accumulate COR/LEA proteins are discussed. The factors determining dehydrin relative accumulation under controlled cold acclimation treatments versus field trials during winter seasons are discussed. In conclusion, it can be stated that dehydrins could be used as suitable indicators of winter survival in field-grown winter cereals but only in plant prior to the fulfilment of vernalisation requirement.
Collapse
|
11
|
Ahres M, Pálmai T, Gierczik K, Dobrev P, Vanková R, Galiba G. The Impact of Far-Red Light Supplementation on Hormonal Responses to Cold Acclimation in Barley. Biomolecules 2021; 11:biom11030450. [PMID: 33802867 PMCID: PMC8002655 DOI: 10.3390/biom11030450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022] Open
Abstract
Cold acclimation, the necessary prerequisite for promotion of freezing tolerance, is affected by both low temperature and enhanced far-red/red light (FR/R) ratio. The impact of FR supplementation to white light, created by artificial LED light sources, on the hormone levels, metabolism, and expression of the key hormone metabolism-related genes was determined in winter barley at moderate (15 °C) and low (5 °C) temperature. FR-enhanced freezing tolerance at 15 °C was associated with promotion of abscisic acid (ABA) levels, and accompanied by a moderate increase in indole-3-acetic acid (IAA) and cis-zeatin levels. The most prominent impact on the plants’ freezing tolerance was found after FR pre-treatment at 15 °C (for 10 days) followed by cold treatment at FR supplementation (7 days). The response of ABA was diminished in comparison with white light treatment, probably due to the elevation of stress tolerance during FR pre-treatment. Jasmonic acid (JA) and salicylic acid (SA) were transiently reduced. When the plants were exposed directly to a combination of cold (5 °C) and FR supplementation, ABA increase was higher than in white light, and was associated with enhanced elevation of JA and, in the longer term (after 7 days), with IAA and cis-zeatin increase, which indicates a stronger stress response and better acclimation. Cold hardening was more efficient when FR light was applied in the early developmental stage of the barley plants (three-leaf stage, 18 days), rather than in later stages (28-days). The dynamics of the phytohormone changes are well supported by the expression profiles of the key hormone metabolism-related genes. This series of treatments serves as evidence for the close relationship between plant hormones, light quality, and low temperature at the beginning of cold acclimation. Besides the timing of the FR treatments, plant age also represents a key factor during light spectrum-dependent cold acclimation.
Collapse
Affiliation(s)
- Mohamed Ahres
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary; (M.A.); (T.P.); (K.G.); (G.G.)
- Department of Environmental Sustainability, Festetics Doctoral School, IES, Hungarian University of Agriculture and Life Sciences, H-8360 Keszthely, Hungary
| | - Tamás Pálmai
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary; (M.A.); (T.P.); (K.G.); (G.G.)
| | - Krisztián Gierczik
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary; (M.A.); (T.P.); (K.G.); (G.G.)
| | - Petre Dobrev
- Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague, Czech Republic;
| | - Radomíra Vanková
- Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague, Czech Republic;
- Correspondence:
| | - Gábor Galiba
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary; (M.A.); (T.P.); (K.G.); (G.G.)
- Department of Environmental Sustainability, Festetics Doctoral School, IES, Hungarian University of Agriculture and Life Sciences, H-8360 Keszthely, Hungary
| |
Collapse
|
12
|
Roeber VM, Bajaj I, Rohde M, Schmülling T, Cortleven A. Light acts as a stressor and influences abiotic and biotic stress responses in plants. PLANT, CELL & ENVIRONMENT 2021; 44:645-664. [PMID: 33190307 DOI: 10.1111/pce.13948] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 05/18/2023]
Abstract
Light is important for plants as an energy source and a developmental signal, but it can also cause stress to plants and modulates responses to stress. Excess and fluctuating light result in photoinhibition and reactive oxygen species (ROS) accumulation around photosystems II and I, respectively. Ultraviolet light causes photodamage to DNA and a prolongation of the light period initiates the photoperiod stress syndrome. Changes in light quality and quantity, as well as in light duration are also key factors impacting the outcome of diverse abiotic and biotic stresses. Short day or shady environments enhance thermotolerance and increase cold acclimation. Similarly, shade conditions improve drought stress tolerance in plants. Additionally, the light environment affects the plants' responses to biotic intruders, such as pathogens or insect herbivores, often reducing growth-defence trade-offs. Understanding how plants use light information to modulate stress responses will support breeding strategies to enhance crop stress resilience. This review summarizes the effect of light as a stressor and the impact of the light environment on abiotic and biotic stress responses. There is a special focus on the role of the different light receptors and the crosstalk between light signalling and stress response pathways.
Collapse
Affiliation(s)
- Venja M Roeber
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Ishita Bajaj
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Mareike Rohde
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
13
|
Kovács T, Ahres M, Pálmai T, Kovács L, Uemura M, Crosatti C, Galiba G. Decreased R:FR Ratio in Incident White Light Affects the Composition of Barley Leaf Lipidome and Freezing Tolerance in a Temperature-Dependent Manner. Int J Mol Sci 2020; 21:ijms21207557. [PMID: 33066276 PMCID: PMC7593930 DOI: 10.3390/ijms21207557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
In cereals, C-repeat binding factor genes have been defined as key components of the light quality-dependent regulation of frost tolerance by integrating phytochrome-mediated light and temperature signals. This study elucidates the differences in the lipid composition of barley leaves illuminated with white light or white light supplemented with far-red light at 5 or 15 °C. According to LC-MS analysis, far-red light supplementation increased the amount of monogalactosyldiacylglycerol species 36:6, 36:5, and 36:4 after 1 day at 5 °C, and 10 days at 15 °C resulted in a perturbed content of 38:6 species. Changes were observed in the levels of phosphatidylethanolamine, and phosphatidylserine under white light supplemented with far-red light illumination at 15 °C, whereas robust changes were observed in the amount of several phosphatidylserine species at 5 °C. At 15 °C, the amount of some phosphatidylglycerol species increased as a result of white light supplemented with far-red light illumination after 1 day. The ceramide (42:2)-3 content increased regardless of the temperature. The double-bond index of phosphatidylglycerol, phosphatidylserine, phosphatidylcholine ceramide together with total double-bond index changed when the plant was grown at 15 °C as a function of white light supplemented with far-red light. white light supplemented with far-red light increased the monogalactosyldiacylglycerol/diacylglycerol ratio as well. The gene expression changes are well correlated with the alterations in the lipidome.
Collapse
Affiliation(s)
- Terézia Kovács
- Biological Research Centre, Institute of Plant Biology, H-6701 Szeged, Hungary;
- Department of Plant Biology, University of Szeged, 6720 Szeged, Hungary
- Correspondence:
| | - Mohamed Ahres
- Centre for Agricultural Research, Agricultural Institute, 2462 Martonvásár, Hungary; (M.A.); (T.P.); (G.G.)
- Festetics Doctoral School, Georgikon Campus, Szent István University, H-2100 Gödöllő, Hungary
| | - Tamás Pálmai
- Centre for Agricultural Research, Agricultural Institute, 2462 Martonvásár, Hungary; (M.A.); (T.P.); (G.G.)
| | - László Kovács
- Biological Research Centre, Institute of Plant Biology, H-6701 Szeged, Hungary;
| | - Matsuo Uemura
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan;
| | - Cristina Crosatti
- CREA Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, 29017 San Protaso, Italy;
| | - Gabor Galiba
- Centre for Agricultural Research, Agricultural Institute, 2462 Martonvásár, Hungary; (M.A.); (T.P.); (G.G.)
- Festetics Doctoral School, Georgikon Campus, Szent István University, H-2100 Gödöllő, Hungary
| |
Collapse
|
14
|
Augustyniak A, Pawłowicz I, Lechowicz K, Izbiańska-Jankowska K, Arasimowicz-Jelonek M, Rapacz M, Perlikowski D, Kosmala A. Freezing Tolerance of Lolium multiflorum/Festuca arundinacea Introgression Forms is Associated with the High Activity of Antioxidant System and Adjustment of Photosynthetic Activity under Cold Acclimation. Int J Mol Sci 2020; 21:ijms21165899. [PMID: 32824486 PMCID: PMC7460622 DOI: 10.3390/ijms21165899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 12/15/2022] Open
Abstract
Though winter-hardiness is a complex trait, freezing tolerance was proved to be its main component. Species from temperate regions acquire tolerance to freezing in a process of cold acclimation, which is associated with the exposure of plants to low but non-freezing temperatures. However, mechanisms of cold acclimation in Lolium-Festuca grasses, important for forage production in Europe, have not been fully recognized. Thus, two L. multiflorum/F. arundinacea introgression forms with distinct freezing tolerance were used herein as models in the comprehensive research to dissect these mechanisms in that group of plants. The work was focused on: (i) analysis of cellular membranes' integrity; (ii) analysis of plant photosynthetic capacity (chlorophyll fluorescence; gas exchange; gene expression, protein accumulation, and activity of selected enzymes of the Calvin cycle); (iii) analysis of plant antioxidant capacity (reactive oxygen species generation; gene expression, protein accumulation, and activity of selected enzymes); and (iv) analysis of Cor14b accumulation, under cold acclimation. The more freezing tolerant introgression form revealed a higher integrity of membranes, an ability to cold acclimate its photosynthetic apparatus and higher water use efficiency after three weeks of cold acclimation, as well as a higher capacity of the antioxidant system and a lower content of reactive oxygen species in low temperature.
Collapse
Affiliation(s)
- Adam Augustyniak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (A.A.); (I.P.); (K.L.); (D.P.)
| | - Izabela Pawłowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (A.A.); (I.P.); (K.L.); (D.P.)
| | - Katarzyna Lechowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (A.A.); (I.P.); (K.L.); (D.P.)
| | - Karolina Izbiańska-Jankowska
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (K.I.-J.); (M.A.-J.)
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (K.I.-J.); (M.A.-J.)
| | - Marcin Rapacz
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Kraków, Podłużna 3, 30-239 Kraków, Poland;
| | - Dawid Perlikowski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (A.A.); (I.P.); (K.L.); (D.P.)
| | - Arkadiusz Kosmala
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (A.A.); (I.P.); (K.L.); (D.P.)
- Correspondence:
| |
Collapse
|