1
|
Wang Z, Ye X, Huang L, Yuan Y. Modulation of morphogenesis and metabolism by plant cell biomechanics: from model plants to traditional herbs. HORTICULTURE RESEARCH 2025; 12:uhaf011. [PMID: 40093376 PMCID: PMC11908831 DOI: 10.1093/hr/uhaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/05/2025] [Indexed: 03/19/2025]
Abstract
The quality of traditional herbs depends on organ morphogenesis and the accumulation of active pharmaceutical ingredients. While recent research highlights the significance of cell mechanobiology in model plant morphogenesis, our understanding of mechanical signal initiation and transduction in traditional herbs remains incomplete. Recent studies reveal a close correlation between cell wall (CW) biosynthesis and active ingredient production, yet the role of cell mechanics in balancing morphogenesis and secondary metabolism is often overlooked. This review explores how the cell wall, plasma membrane, cytoskeleton, and vacuole collaborate to regulate cell mechanics and respond to mechanical changes. We propose CW biosynthesis as a hub in connecting cell mechanics with secondary metabolism and emphasize that understanding the relationship between mechanical remodeling and secondary metabolism could provide new insights into plant cell mechanobiology and the breeding of high-quality herbs.
Collapse
Affiliation(s)
- Zhengpeng Wang
- Experimental Research Center, China Academy of Chinese Medical Science, Beijing 100700, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaoming Ye
- Peking University Health Science Center, Peking University, Beijing 100700, China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuan Yuan
- Experimental Research Center, China Academy of Chinese Medical Science, Beijing 100700, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
| |
Collapse
|
2
|
Jia Y, Chen S, Li M, Ouyang L, Xu J, Han X, Qiu W, Lu Z, Zhuo R, Qiao G. The Potential Role of PeMAP65-18 in Secondary Cell Wall Formation in Moso Bamboo. PLANTS (BASEL, SWITZERLAND) 2024; 13:3000. [PMID: 39519919 PMCID: PMC11548304 DOI: 10.3390/plants13213000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Microtubule-associated proteins (MAPs) play a pivotal role in the assembly and stabilization of microtubules, which are essential for plant cell growth, development, and morphogenesis. A class of plant-specific MAPs, MAP65, plays largely unexplored roles in moso bamboo (Phyllostachys edulis). This study identified 19 PeMAP65 genes in moso bamboo, systematically examining their phylogenetic relationships, conserved motifs, gene structures, collinearity, and cis-acting elements. Analysis of gene expression indicated that PeMAP65s exhibit tissue-specific expression patterns. Functional differentiation was investigated among the members of different PeMAP65 subfamilies according to their expression patterns in different development stages of bamboo shoots. The expression of PeMAP65-18 was positively correlated with the expression of genes involved in secondary cell wall (SCW) biosynthesis. Y1H and Dual-LUC assays demonstrated that the transcription of PeMAP65-18 was upregulated by PeMYB46, a key transcription factor of SCW biosynthesis. The result of subcellular localization showed that PeMAP65-18 was located in cortical microtubules. We speculate that PeMAP65-18 may play a crucial role in the SCW deposition of moso bamboo. This comprehensive analysis of the MAP65 family offers novel insights into the roles of PeMAP65s in moso bamboo, particularly in relation to the formation of SCWs.
Collapse
Affiliation(s)
- Yuhan Jia
- State Key Laboratory of Tree Genetics and Breeding, Zhejiang Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.J.); (S.C.); (M.L.); (L.O.); (J.X.); (X.H.); (W.Q.); (Z.L.); (R.Z.)
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
| | - Shuxin Chen
- State Key Laboratory of Tree Genetics and Breeding, Zhejiang Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.J.); (S.C.); (M.L.); (L.O.); (J.X.); (X.H.); (W.Q.); (Z.L.); (R.Z.)
| | - Mengyun Li
- State Key Laboratory of Tree Genetics and Breeding, Zhejiang Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.J.); (S.C.); (M.L.); (L.O.); (J.X.); (X.H.); (W.Q.); (Z.L.); (R.Z.)
| | - Longfei Ouyang
- State Key Laboratory of Tree Genetics and Breeding, Zhejiang Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.J.); (S.C.); (M.L.); (L.O.); (J.X.); (X.H.); (W.Q.); (Z.L.); (R.Z.)
| | - Jing Xu
- State Key Laboratory of Tree Genetics and Breeding, Zhejiang Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.J.); (S.C.); (M.L.); (L.O.); (J.X.); (X.H.); (W.Q.); (Z.L.); (R.Z.)
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Zhejiang Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.J.); (S.C.); (M.L.); (L.O.); (J.X.); (X.H.); (W.Q.); (Z.L.); (R.Z.)
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Zhejiang Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.J.); (S.C.); (M.L.); (L.O.); (J.X.); (X.H.); (W.Q.); (Z.L.); (R.Z.)
| | - Zhuchou Lu
- State Key Laboratory of Tree Genetics and Breeding, Zhejiang Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.J.); (S.C.); (M.L.); (L.O.); (J.X.); (X.H.); (W.Q.); (Z.L.); (R.Z.)
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Zhejiang Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.J.); (S.C.); (M.L.); (L.O.); (J.X.); (X.H.); (W.Q.); (Z.L.); (R.Z.)
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Zhejiang Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.J.); (S.C.); (M.L.); (L.O.); (J.X.); (X.H.); (W.Q.); (Z.L.); (R.Z.)
| |
Collapse
|
3
|
Tahir S, Hassan SS, Yang L, Ma M, Li C. Detection Methods for Pine Wilt Disease: A Comprehensive Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2876. [PMID: 39458823 PMCID: PMC11511408 DOI: 10.3390/plants13202876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Pine wilt disease (PWD), caused by the nematode Bursaphelenchus xylophilus, is a highly destructive forest disease that necessitates rapid and precise identification for effective management and control. This study evaluates various detection methods for PWD, including morphological diagnosis, molecular techniques, and remote sensing. While traditional methods are economical, they are limited by their inability to detect subtle or early changes and require considerable time and expertise. To overcome these challenges, this study emphasizes advanced molecular approaches such as real-time polymerase chain reaction (RT-PCR), droplet digital PCR (ddPCR), and loop-mediated isothermal amplification (LAMP) coupled with CRISPR/Cas12a, which offer fast and accurate pathogen detection. Additionally, DNA barcoding and microarrays facilitate species identification, and proteomics can provide insights into infection-specific protein signatures. The study also highlights remote sensing technologies, including satellite imagery and unmanned aerial vehicle (UAV)-based hyperspectral analysis, for their capability to monitor PWD by detecting asymptomatic diseases through changes in the spectral signatures of trees. Future research should focus on combining traditional and innovative techniques, refining visual inspection processes, developing rapid and portable diagnostic tools for field application, and exploring the potential of volatile organic compound analysis and machine learning algorithms for early disease detection. Integrating diverse methods and adopting innovative technologies are crucial to effectively control this lethal forest disease.
Collapse
Affiliation(s)
- Sana Tahir
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (S.T.); (L.Y.); (M.M.)
| | - Syed Shaheer Hassan
- Heilongjiang Province Key Laboratory of Sustainable Forest Ecosystem Management—Ministry of Education, School of Forestry, Northeast Forestry University, Xiang Fang District, Harbin 150040, China;
| | - Lu Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (S.T.); (L.Y.); (M.M.)
| | - Miaomiao Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (S.T.); (L.Y.); (M.M.)
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (S.T.); (L.Y.); (M.M.)
| |
Collapse
|
4
|
Wang R, Wu M, Zhang X, Jiang T, Wei Z. Methylation of microRNA genes and its effect on secondary xylem development of stem in poplar. THE PLANT GENOME 2024; 17:e20446. [PMID: 38528365 DOI: 10.1002/tpg2.20446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024]
Abstract
MicroRNAs (miRNAs) and DNA methylation are both vital regulators of gene expression. DNA methylation can affect the transcription of miRNAs, just like coding genes, through methylating the CpG islands in the gene regions of miRNAs. Although previous studies have shown that DNA methylation and miRNAs can each be involved in the process of wood formation, the relationship between the two has been relatively little studied in plant wood formation. Studies have shown that the second internode (IN2) (from top to bottom) of 3-month-old poplar trees can represent the primary stage of poplar stem development and IN8 can represent the secondary stage. There were also significant differences in DNA methylation patterns and miRNA expression patterns obtained from PS and SS. In this study, we first interactively analyzed methylation and miRNA sequencing data to identify 43 differentially expressed miRNAs regulated by differential methylation from the primary stage and secondary stage, which were found to be involved in multiple biological processes related to wood formation by enrichment analysis. In addition, six miRNA/target gene modules were finally identified as potentially involved in secondary xylem development of poplar stems through degradome sequencing and functional analysis. In conclusion, this study provides important reference information on the mechanism of interaction between different regulatory pathways of wood formation.
Collapse
Affiliation(s)
- Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Meixuan Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zhigang Wei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China
| |
Collapse
|
5
|
Liang M, Ji T, Wang X, Wang X, Li S, Gao L, Ma S, Tian Y. Comprehensive analyses of microtubule-associated protein MAP65 family genes in Cucurbitaceae and CsaMAP65s expression profiles in cucumber. J Appl Genet 2023; 64:393-408. [PMID: 37219731 DOI: 10.1007/s13353-023-00761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
MAP65 is a microtubule-binding protein family in plants and plays crucial roles in regulating cell growth and development, intercellular communication, and plant responses to various environmental stresses. However, MAP65s in Cucurbitaceae are still less understood. In this study, a total of 40 MAP65s were identified from six Cucurbitaceae species (Cucumis sativus L., Citrullus lanatus, Cucumis melo L., Cucurbita moschata, Lagenaria siceraria, and Benincasa hispida) and classified into five groups by phylogenetic analysis according to gene structures and conserved domains. A conserved domain (MAP65_ASE1) was found in all MAP65 proteins. In cucumber, we isolated six CsaMAP65s with different expression patterns in tissues including root, stem, leaf, female flower, male flower, and fruit. Subcellular localizations of CsaMAP65s verified that all CsaMAP65s were localized in microtubule and microfilament. Analyses of the promoter regions of CsaMAP65s have screened different cis-acting regulatory elements involved in growth and development and responses to hormone and stresses. In addition, CsaMAP65-5 in leaves was significantly upregulated by salt stress, and this promotion effect was higher in cucumber cultivars with salt tolerant than that without salt tolerant. CsaMAP65-1 in leaves was significantly upregulated by cold stress, and this promotion was higher in cold-tolerant cultivar than intolerant cultivar. With the genome-wide characterization and phylogenetic analysis of Cucurbitaceae MAP65s, and the expression profile of CsaMAP65s in cucumber, this study laid a foundation for further study on MAP65 functions in developmental processes and responses to abiotic stress in Cucurbitaceae species.
Collapse
Affiliation(s)
- Meiting Liang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tingting Ji
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xueyun Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xingyi Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shihui Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Si Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Yongqiang Tian
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
McFarlane HE. Open questions in plant cell wall synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad110. [PMID: 36961357 DOI: 10.1093/jxb/erad110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Plant cells are surrounded by strong yet flexible polysaccharide-based cell walls that support the cell while also allowing growth by cell expansion. Plant cell wall research has advanced tremendously in recent years. Sequenced genomes of many model and crop plants have facilitated cataloging and characterization of many enzymes involved in cell wall synthesis. Structural information has been generated for several important cell wall synthesizing enzymes. Important tools have been developed including antibodies raised against a variety of cell wall polysaccharides and glycoproteins, collections of enzyme clones and synthetic glycan arrays for characterizing enzymes, herbicides that specifically affect cell wall synthesis, live-cell imaging probes to track cell wall synthesis, and an inducible secondary cell wall synthesis system. Despite these advances, and often because of the new information they provide, many open questions about plant cell wall polysaccharide synthesis persist. This article highlights some of the key questions that remain open, reviews the data supporting different hypotheses that address these questions, and discusses technological developments that may answer these questions in the future.
Collapse
Affiliation(s)
- Heather E McFarlane
- Department of Cell & Systems Biology, University of Toronto, 25 Harbord St., Toronto, ON, M5S 3G5, Canada
| |
Collapse
|
7
|
Solhi L, Guccini V, Heise K, Solala I, Niinivaara E, Xu W, Mihhels K, Kröger M, Meng Z, Wohlert J, Tao H, Cranston ED, Kontturi E. Understanding Nanocellulose-Water Interactions: Turning a Detriment into an Asset. Chem Rev 2023; 123:1925-2015. [PMID: 36724185 PMCID: PMC9999435 DOI: 10.1021/acs.chemrev.2c00611] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Modern technology has enabled the isolation of nanocellulose from plant-based fibers, and the current trend focuses on utilizing nanocellulose in a broad range of sustainable materials applications. Water is generally seen as a detrimental component when in contact with nanocellulose-based materials, just like it is harmful for traditional cellulosic materials such as paper or cardboard. However, water is an integral component in plants, and many applications of nanocellulose already accept the presence of water or make use of it. This review gives a comprehensive account of nanocellulose-water interactions and their repercussions in all key areas of contemporary research: fundamental physical chemistry, chemical modification of nanocellulose, materials applications, and analytical methods to map the water interactions and the effect of water on a nanocellulose matrix.
Collapse
Affiliation(s)
- Laleh Solhi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Valentina Guccini
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Katja Heise
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Iina Solala
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Elina Niinivaara
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada
| | - Wenyang Xu
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Laboratory of Natural Materials Technology, Åbo Akademi University, TurkuFI-20500, Finland
| | - Karl Mihhels
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Marcel Kröger
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Zhuojun Meng
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Jakob Wohlert
- Wallenberg Wood Science Centre (WWSC), Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044Stockholm, Sweden
| | - Han Tao
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Emily D Cranston
- Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1Z3, Canada
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| |
Collapse
|
8
|
In silico analysis of key regulatory networks related to microfibril angle in Populus trichocarpa Hook. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractDissection of regulatory network that control wood structure is highly challenging in functional genomics. Nevertheless, due to the availability of genomic, transcriptomic and proteomic sequences, a large amount of information is available for use in achieving this goal. MicroRNAs, which compose a class of small non-coding RNA molecules that inhibit protein translation by targeting mRNA cleavage sites and thus regulate a wide variety of developmental and physiological processes in plants, are important parts of this regulatory network. These findings and the availability of sequence information have made it possible to carry out an in silico analysis to predict and annotate miRNAs and their target genes associated with an important factor affecting wood rigidity, microfibril angle (MFA), throughout the Populus trichocarpa Hook. genome. Our computational approach revealed miRNAs and their targets via ESTs, sequences putatively associated with microfibril angle. In total, 250 miRNAs were identified as RNA molecules with roles in the silencing and post-transcriptional regulation of the expression of nine genes. We found SHY2, IAA4 (ATAUX2–11), BZIP60, AP2, MYB15, ABI3, MYB17, LAF1 and MYB28 as important nodes in a network with possible role in MFA determination. Other co-expressed genes putatively involved in this regulatory system were also identified by construction of a co-expression network. The candidate genes from this study may help unravel the regulatory networks putatively linked to microfibril angle.
Collapse
|
9
|
Arabinogalactan Proteins: Focus on the Role in Cellulose Synthesis and Deposition during Plant Cell Wall Biogenesis. Int J Mol Sci 2022; 23:ijms23126578. [PMID: 35743022 PMCID: PMC9223364 DOI: 10.3390/ijms23126578] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Arabinogalactan proteins (AGPs) belong to a family of glycoproteins that are widely present in plants. AGPs are mostly composed of a protein backbone decorated with complex carbohydrate side chains and are usually anchored to the plasma membrane or secreted extracellularly. A trickle of compelling biochemical and genetic evidence has demonstrated that AGPs make exciting candidates for a multitude of vital activities related to plant growth and development. However, because of the diversity of AGPs, functional redundancy of AGP family members, and blunt-force research tools, the precise functions of AGPs and their mechanisms of action remain elusive. In this review, we put together the current knowledge about the characteristics, classification, and identification of AGPs and make a summary of the biological functions of AGPs in multiple phases of plant reproduction and developmental processes. In addition, we especially discuss deeply the potential mechanisms for AGP action in different biological processes via their impacts on cellulose synthesis and deposition based on previous studies. Particularly, five hypothetical models that may explain the AGP involvement in cellulose synthesis and deposition during plant cell wall biogenesis are proposed. AGPs open a new avenue for understanding cellulose synthesis and deposition in plants.
Collapse
|
10
|
Abstract
The plant cell wall is an extracellular matrix that envelopes cells, gives them structure and shape, constitutes the interface with symbionts, and defends plants against external biotic and abiotic stress factors. The assembly of this matrix is regulated and mediated by the cytoskeleton. Cytoskeletal elements define where new cell wall material is added and how fibrillar macromolecules are oriented in the wall. Inversely, the cytoskeleton is also key in the perception of mechanical cues generated by structural changes in the cell wall as well as the mediation of intracellular responses. We review the delivery processes of the cell wall precursors that are required for the cell wall assembly process and the structural continuity between the inside and the outside of the cell. We provide an overview of the different morphogenetic processes for which cell wall assembly is a crucial element and elaborate on relevant feedback mechanisms.
Collapse
|
11
|
Yamagishi Y, Kudo K, Yoshimoto J, Nakaba S, Nabeshima E, Watanabe U, Funada R. Tracheary elements from calli of Japanese horse chestnut (Aesculus turbinata) form perforation-like structures. PLANTA 2021; 253:99. [PMID: 33847816 DOI: 10.1007/s00425-021-03621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Calli derived from young leaves of Aesculus turbinata contained tracheary elements with large pores that resembled perforations of vessel elements. The differentiation of tracheary elements in vitro provides a useful system for detailed analysis of xylem cell differentiation. To examine the mechanism of formation of cell wall structures, new differentiation systems are required that allows us to induce highly organized structures, such as perforations. In this study, we developed such a system in which we were able to induce formation of tracheary elements with perforations, using calli of a hardwood, Aesculus turbinata. Young leaves of A. turbinata were placed on modified MS medium that contained 5 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 5 μM benzyladenine (BA). Tracheary elements were induced in calli derived from young leaves of A. turbinata. Some tracheary elements formed broad areas of secondary wall with typical features of secondary xylem. Other tracheary elements formed spiral thickenings, which are typical features of vessel elements in secondary xylem of A. turbinata. Approximately 10% of tracheary elements formed large pores that resembled perforations of vessel elements and various types of the perforation plate were observed. Addition of NAA and brassinolide to the induction medium enhanced the differentiation of tracheary elements in calli of A. turbinata. Newly induced tracheary elements also formed typical features of secondary xylem such as perforations of the vessel elements. Our model system might be useful in efforts to understand the mechanisms of formation of highly organized structures in tracheary elements in secondary xylem.
Collapse
Affiliation(s)
- Yusuke Yamagishi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Kayo Kudo
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- Institute of Wood Technology, Akita Prefectural University, Noshiro, Akita, 016-0876, Japan
| | - Joto Yoshimoto
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Satoshi Nakaba
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Eri Nabeshima
- Faculty of Agriculture, Ehime University, Matsuyama, Ehime, 790-8566, Japan
| | - Ugai Watanabe
- Faculty of Advanced Engineering, Chiba Institute of Technology, Narashino, Chiba, 275-0016, Japan
| | - Ryo Funada
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
12
|
Erratum: The Cytoskeleton and Its Role in Determining Cellulose Microfibril Angle in Secondary Cell Walls of Woody Tree Species. Plants 2020, 9, 90. PLANTS 2020; 9:plants9020255. [PMID: 32079233 PMCID: PMC7076508 DOI: 10.3390/plants9020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 11/30/2022]
|