1
|
Ihsan MZ, Kanwal S, Fahad S, Chattha WS, Hashem A, Abd-Allah EF, Hussain M, Bajwa AA. Plant growth regulators improve the yield of white lupin (Lupinus albus) by enhancing the plant morpho-physiological functions and photosynthesis under salt stress. BMC PLANT BIOLOGY 2024; 24:1020. [PMID: 39501139 PMCID: PMC11539318 DOI: 10.1186/s12870-024-05676-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND White lupin (Lupinus albus L.) is a multi-purpose, climate resilient, pulse crop with exceptionally high protein content that makes it a suitable alternative of soybean in livestock feed. Although white lupin grows well on marginal sandy soils, previous studies have reported its sensitivity towards salinity stress. This experiment aims to assess the influence of salinity stress and mitigating role of plant growth regulators (PGRs) on performance of white lupin. METHODOLOGY The white lupin plants were sown in pots maintained at three salinity levels (1, 3 and 4.5 dS m- 1) throughout the growing season and foliar sprayed with different PGRs, including ascorbic acid, potassium chloride, boric acid, ammonium molybdate and methionine at sowing, four weeks after emergence and at the initiation of flowering. Foliar spray of distilled water and salinity level of 1 dS m- 1 were maintained as control treatments. Data were recorded for seed germination indices, plant growth, antioxidant enzymes and photosynthetic efficiency variables. RESULTS The severe salinity stress (4.5 dS m- 1) reduced the germination indices by 9-50%, plant growth traits by 26-54%, root nodulation by 12-26%, grain development by 44-53%, antioxidant enzymes activity by 13-153% and photosynthetic attributes by 1-8% compared to control (1 dS m- 1). Different PGRs improved several morpho-physiological attributes in a varied manner. The application of potassium chloride improved seed vigour index by 53%, while ascorbic acid improved root nodulation by 12% and number of pods per cluster by 75% at the severe salinity level. The foliar application of PGRs also displayed a recovery of 140% in the activity of superoxide dismutase and 70% in catalase. The application of multi zinc displayed an improvement of 37% in plant relative chlorophyll, while ascorbic acid brought an increase of 25% in non-photochemical quenching and 21% in photochemical quenching coefficient at the severe salinity level. On contrary, the application of PGRs brought a relatively modest improvement (8-13%) in quantum yield of photosystem II at slight to moderate (3 dS m- 1) salinity stress. The correlation analysis confirmed a partial contribution of leaf area and seed vigour index to overall photosynthetic efficiency of white lupin. CONCLUSIONS Clearly, salinity exerted a negative impact on white lupin through a decline in chlorophyll content, activity of antioxidant enzymes and efficiency of photosynthetic apparatus. However, PGRs, especially ascorbic acid and potassium chloride considerably improved white lupin growth and development by mitigating the negative effects of salinity stress.
Collapse
Affiliation(s)
- Muhammad Zahid Ihsan
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Shamshad Kanwal
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan
| | | | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Elsayed Fathi Abd-Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Mumtaz Hussain
- Arid Zone Research Institute Bahawalpur, PARC, P.O. Box. 1031, Islamabad, Pakistan
| | - Ali Ahsan Bajwa
- La Trobe Institute of Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Melbourne, 3086, Australia
| |
Collapse
|
2
|
Nirwan S, Chatterjee A, Cevik V, Holub EB, Jones JDG, Tewari AK, Shrivastava N, Agnihotri A, Sharma P. Genetic manipulation of Indian mustard genotypes with WRR-gene(s) confers resistance against Albugo candida. Mol Biol Rep 2024; 51:199. [PMID: 38270712 DOI: 10.1007/s11033-023-09040-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/26/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Brassica species is the second most important edible oilseed crop in India. Albugo candida (Pers.) Kuntze, a major oomycete disease of oilseed brassica causing white rust, leads to 60% yield loss globally. The prevalence of A. candida race 2 (Ac2V) that specifically infects B. juncea, coupled with limitations of conventional methods has resulted in a dearth of white rust resistance resources in cultivated varieties. METHODS AND RESULTS In an effort to develop resistant plants, Agrobacterium mediated genetic transformation of three B. juncea genotypes viz., susceptible host var. Varuna, along with its doubled haploid mutant lines C66 and C69 (showing moderate tolerance to field isolates of A. candida) was initiated to transfer resistance genes (WRR8Sf-2 and WRR9Hi-0) identified in Arabidopsis thaliana against race Ac2V, that encode for Toll-like/interleukin-1 receptor-nucleotide binding-leucine-rich repeat proteins that recognize effectors of the pathogen races. CONCLUSIONS Our results demonstrate that introduction of resistance genes from a tertiary gene pool by genetic transformation enhances disease resistance in B. juncea genotypes to a highly virulent Ac2V isolate.
Collapse
Affiliation(s)
- Shradha Nirwan
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201303, India
| | - Anupriya Chatterjee
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201303, India
| | - Volkan Cevik
- Department of Life Sciences, The Milner Centre for Evolution, University of Bath, Bath, BA2 7AY, UK.
| | - Eric B Holub
- School of Life Sciences, Warwick Crop Centre, University of Warwick, Wellesbourne, CV35 9EF, UK
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich, NR4 7UH, UK
| | - Anand Kumar Tewari
- Department of Plant Pathology, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Neeraj Shrivastava
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201303, India
| | - Abha Agnihotri
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201303, India.
| | - Pankaj Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201303, India.
| |
Collapse
|
3
|
Changes in Soil Phosphorus Availability and Microbial Community Structures in Rhizospheres of Oilseed Rapes Induced by Intercropping with White Lupins. Microorganisms 2023; 11:microorganisms11020326. [PMID: 36838291 PMCID: PMC9959241 DOI: 10.3390/microorganisms11020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Oilseed rape is sensitive to soil phosphorus deficiencies. In contrast, white lupin is widely used as a model plant because it has efficient phosphorus utilization. Therefore, soil fertility and microbial composition in the rhizospheres of oilseed rapes and root exudate metabolites were compared under monocropping and intercropping systems. The main purpose was to explore whether the phosphorus absorption of rapeseed can be promoted by intercropping with white lupine. In comparison with oilseed rape monoculture (RR), the results showed that the contents of soil-available phosphorus, microbial biomass and phosphorus in the rhizospheres of oilseed rapes in the intercropping system (RL) were all higher than those of RR. Meanwhile, in comparison with RR, not only phosphorus-solubilizing bacteria, such as Streptomyces, Actinomadura and Bacillus, but also phosphorus-solubilizing fungi, such as Chaetomium, Aspergillus, Penicillium, were enriched in the rhizospheres of the oilseed rape under the RL system. Moreover, more abundant soil bacterial functions, organic acids and metabolites were also detected in root exudates of the oilseed rapes under the RL system. All of the above results suggest that soil phosphorus availability in the rhizospheres of oilseed rape could be improved by intercropping with white lupin. Additionally, soil phosphorus-solubilizing microorganisms, that are enriched in the rhizospheres of oilseed rapes under RL systems, have an important function in the improvement of phosphorus absorption of rapeseed by intercropping with white lupin.
Collapse
|
4
|
A successful defense of the narrow-leafed lupin against anthracnose involves quick and orchestrated reprogramming of oxidation-reduction, photosynthesis and pathogenesis-related genes. Sci Rep 2022; 12:8164. [PMID: 35581248 PMCID: PMC9114385 DOI: 10.1038/s41598-022-12257-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/05/2022] [Indexed: 11/08/2022] Open
Abstract
Narrow-leafed lupin (NLL, Lupinus angustifolius L.) is a legume plant cultivated for grain production and soil improvement. Worldwide expansion of NLL as a crop attracted various pathogenic fungi, including Colletotrichum lupini causing a devastating disease, anthracnose. Two alleles conferring improved resistance, Lanr1 and AnMan, were exploited in NLL breeding, however, underlying molecular mechanisms remained unknown. In this study, European NLL germplasm was screened with Lanr1 and AnMan markers. Inoculation tests in controlled environment confirmed effectiveness of both resistance donors. Representative resistant and susceptible lines were subjected to differential gene expression profiling. Resistance to anthracnose was associated with overrepresentation of "GO:0006952 defense response", "GO:0055114 oxidation-reduction process" and "GO:0015979 photosynthesis" gene ontology terms. Moreover, the Lanr1 (83A:476) line revealed massive transcriptomic reprogramming quickly after inoculation, whereas other lines showed such a response delayed by about 42 h. Defense response was associated with upregulation of TIR-NBS, CC-NBS-LRR and NBS-LRR genes, pathogenesis-related 10 proteins, lipid transfer proteins, glucan endo-1,3-beta-glucosidases, glycine-rich cell wall proteins and genes from reactive oxygen species pathway. Early response of 83A:476, including orchestrated downregulation of photosynthesis-related genes, coincided with the successful defense during fungus biotrophic growth phase, indicating effector-triggered immunity. Mandelup response was delayed and resembled general horizontal resistance.
Collapse
|
5
|
Plant Regeneration Protocol for Recalcitrant Passionflower (Passiflora quadrangularis L.). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This research was designed to provide the first protocol to establish an efficient solution for direct organogenesis regeneration in Passiflora quadrangularis using nodal explants from young shoots. Passifloraceae tissue culture has been associated with problems such as recalcitrance, sensitivity to ethylene accumulation and browning of explants due to the presence of phenols in the tissues. Due to the high rate of endogenous contamination of the explants, a preliminary experiment was performed. The best results of surface sterilization were obtained using the pretreatment with 70% EtOH, 1 min and 50% NaOCl, 10 min along with the treatment of Rifampicin 15 µg/mL and Benomyl 2 g/L. The effects of plant growth regulators on the induction of direct organogenesis, multiplication of shoots in subcultures and in vitro rooting were evaluated. Additional compounds such as AgNO3 and Pluronic F-68 were added to the culture media in order to reduce the effects of phenols and the sudden browning of the explants. Shoot proliferation increased to the sixth subculture after which it decreased. A maximum of 7.17 shoots were obtained from one shoot on Murashige and Skoog (MS) medium supplemented with 2 mg/L 6-benzylaminopurine and 1 mg/L thidiazuron. Supplementation of ½ MS medium with 1 mg/L 1-naphthaleneacetic acid was conducing to root formation in 61.11% of shoots. After acclimatization, the plants showed vigorous growth, green leaves, and well-developed roots. Although this species has previously shown difficulty in in vitro propagation, this protocol established based on the results proved to be efficient and reproducible.
Collapse
|
6
|
In vitro regeneration and Agrobacterium-mediated genetic transformation of Dragon's Head plant (Lallemantia iberica). Sci Rep 2022; 12:1784. [PMID: 35110618 PMCID: PMC8810885 DOI: 10.1038/s41598-022-05776-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/18/2022] [Indexed: 11/30/2022] Open
Abstract
Dragon’s head plant (Lallemantia iberica), is a flowering species belongs to the mint family (Lamiaceae). The species contains valuable essential oils, mucilage and oil which are used in pharmaceutical and food industries. Tissue culture is a feasible strategy to attain large‐scale production of plantlets with a huge potential to produce plants with superior quality. The objective of this study was to develop a simple and efficient method for regeneration and transformation of L. iberica. To reach this goal, the regeneration ability of various explants including leaf, cotyledonary node, hypocotyl and cotyledon segments was investigated in MS medium supplemented with diverse concentrations of NAA (Naphthalene acetic acid) and BAP (6-Benzyl Amino Purine). According to the results, cotyledonary nodes showed the best regeneration response. The maximum rate of regeneration (and number of induced shoots was achieved in 1 mg l−1 BAP in combination with 0.05 mg l−1 NAA from the cotyledonary nodes. Additionally, through the optimized regeneration technique Agrobacterium-mediated transformation of L. iberica was successfully accomplished. Gene transfer was assessed on leaf samples from regenerated plantlets under a fluorescent microscope to detect the GFP signals. Moreover, transgene integration and its expression were confirmed by PCR and RT-PCR analysis, respectively. The establishment of these efficient regeneration and genetic transformation methods paved the way for further application such as plant improvement, functional analysis and gene editing.
Collapse
|
7
|
Osorio CE, Till BJ. A Bitter-Sweet Story: Unraveling the Genes Involved in Quinolizidine Alkaloid Synthesis in Lupinus albus. FRONTIERS IN PLANT SCIENCE 2022; 12:795091. [PMID: 35154186 PMCID: PMC8826574 DOI: 10.3389/fpls.2021.795091] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/30/2021] [Indexed: 05/05/2023]
Abstract
Alkaloids are part of a structurally diverse group of over 21,000 cyclic nitrogen-containing secondary metabolites that are found in over 20% of plant species. Lupinus albus are naturally containing quinolizidine alkaloid (QA) legumes, with wild accessions containing up to 11% of QA in seeds. Notwithstanding their clear advantages as a natural protecting system, lupin-breeding programs have selected against QA content without proper understanding of quinolizidine alkaloid biosynthetic pathway. This review summarizes the current status in this field, with focus on the utilization of natural mutations such as the one contained in pauper locus, and more recently the development of molecular markers, which along with the advent of sequencing technology, have facilitated the identification of candidate genes located in the pauper region. New insights for future research are provided, including the utilization of differentially expressed genes located on the pauper locus, as candidates for genome editing. Identification of the main genes involved in the biosynthesis of QA will enable precision breeding of low-alkaloid, high nutrition white lupin. This is important as plant based high quality protein for food and feed is an essential for sustainable agricultural productivity.
Collapse
Affiliation(s)
- Claudia E. Osorio
- Instituto de Investigaciones Agropecuarias, INIA Carillanca, Temuco, Chile
| | - Bradley J. Till
- Veterinary Genetics Laboratory, University of California, Davis, Davis, CA, United States
| |
Collapse
|
8
|
Qahtan AA, Faisal M, Alatar AA, Abdel-Salam EM. High-Frequency Plant Regeneration, Genetic Uniformity, and Flow Cytometric Analysis of Regenerants in Rutachalepensis L. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122820. [PMID: 34961291 PMCID: PMC8704675 DOI: 10.3390/plants10122820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 05/03/2023]
Abstract
Ruta chalepensis L., an evergreen shrub in the citrus family, is well-known around the world for its essential oils and variety of bioactivities, indicating its potential medicinal applications. In this study, we investigated the effect of different culture conditions, including plant growth regulators, media types, pH of the medium, and carbon sources, on in vitro regeneration from nodal explants of R. chalepensis. Following 8 weeks of culture, the highest percentage of regeneration (96.3%) and maximum number of shoots (40.3 shoot/explant) with a length of 4.8 cm were obtained with Murashige and Skoog (MS) medium at pH 5.8, supplemented with 3.0% sucrose and 5.0 µM 6-Benzyladenine (BA) in combination with 1.0 µM 1-naphthaleneacetic acid (NAA). For rooting, individually harvested shootlets were transferred on ½ MS (half-strength) supplemented with IAA (indole-3-acetic acid), IBA (indole 3-butyric acid), or NAA, and the best response in terms of root induction (91.6%), number of roots (5.3), and root mean length (4.9 cm) was achieved with 0.5 µM IBA after 6 weeks. An average of 95.2 percent of healthy, in vitro regenerated plantlets survived after being transplanted into potting soil, indicating that they were effectively hardened. DNA assays (PCR-based markers) such as random amplification of polymorphic DNA (RAPD) and directed amplification of minisatellite-region (DAMD) were employed to assess in vitro cultivated R. chalepensis plantlets that produced a monomorphic banding pattern confirming the genetic stability. Additionally, no changes in the flow cytometric profile of ploidy between regenerated plantlets and donor plants were detected. Regeneration of this valuable medicinal plant in vitro will open up new avenues in pharmaceutical biotechnology by providing an unconventional steadfast system for mass multiplication and might be effectively used in genetic manipulation for enhanced bioactive constituents.
Collapse
|
9
|
Aslam MM, Waseem M, Zhang Q, Ke W, Zhang J, Xu W. Identification of ABC transporter G subfamily in white lupin and functional characterization of L.albABGC29 in phosphorus use. BMC Genomics 2021; 22:723. [PMID: 34615466 PMCID: PMC8495970 DOI: 10.1186/s12864-021-08015-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND White lupin (Lupinus albus) is a leguminous crop with elite adaptive ability in phosphorus-deficient soil and used as a model plant for studying phosphorus (P) use. However, the genetic basis of its adaptation to low P (LP) remains unclear. ATPase binding cassette (ABC) transports G subfamily play a crucial role in the transportation of biological molecules across the membrane. To date, identification of this subfamily has been analyzed in some plants, but no systematic analysis of these transporters in phosphorus acquisition is available for white lupin. RESULTS This study identified 66 ABCG gene family members in the white lupin genome using comprehensive approaches. Phylogenetic analysis of white lupin ABCG transporters revealed six subclades based on their counterparts in Arabidopsis, displaying distinct gene structure and motif distribution in each cluster. Influences of the whole genome duplication on the evolution of L.albABCGs were investigated in detail. Segmental duplications appear to be the major driving force for the expansion of ABCGs in white lupin. Analysis of the Ka/Ks ratios indicated that the paralogs of the L.albABCG subfamily members principally underwent purifying selection. However, it was found that L.albABCG29 was a result of both tandem and segmental duplications. Overexpression of L.albABCG29 in white lupin hairy root enhanced P accumulation in cluster root under LP and improved plant growth. Histochemical GUS staining indicated that L.albABCG29 expression increased under LP in white lupin roots. Further, overexpression of L.albABCG29 in rice significantly improved P use under combined soil drying and LP by improving root growth associated with increased rhizosheath formation. CONCLUSION Through systematic and comprehensive genome-wide bioinformatics analysis, including conserved domain, gene structures, chromosomal distribution, phylogenetic relationships, and gene duplication analysis, the L.albABCG subfamily was identified in white lupin, and L.albABCG29 characterized in detail. In summary, our results provide deep insight into the characterization of the L.albABCG subfamily and the role of L.albABCG29 in improving P use.
Collapse
Affiliation(s)
- Mehtab Muhammad Aslam
- College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Water and Nutrient in Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muhammad Waseem
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Qian Zhang
- Joint International Research Laboratory of Water and Nutrient in Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wang Ke
- Joint International Research Laboratory of Water and Nutrient in Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianhua Zhang
- College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Department of Biology, Hong Kong Baptist University, Stake Key Laboratory of Agrobiotechnology and Chinese University of Hong Kong, Kowloon Tong, Hong Kong
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|