1
|
Ahmed FS, Helmy WS, Alfuhaid NA, Moustafa MAM. Target Enzymes of Origanum majorana and Rosmarinus officinalis Essential Oils in Black Cutworm ( Agrotis ipsilon): In Vitro and In Silico Studies. INSECTS 2024; 15:483. [PMID: 39057216 PMCID: PMC11276864 DOI: 10.3390/insects15070483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/15/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024]
Abstract
In this study, in vitro and in silico approaches were employed to assess the toxicity of marjoram (Origanum majorana) and rosemary (Rosmarinus officinalis) essential oils (EOs) to A. ipsilon larvae. The study determined the activities of ATPases in the larvae after treatment with the LC20 and LC70 of each EO. α-esterase and glutathione-S-transferase (GST) activities were also determined after treatment with LC10 and LC30 of each EO. Furthermore, molecular docking was employed to determine the binding affinity of terpinene-4-ol and α-pinene, the major constituents of O. majorana, and R. officinalis EOs, respectively, compared to the co-crystallized ligand of α-esterase, diethyl hydrogen phosphate (DPF). Toxicity assays revealed that O. majorana EO was more toxic than R. officinalis EO to the A. ipsilon larvae at 96 h post-treatment. However, the LC20 and LC70 of the latter significantly inhibited the activity of the Na+-K+ pump at almost all intervals. The same concentrations significantly inhibited the Mg2+/Ca2+-ATPase and Ca2+ pump at 96 h post-treatment. In contrast, O. majorana EO showed a variable effect on the Na+-K+ pump across different time intervals. On the other hand, LC10 and LC30 of both EOs showed varied effects on α-esterase and GST over time. Molecular docking revealed energy scores of -4.51 and -4.29 kcal/mol for terpinene-4-ol and α-pinene, respectively, compared to a score of -4.67 for PDF. Our study demonstrated the toxicity of the tested EOs to A. ipsilon, suggesting their potential efficacy as insecticides.
Collapse
Affiliation(s)
- Fatma S. Ahmed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (F.S.A.); (W.S.H.)
| | - Walid S. Helmy
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (F.S.A.); (W.S.H.)
| | - Nawal Abdulaziz Alfuhaid
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Moataz A. M. Moustafa
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (F.S.A.); (W.S.H.)
| |
Collapse
|
2
|
Mathur A, Meena A, Luqman S. Monoterpenoids: An upcoming class of therapeutic agents for modulating cancer metastasis. Phytother Res 2024; 38:939-969. [PMID: 38102850 DOI: 10.1002/ptr.8081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/28/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Monoterpenoids, a sub-class of terpenoids, are secondary metabolites frequently extracted from the essential oils of aromatic plants. Their antitumor properties including antiproliferative, apoptotic, antiangiogenic, and antimetastatic effects along with other biological activities have been the subject of extensive study due to their diverse characteristics. In recent years, numerous investigations have been conducted to understand its potential anticancer impacts, specifically focusing on antiproliferative and apoptotic mechanisms. Metastasis, a malignancy hallmark, can exert either protective or destructive influences on tumor cells. Despite this, the potential antimetastatic and antiangiogenic attributes of monoterpenoids need further exploration. This review focuses on specific monoterpenoids, examining their effects on metastasis and relevant signaling pathways. The monoterpenoids exhibit a high level of complexity as natural products that regulate metastatic proteins through various signaling pathways, including phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin, mitogen-activated protein kinase/extracellular signal-regulated kinase/jun N-terminal kinase, nuclear factor kappa B, vascular endothelial growth factor, and epithelial mesenchymal transition process. Additionally, this review delves into the biosynthesis and classification of monoterpenoids, their potential antitumor impacts on cell lines, the plant sources of monoterpenoids, and the current status of limited clinical trials investigating their efficacy against cancer. Moreover, monoterpenoids depict promising potential in preventing cancer metastasis, however, inadequate clinical trials limit their drug usage. State-of-the-art techniques and technologies are being employed to overcome the challenges of utilizing monoterpenoids as an anticancer agent.
Collapse
Affiliation(s)
- Anurag Mathur
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Ashmawy NS, Gad HA, El-Nashar HAS. Comparative Study of Essential Oils from Different Organs of Syzygium cumini (Pamposia) Based on GC/MS Chemical Profiling and In Vitro Antiaging Activity. Molecules 2023; 28:7861. [PMID: 38067590 PMCID: PMC10708113 DOI: 10.3390/molecules28237861] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Syzygium cumini L. is an evergreen tree belonging to family Myrtaceae, employed for different traditional uses like diabetes, inflammation, and fever. The current study aimed to compare the chemical compositions of the essential oils (EOs) isolated from different organs of Syzygium cumini (leaves (Scl), fruits (Scf), seeds (Scs), and bark (Scb)) using a GC/MS analysis. Also, a chemometric analysis was applied to explore the main similarities and differences among different organs using a Principal Component Analysis (PCA) and a hierarchal cluster analysis (HCA). Furthermore, in vitro antiaging activities were investigated via anti-collagenase, anti-elastase, and anti-hyaluronidase assays. The GC-MS analysis revealed 82 compounds representing 92.13%, 99.42%, 100%, and 92.97% in Scl, Scf, Scs, and Scb, respectively. The predominant components were α-pinene, β-pinene, (E)-β-caryophyllene, α-caryophyllene, caryophyllene oxide, and α-humulene epoxide II with variable percentages. All EOs were positioned on positive PC1, except for Scs, which was positioned on the negative side in a separate quadrant. The HCA dendrogram displayed the closeness of Scl and Scb, which was not clearly recognized in the PCA score plot. Moreover, the Scs oils were totally discriminated from other parts. The Scl and Scs oils showed superior anti-collagenase, anti-elastase, and anti-hyaluronidase activities. Thus, S. cumini oils should be considered for cosmetic preparations to retard skin aging manifestations.
Collapse
Affiliation(s)
- Naglaa S. Ashmawy
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Haidy A. Gad
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Heba A. S. El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| |
Collapse
|
4
|
Iobbi V, Parisi V, Bernabè G, De Tommasi N, Bisio A, Brun P. Anti-Biofilm Activity of Carnosic Acid from Salvia rosmarinus against Methicillin-Resistant Staphylococcus aureus. PLANTS (BASEL, SWITZERLAND) 2023; 12:3679. [PMID: 37960038 PMCID: PMC10647425 DOI: 10.3390/plants12213679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The Salvia rosmarinus "Eretto Liguria" ecotype was studied as a source of valuable bioactive compounds. LC-MS analysis of the methanolic extract underlined the presence of diterpenoids, triterpenoids, polyphenolic acids, and flavonoids. The anti-virulence activity of carnosic acid along with the other most abundant compounds against methicillin-resistant Staphylococcus aureus (MRSA) was evaluated. Only carnosic acid induced a significant reduction in the expression of agrA and rnaIII genes, which encode the key components of quorum sensing (QS), an intracellular signaling mechanism controlling the virulence of MRSA. At a concentration of 0.05 mg/mL, carnosic acid inhibited biofilm formation by MRSA and the expression of genes involved in toxin production and made MRSA more susceptible to intracellular killing, with no toxic effects on eukaryotic cells. Carnosic acid did not affect biofilm formation by Pseudomonas aeruginosa, a human pathogen that often coexists with MRSA in complex infections. The selected ecotype showed a carnosic acid content of 94.3 ± 4.3 mg/g. In silico analysis highlighted that carnosic acid potentially interacts with the S. aureus AgrA response regulator. Our findings suggest that carnosic acid could be an anti-virulence agent against MRSA infections endowed with a species-specific activity useful in multi-microbial infections.
Collapse
Affiliation(s)
- Valeria Iobbi
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy;
| | - Valentina Parisi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (V.P.); (N.D.T.)
| | - Giulia Bernabè
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy; (G.B.); (P.B.)
| | - Nunziatina De Tommasi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (V.P.); (N.D.T.)
| | - Angela Bisio
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy;
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy; (G.B.); (P.B.)
| |
Collapse
|
5
|
Musolino V, Macrì R, Cardamone A, Tucci L, Serra M, Lupia C, Maurotti S, Mare R, Nucera S, Guarnieri L, Marrelli M, Coppoletta AR, Carresi C, Gliozzi M, Mollace V. Salvia rosmarinus Spenn. (Lamiaceae) Hydroalcoholic Extract: Phytochemical Analysis, Antioxidant Activity and In Vitro Evaluation of Fatty Acid Accumulation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3306. [PMID: 37765470 PMCID: PMC10536996 DOI: 10.3390/plants12183306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
Salvia rosmarinus Spenn. is a native Mediterranean shrub belonging to the Lamiaceae family and is well-known as a flavoring and spicing agent. In addition to its classical use, it has drawn attention because its biological activities, due particularly to the presence of polyphenols, including carnosic acid and rosmarinic acid, and phenolic diterpenes as carnosol. In this study, the aerial part of rosemary was extracted with a hydroalcoholic solution through maceration, followed by ultrasound sonication, to obtain a terpenoids-rich Salvia rosmarinus extract (TRSrE) and a polyphenols-rich Salvia rosmarinus extract (PRSrE). After phytochemical characterization, both extracts were investigated for their antioxidant activity through a classical assay and with electron paramagnetic resonance (EPR) for their DPPH and hydroxyl radicals scavenging. Finally, their potential beneficial effects to reduce lipid accumulation in an in vitro model of NAFLD were evaluated.
Collapse
Affiliation(s)
- Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- Department of Health Sciences, Institute of Research for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (C.L.); (S.N.); (A.R.C.); (M.G.); (V.M.)
| | - Roberta Macrì
- Department of Health Sciences, Institute of Research for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (C.L.); (S.N.); (A.R.C.); (M.G.); (V.M.)
| | - Antonio Cardamone
- Department of Health Sciences, Institute of Research for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (C.L.); (S.N.); (A.R.C.); (M.G.); (V.M.)
| | | | - Maria Serra
- Department of Health Sciences, Institute of Research for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (C.L.); (S.N.); (A.R.C.); (M.G.); (V.M.)
| | - Carmine Lupia
- Department of Health Sciences, Institute of Research for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (C.L.); (S.N.); (A.R.C.); (M.G.); (V.M.)
| | - Samantha Maurotti
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (R.M.)
| | - Rosario Mare
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (R.M.)
| | - Saverio Nucera
- Department of Health Sciences, Institute of Research for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (C.L.); (S.N.); (A.R.C.); (M.G.); (V.M.)
| | - Lorenza Guarnieri
- Department of Health Sciences, Institute of Research for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (C.L.); (S.N.); (A.R.C.); (M.G.); (V.M.)
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Anna Rita Coppoletta
- Department of Health Sciences, Institute of Research for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (C.L.); (S.N.); (A.R.C.); (M.G.); (V.M.)
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Department of Health Sciences, Institute of Research for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Micaela Gliozzi
- Department of Health Sciences, Institute of Research for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (C.L.); (S.N.); (A.R.C.); (M.G.); (V.M.)
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (C.L.); (S.N.); (A.R.C.); (M.G.); (V.M.)
| |
Collapse
|
6
|
Krol A, Kokotkiewicz A, Gorniak M, Naczk AM, Zabiegala B, Gebalski J, Graczyk F, Zaluski D, Bucinski A, Luczkiewicz M. Evaluation of the yield, chemical composition and biological properties of essential oil from bioreactor-grown cultures of Salvia apiana microshoots. Sci Rep 2023; 13:7141. [PMID: 37130866 PMCID: PMC10154310 DOI: 10.1038/s41598-023-33950-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/21/2023] [Indexed: 05/04/2023] Open
Abstract
Microshoot cultures of the North American endemic Salvia apiana were established for the first time and evaluated for essential oil production. Stationary cultures, grown on Schenk-Hildebrandt (SH) medium, supplemented with 0.22 mg/L thidiazuron (TDZ), 2.0 mg/L 6-benzylaminopurine and 3.0% (w/v) sucrose, accumulated 1.27% (v/m dry weight) essential oil, consisting mostly of 1,8-cineole, β-pinene, α-pinene, β-myrcene and camphor. The microshoots were adapted to agitated culture, showing biomass yields up to ca. 19 g/L. Scale-up studies demonstrated that S. spiana microshoots grow well in temporary immersion systems (TIS). In the RITA bioreactor, up to 19.27 g/L dry biomass was obtained, containing 1.1% oil with up to ca. 42% cineole content. The other systems employed, i.e. Plantform (TIS) and a custom made spray bioreactor (SGB), yielded ca. 18 and 19 g/L dry weight, respectively. The essential oil content of Plantform and SGB-grown microshoots was comparable to RITA bioreactor, however, the content of cineole was substantially higher (ca. 55%). Oil samples isolated from in vitro material proved to be active in acetylcholinesterase (up to 60.0% inhibition recorded for Plantform-grown microshoots), as well as hyaluronidase and tyrosinase-inhibitory assays (up to 45.8 and 64.5% inhibition observed in the case of the SGB culture).
Collapse
Affiliation(s)
- Agata Krol
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Gdansk, al. gen. J. Hallera 107, 80-416, Gdansk, Poland
| | - Adam Kokotkiewicz
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Gdansk, al. gen. J. Hallera 107, 80-416, Gdansk, Poland
| | - Marcin Gorniak
- Department of Evolutionary Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Aleksandra M Naczk
- Department of Evolutionary Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Bozena Zabiegala
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Jakub Gebalski
- Department of Pharmaceutical Botany and Pharmacognosy, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Marie Skłodowska-Curie 9, 85-094, Bydgoszcz, Poland
| | - Filip Graczyk
- Department of Pharmaceutical Botany and Pharmacognosy, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Marie Skłodowska-Curie 9, 85-094, Bydgoszcz, Poland
| | - Daniel Zaluski
- Department of Pharmaceutical Botany and Pharmacognosy, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Marie Skłodowska-Curie 9, 85-094, Bydgoszcz, Poland
| | - Adam Bucinski
- Department of Biopharmacy, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. dr A. Jurasza 2, 85-089, Bydgoszcz, Poland
| | - Maria Luczkiewicz
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Gdansk, al. gen. J. Hallera 107, 80-416, Gdansk, Poland.
| |
Collapse
|
7
|
Alves-Silva JM, Cocco E, Piras A, Gonçalves MJ, Silva A, Falconieri D, Porcedda S, Cruz MT, Maxia A, Salgueiro L. Unveiling the Chemical Composition and Biological Properties of Salvia cacaliifolia Benth. Essential Oil. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020359. [PMID: 36679072 PMCID: PMC9867359 DOI: 10.3390/plants12020359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 05/14/2023]
Abstract
Salvia is widely recognized for its therapeutic potential. However, the biological relevance of some species remains unknown, namely Salvia cacaliifolia Benth. Therefore, the aim of this study is to unveil the chemical composition and relevant properties to its essential oil (EO). The EO was characterized by GC and GC-MS and its antifungal effect was evaluated according to the CLSI guidelines on dermatophytes and yeasts. The anti-inflammatory potential was assessed on lipopolysaccharide-stimulated macrophages, by assessing the production of nitric oxide (NO) and the effect on the protein levels of two key pro-inflammatory enzymes, iNOS and COX-2 by western blot analysis. Wound healing capacity was determined using the scratch wound healing assay, and the anti-aging potential was assessed by evaluating the senescence marker β-galactosidase. The EO was mainly characterized by γ-curcumene, β-bisabolene, bicyclogermacrene and curzerenone. It is effective in inhibiting the growth of dermatophytes and C. neoformans. The EO significantly decreased iNOS and COX-2 protein levels and concomitantly reduced NO release. Additionally, it demonstrated anti-senescence potential and promoted wound healing. Overall, this study highlights relevant pharmacological properties of the EO of Salvia cacaliifolia, which should be further explored envisaging the development of sustainable, innovative, and environmentally friendly skin products.
Collapse
Affiliation(s)
- Jorge M. Alves-Silva
- Institute for Clinical and Biomedical Research, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
| | - Emma Cocco
- Laboratory of Plant Biology and Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, Viale Sant’Ignazio, 09123 Cagliari, Italy
| | - Alessandra Piras
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Maria José Gonçalves
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Ana Silva
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Danilo Falconieri
- Laboratory of Plant Biology and Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, Viale Sant’Ignazio, 09123 Cagliari, Italy
| | - Silvia Porcedda
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Maria Teresa Cruz
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Andrea Maxia
- Laboratory of Plant Biology and Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, Viale Sant’Ignazio, 09123 Cagliari, Italy
| | - Lígia Salgueiro
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
8
|
Phenotypic diversity of rosemary (Salvia rosmarinus Schleid.) accessions for qualitative characters. Heliyon 2022; 8:e11895. [DOI: 10.1016/j.heliyon.2022.e11895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
|
9
|
Untargeted Metabolomics by Using UHPLC–ESI–MS/MS of an Extract Obtained with Ethyl Lactate Green Solvent from Salvia rosmarinus. SEPARATIONS 2022. [DOI: 10.3390/separations9110327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Salvia rosmarinus (Lamiaceae), previously known as Rosmarinus officinalis, is a plant cultivated worldwide, native to the Mediterranean region. Its leaves are traditionally used for cooking. This species possesses numerous biological activities, including antioxidant, antimicrobial, anticancer, anti-inflammatory, and hepatoprotective properties. These biological properties are due to the presence of phenolic compounds, including rosmarinic acid and phenolic diterpenoids, such as carnosic acid and carnosol. In this study, we investigated the chemical composition of a green extract obtained by maceration with ethyl lactate for the first time. Seventy-five compounds were tentatively identified by UHPLC–ESI–MS/MS, including six organic acids, six cinnamic acid derivatives, five fatty acids, eighteen flavonoids, and thirty-eight terpenoids. Thus, abietane-type diterpenoids from the ethyl lactate extract were the predominant diterpenoids in the Chilean S. rosmarinus species, in contrast to the Chinese species, in which labdane and isopimarane-type diterpenoids were found for the first time. Finally, our study confirms that the extraction of S. rosmarinus with green ethyl lactate as a solvent is efficient and sustainable for the identification of flavonoids, phenols, and terpenoids from leaves.
Collapse
|
10
|
Beyond natural aromas: The bioactive and technological potential of monoterpenes. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Faridzadeh A, Salimi Y, Ghasemirad H, Kargar M, Rashtchian A, Mahmoudvand G, Karimi MA, Zerangian N, Jahani N, Masoudi A, Sadeghian Dastjerdi B, Salavatizadeh M, Sadeghsalehi H, Deravi N. Neuroprotective Potential of Aromatic Herbs: Rosemary, Sage, and Lavender. Front Neurosci 2022; 16:909833. [PMID: 35873824 PMCID: PMC9297920 DOI: 10.3389/fnins.2022.909833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Hundreds of millions of people around the world suffer from neurological disorders or have experienced them intermittently, which has significantly reduced their quality of life. The common treatments for neurological disorders are relatively expensive and may lead to a wide variety of side effects including sleep attacks, gastrointestinal side effects, blood pressure changes, etc. On the other hand, several herbal medications have attracted colossal popularity worldwide in the recent years due to their availability, affordable prices, and few side effects. Aromatic plants, sage (Salvia officinalis), lavender (Lavandula angustifolia), and rosemary (Salvia Rosmarinus) have already shown anxiolytics, anti-inflammatory, antioxidant, and neuroprotective effects. They have also shown potential in treating common neurological disorders, including Alzheimer's disease, Parkinson's disease, migraine, and cognitive disorders. This review summarizes the data on the neuroprotective potential of aromatic herbs, sage, lavender, and rosemary.
Collapse
Affiliation(s)
- Arezoo Faridzadeh
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasaman Salimi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamidreza Ghasemirad
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Meraj Kargar
- Student Research Committee, Afzalipour Faculty of Medicine Kerman University of Medical Sciences, Kerman, Iran
| | - Ava Rashtchian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Golnaz Mahmoudvand
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Amin Karimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasibeh Zerangian
- School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Negar Jahani
- Student Research Committee, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anahita Masoudi
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Bahare Sadeghian Dastjerdi
- Student Research Committee, Department of Midwifery, Faculty of Nursing and Midwifery, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Marieh Salavatizadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Sadeghsalehi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Niloofar Deravi
| |
Collapse
|
12
|
Annemer S, Farah A, Stambouli H, Assouguem A, Almutairi MH, Sayed AA, Peluso I, Bouayoun T, Talaat Nouh NA, El Ouali Lalami A, Ez zoubi Y. Chemometric Investigation and Antimicrobial Activity of Salvia rosmarinus Spenn Essential Oils. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092914. [PMID: 35566267 PMCID: PMC9099978 DOI: 10.3390/molecules27092914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022]
Abstract
To ensure the better production and sustainable management of natural resources, a chemometric investigation was conducted to examine the effect of cooperative and harvesting periods on the crop yields and chemical compositions of Salvia rosmarinus Spenn essential oils in the Oriental region of Morocco. The samples were collected from three cooperatives over nine time periods from January 2018 to April 2019. The chemical composition of Salvia rosmarinus Spenn essential oils was analyzed by gas chromatography coupled with mass spectrometry. The data from this study were processed by multivariate analyses, including principal component analysis (PCA) and hierarchical cluster analysis (HCA). The disc diffusion technique and a determination of the minimal inhibitory concentration were performed to study the antibacterial properties of the oils. Statistical analysis showed that the cooperative and harvest period have a significant effect on yields. The highest yield of essential oil was recorded in April 2019 at cooperative C1. The PCA and the HCA results were divided into two groups: Group A for the summer season and group B for the winter season. The samples collected during summer were characterized by a high amount of 1,8-cineole component and a high yield of essential oil, whereas the samples collected during winter were qualified by a high amount of α-pinene component and a low yield of essential oil. The antibacterial activity of Salvia rosmarinus Spenn essential oils showed that Mycobacterium smegmatis ATCC23857 and Bacillus subtilis ATCC 23857 are the most susceptible strains, stopping growth at 1/500 (v/v). The least susceptible strain is Escherichia coli ATCC25922, with an MIC value corresponding to 1/250 (v/v). The findings of this study could have a positive economic impact on the exploitation of rosemary in the Oriental region, especially during the best harvest periods, as they indicate how to obtain the best yields of oils richest in 1,8-cineole and α-pinene chemotypes.
Collapse
Affiliation(s)
- Saoussan Annemer
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques, University Sidi Mohammed Ben Abdellah, B.P. 2202, Fes 30000, Morocco; (S.A.); (A.F.); (A.E.O.L.); (Y.E.z.)
| | - Abdellah Farah
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques, University Sidi Mohammed Ben Abdellah, B.P. 2202, Fes 30000, Morocco; (S.A.); (A.F.); (A.E.O.L.); (Y.E.z.)
| | - Hamide Stambouli
- Institute of Forensic Sciences of Gendarmerie Royal, B.P. 6597, Rabat 10000, Morocco; (H.S.); (T.B.)
| | - Amine Assouguem
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques, University Sidi Mohammed Ben Abdellah, B.P. 2202, Fes 30000, Morocco; (S.A.); (A.F.); (A.E.O.L.); (Y.E.z.)
- Correspondence:
| | - Mikhlid H. Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00178 Rome, Italy;
| | - Taoufik Bouayoun
- Institute of Forensic Sciences of Gendarmerie Royal, B.P. 6597, Rabat 10000, Morocco; (H.S.); (T.B.)
| | | | - Abdelhakim El Ouali Lalami
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques, University Sidi Mohammed Ben Abdellah, B.P. 2202, Fes 30000, Morocco; (S.A.); (A.F.); (A.E.O.L.); (Y.E.z.)
- Higher Institute of Nursing Professions and Health Techniques, Regional Health Directorate, EL Ghassani Hospital, Fez 30000, Morocco
| | - Yassine Ez zoubi
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques, University Sidi Mohammed Ben Abdellah, B.P. 2202, Fes 30000, Morocco; (S.A.); (A.F.); (A.E.O.L.); (Y.E.z.)
- Biotechnology, Environmental Technology and Valorization of Bio-Resources Team, Department of Biology, Faculty of Sciences and Techniques Al-Hoceima, Abdelmalek Essaadi University, Tetouan 93000, Morocco
| |
Collapse
|
13
|
Salinas M, Calva J, Cartuche L, Valarezo E, Armijos C. Chemical Composition, Enantiomeric Distribution and Anticholinesterase and Antioxidant Activity of the Essential Oil of Diplosthephium juniperinum. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091188. [PMID: 35567189 PMCID: PMC9105165 DOI: 10.3390/plants11091188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 05/27/2023]
Abstract
The aim of this study was to extract and identify the chemical compounds of Diplosthephium juniperinum essential oil (EO) from Ecuador and to assess its anticholinesterase and antioxidant properties. The EO chemical composition was determined by GC−MS. A total of 74 constituents of EO were identified, representing 97.27% in DB-5ms and 96.06% in HP-INNOWax of the total EO. The major constituents (>4.50%) identified were: α-pinene (21.52, 22.04%), geranyl acetate (10.54, 7.78%), silphiper-fol-5-ene (8.67, 7.38%), α-copaene (8.26, 8.18%), 7-epi-silphiperfol-5-ene (4.93, 5.95%), and germacrene D (4.91, 6.00%). Enantioselective analysis of the volatile fraction of D. juniperinum showed: (+)-α-pinene as a pure enantiomer and 5 pairs of enantiomeric compounds. Among them, (−)-β-Pinene and (−)-Germacrene D presented a high enantiomeric excess of 93.23 and 84.62%, respectively, while (−)-α-Thujene, (−)-Sabinene and (S)-4-Terpineol with a lower enantiomeric excess of 56.34, 47.84 and 43.11%, respectively. A moderate inhibitory effect was observed for Acetylcholinesterase (AChE) and Butyrylcholinesterase (BuChE) enzymes with IC50 values of 67.20 ± 7.10 and 89.00 ± 9.90 µg/mL, respectively. A lower antioxidant potential was observed for the EO measured through DPPH and ABTS radical scavenging assays with SC50 values of 127.03 and >1000 µg/mL, respectively. To the best of our knowledge, this is the first report of the chemical composition, enantiomeric distribution and, anticholinesterase and antioxidant potential of the EO of D. juniperinum. As future perspective, further in-vivo studies could be conducted to confirm the anticholinesterase potential of the EO.
Collapse
Affiliation(s)
- Melissa Salinas
- Maestría en Química Aplicada, Universidad Técnica Particular de Loja, San Cayetano s/n, Loja 1101608, Ecuador;
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (J.C.); (L.C.); (E.V.)
| | - James Calva
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (J.C.); (L.C.); (E.V.)
| | - Luis Cartuche
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (J.C.); (L.C.); (E.V.)
| | - Eduardo Valarezo
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (J.C.); (L.C.); (E.V.)
| | - Chabaco Armijos
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (J.C.); (L.C.); (E.V.)
| |
Collapse
|
14
|
Lim H, Hong H, Hwang S, Kim SJ, Seo SY, No KT. Identification of Novel Natural Product Inhibitors against Matrix Metalloproteinase 9 Using Quantum Mechanical Fragment Molecular Orbital-Based Virtual Screening Methods. Int J Mol Sci 2022; 23:4438. [PMID: 35457257 PMCID: PMC9030947 DOI: 10.3390/ijms23084438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are calcium-dependent zinc-containing endopeptidases involved in multiple cellular processes. Among the MMP isoforms, MMP-9 regulates cancer invasion, rheumatoid arthritis, and osteoarthritis by degrading extracellular matrix proteins present in the tumor microenvironment and cartilage and promoting angiogenesis. Here, we identified two potent natural product inhibitors of the non-catalytic hemopexin domain of MMP-9 using a novel quantum mechanical fragment molecular orbital (FMO)-based virtual screening workflow. The workflow integrates qualitative pharmacophore modeling, quantitative binding affinity prediction, and a raw material search of natural product inhibitors with the BMDMS-NP library. In binding affinity prediction, we made a scoring function with the FMO method and applied the function to two protein targets (acetylcholinesterase and fibroblast growth factor 1 receptor) from DUD-E benchmark sets. In the two targets, the FMO method outperformed the Glide docking score and MM/PBSA methods. By applying this workflow to MMP-9, we proposed two potent natural product inhibitors (laetanine 9 and genkwanin 10) that interact with hotspot residues of the hemopexin domain of MMP-9. Laetanine 9 and genkwanin 10 bind to MMP-9 with a dissociation constant (KD) of 21.6 and 0.614 μM, respectively. Overall, we present laetanine 9 and genkwanin 10 for MMP-9 and demonstrate that the novel FMO-based workflow with a quantum mechanical approach is promising to discover potent natural product inhibitors of MMP-9, satisfying the pharmacophore model and good binding affinity.
Collapse
Affiliation(s)
- Hocheol Lim
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Korea; (H.L.); (H.H.)
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Korea
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea;
| | - Hansol Hong
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Korea; (H.L.); (H.H.)
- Department of Biological Science, Kongju National University, Kongju 32588, Korea; (S.J.K.); (S.Y.S.)
| | - Seonik Hwang
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea;
| | - Song Ja Kim
- Department of Biological Science, Kongju National University, Kongju 32588, Korea; (S.J.K.); (S.Y.S.)
| | - Sung Yum Seo
- Department of Biological Science, Kongju National University, Kongju 32588, Korea; (S.J.K.); (S.Y.S.)
| | - Kyoung Tai No
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Korea; (H.L.); (H.H.)
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Korea
- Baobab AiBIO Co., Ltd., Incheon 21983, Korea
| |
Collapse
|
15
|
Essential Oils and Extracts of Juniperus macrocarpa Sm. and Juniperus oxycedrus L.: Comparative Phytochemical Composition and Anti-Proliferative and Antioxidant Activities. PLANTS 2022; 11:plants11081025. [PMID: 35448753 PMCID: PMC9031627 DOI: 10.3390/plants11081025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 01/30/2023]
Abstract
In this work, we conducted a comparative phytochemical, chemotaxonomic, and biological study of essential oils (EOs) and extracts (ethyl acetate and methanol) obtained from the leaves of Juniperusmacrocarpa and J. oxycedrus. The dominant compounds of J. macrocarpa EO, analysed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS), are α-pinene, sabinene, manoyl oxide, and germacrene D, whereas α-pinene, limonene, (Z,E)-farnesol, β-pinene, and γ-cadinene are the most representative volatiles of J. oxycedrus EOs. A multivariate analysis of EOs, included a selection of literature data comparing our samples to samples of J. oxycedrus/macrocarpa/deltoides from the Mediterranean area, was performed. As evident by high-performance liquid chromatography (HPLC) analyses, apigenin, (−)-epicatechin, and luteolin were abundant in J. oxycedrus extracts, while gallic acid, kaempferol-3-O-glucoside, and protocatechuic acid were the dominant constituents of J. macrocarpa extracts. EOs and extracts have been investigated for their potential antioxidant properties and anti-proliferative activity against lung adenocarcinoma (A549), breast cancer (MCF-7 and MDA-MB-231), and lung large cell carcinoma (COR-L23) human cell lines. The methanol and ethyl acetate extracts of J. oxycedrus exerted the most valuable antioxidant activity and exhibited the most promising activity against the COR-L23 cell line with an IC50 of 26.0 and 39.1 μg/mL, respectively, lower than that obtained with the positive control (IC50 of 45.5 μg/mL). To the best of our knowledge, this is the first report highlighting the anti-proliferative activity of J. oxycedrus and J. macrocarpa extracts against this lung cancer cell line. Our results indicate that J. oxycedrus may be considered a source of natural compounds with antioxidant and anti-proliferative effects that could be suitable for future applications.
Collapse
|
16
|
Tundis R, Passalacqua NG, Bonesi M, Loizzo MR. An Insight into Salvia haematodes L. (Lamiaceae) Bioactive Extracts Obtained by Traditional and Green Extraction Procedures. PLANTS 2022; 11:plants11060781. [PMID: 35336663 PMCID: PMC8956035 DOI: 10.3390/plants11060781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 12/01/2022]
Abstract
Even though Salvia is one of the most known genera of the Lamiaceae family, some traditionally used Salvia species are still now less investigated. To that end, the present study aims to evaluate the chemical profile and the potential bioactivities of extracts and related fractions obtained from the endemic sage Salvia haematodes L. by applying a traditional extraction method such as Soxhlet apparatus (SHS) and the rapid solid–liquid dynamic extraction (RSLDE) by Naviglio extractor® (SHN), considered among the “green techniques” operating at room temperature and with minimum solvent employment and minimum energy. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity was measured by a modified Ellman’s method. The antioxidant activity was investigated by using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing ability power (FRAP), and β-carotene bleaching tests. The SHN methanol fraction resulted the most active in all assays in particular in inhibiting lipid peroxidation with IC50 of 1.7 and 1.6 μg/mL, respectively, after 30 and 60 min of incubation. The SHN n-hexane fraction exhibited a selective activity against AChE with half-maximal inhibitory concentration (IC50) of 22.9 μg/mL, while the SHS n-hexane extract was more active against BChE (IC50 of 30.9 μg/mL). Based on these results, these fractions were subjected to further bio-fractionation by Medium Pressure Liquid Chromatography (MPLC) and the relative obtained fractions were investigated for their AChE and BChE inhibitory activity. A comparative analysis with bio-activity and chemical profile was performed. The observed biological effects provided us with a good starting point for further studies on S. haematodes extracts and fractions such as agents beneficial for the treatment of AD.
Collapse
Affiliation(s)
- Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.B.); (M.R.L.)
- Correspondence: ; Tel.: +39-0984-493246
| | | | - Marco Bonesi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.B.); (M.R.L.)
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.B.); (M.R.L.)
| |
Collapse
|
17
|
Pollastro F, Minassi A. Exploring the Universe of Natural Products: Recent Advances in Synthesis, Isolation and Structural Elucidation. PLANTS 2021; 10:plants10112368. [PMID: 34834731 PMCID: PMC8617602 DOI: 10.3390/plants10112368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/03/2023]
Affiliation(s)
- Federica Pollastro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy;
- PlantaChem srls, Via Canobio 4/6, 28100 Novara, Italy
| | - Alberto Minassi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy;
- PlantaChem srls, Via Canobio 4/6, 28100 Novara, Italy
- Correspondence: ; Tel.: +39-0321-375843
| |
Collapse
|
18
|
De-Montijo-Prieto S, Razola-Díaz MDC, Gómez-Caravaca AM, Guerra-Hernandez EJ, Jiménez-Valera M, Garcia-Villanova B, Ruiz-Bravo A, Verardo V. Essential Oils from Fruit and Vegetables, Aromatic Herbs, and Spices: Composition, Antioxidant, and Antimicrobial Activities. BIOLOGY 2021; 10:1091. [PMID: 34827085 PMCID: PMC8615279 DOI: 10.3390/biology10111091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/03/2022]
Abstract
In the field of food preservation, encapsulated Essential Oils (EOs) could be the best non-toxic and eco-friendly tool for food preservative applications substituting the chemicals ones that have several disadvantages for the environment and health. Thirteen commercial EOs from plants, fruits, and vegetables were characterized by GC-MS. The antioxidant activity was measured by DPPH and ABTS techniques. Antimicrobial activity was assessed by agar well-diffusion method and the Minimum Inhibitory Concentration (MIC) by agar dilution method against six bacteria, Candida albicans, and Botrytis cinerea. All the EOs tested have demonstrated antioxidant activity in the range of IC50 0.01-105.32 mg/mL. Between them, cinnamon EOs were the best, followed by oregano and thyme EOs. Fennel EO showed the lowest radical scavenging. MIC values ranged from 0.14 to 9 mg/mL. C. cassia, thyme, and oregano EOs were the most effective against the bacterial species tested, and the yeast C. albicans. On the contrary, citric fruit EOs showed low or no inhibition against most bacterial strains. The percentages of inhibition of mycelia growth of B. cinerea ranged from 3.4 to 98.5%. Thyme, oregano, mint, and fennel EOs showed the highest inhibition.
Collapse
Affiliation(s)
- Soumi De-Montijo-Prieto
- Department of Microbiology, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (S.D.-M.-P.); (M.J.-V.); (A.R.-B.)
| | - María del Carmen Razola-Díaz
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (M.d.C.R.-D.); (E.J.G.-H.); (B.G.-V.); (V.V.)
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Center, University of Granada, Avda del Conocimiento sn., Armilla, 18100 Granada, Spain
| | - Ana María Gómez-Caravaca
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avd. Fuentenueva s/n., 18071 Granada, Spain
| | - Eduardo Jesús Guerra-Hernandez
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (M.d.C.R.-D.); (E.J.G.-H.); (B.G.-V.); (V.V.)
| | - María Jiménez-Valera
- Department of Microbiology, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (S.D.-M.-P.); (M.J.-V.); (A.R.-B.)
| | - Belén Garcia-Villanova
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (M.d.C.R.-D.); (E.J.G.-H.); (B.G.-V.); (V.V.)
| | - Alfonso Ruiz-Bravo
- Department of Microbiology, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (S.D.-M.-P.); (M.J.-V.); (A.R.-B.)
| | - Vito Verardo
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (M.d.C.R.-D.); (E.J.G.-H.); (B.G.-V.); (V.V.)
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Center, University of Granada, Avda del Conocimiento sn., Armilla, 18100 Granada, Spain
| |
Collapse
|
19
|
Walczak-Nowicka ŁJ, Herbet M. Acetylcholinesterase Inhibitors in the Treatment of Neurodegenerative Diseases and the Role of Acetylcholinesterase in their Pathogenesis. Int J Mol Sci 2021; 22:9290. [PMID: 34502198 PMCID: PMC8430571 DOI: 10.3390/ijms22179290] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022] Open
Abstract
Acetylcholinesterase (AChE) plays an important role in the pathogenesis of neurodegenerative diseases by influencing the inflammatory response, apoptosis, oxidative stress and aggregation of pathological proteins. There is a search for new compounds that can prevent the occurrence of neurodegenerative diseases and slow down their course. The aim of this review is to present the role of AChE in the pathomechanism of neurodegenerative diseases. In addition, this review aims to reveal the benefits of using AChE inhibitors to treat these diseases. The selected new AChE inhibitors were also assessed in terms of their potential use in the described disease entities. Designing and searching for new drugs targeting AChE may in the future allow the discovery of therapies that will be effective in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8bStreet, 20-090 Lublin, Poland;
| |
Collapse
|
20
|
Ullah H, Di Minno A, Santarcangelo C, Khan H, Daglia M. Improvement of Oxidative Stress and Mitochondrial Dysfunction by β-Caryophyllene: A Focus on the Nervous System. Antioxidants (Basel) 2021; 10:546. [PMID: 33915950 PMCID: PMC8066981 DOI: 10.3390/antiox10040546] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/19/2021] [Accepted: 03/28/2021] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial dysfunction results in a series of defective cellular events, including decreased adenosine triphosphate (ATP) production, enhanced reactive oxygen species (ROS) output, and altered proteastasis and cellular quality control. An enhanced output of ROS may damage mitochondrial components, such as mitochondrial DNA and elements of the electron transport chain, resulting in the loss of proper electrochemical gradient across the mitochondrial inner membrane and an ensuing shutdown of mitochondrial energy production. Neurons have an increased demand for ATP and oxygen, and thus are more prone to damage induced by mitochondrial dysfunction. Mitochondrial dysfunction, damaged electron transport chains, altered membrane permeability and Ca2+ homeostasis, and impaired mitochondrial defense systems induced by oxidative stress, are pathological changes involved in neurodegenerative disorders. A growing body of evidence suggests that the use of antioxidants could stabilize mitochondria and thus may be suitable for preventing neuronal loss. Numerous natural products exhibit the potential to counter oxidative stress and mitochondrial dysfunction; however, science is still looking for a breakthrough in the treatment of neurodegenerative disorders. β-caryophyllene is a bicyclic sesquiterpene, and an active principle of essential oils derived from a large number of spices and food plants. As a selective cannabinoid receptor 2 (CB2) agonist, several studies have reported it as possessing numerous pharmacological activities such as antibacterial (e.g., Helicobacter pylori), antioxidant, anti-inflammatory, analgesic (e.g., neuropathic pain), anti-neurodegenerative and anticancer properties. The present review mainly focuses on the potential of β-caryophyllene in reducing oxidative stress and mitochondrial dysfunction, and its possible links with neuroprotection.
Collapse
Affiliation(s)
- Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (A.D.M.); (C.S.)
| | - Alessandro Di Minno
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (A.D.M.); (C.S.)
- CEINGE-Biotecnologie Avanzate, 80131 Naples, Italy
| | - Cristina Santarcangelo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (A.D.M.); (C.S.)
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan; or
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (A.D.M.); (C.S.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
21
|
Tundis R, Conidi C, Loizzo MR, Sicari V, Romeo R, Cassano A. Concentration of Bioactive Phenolic Compounds in Olive Mill Wastewater by Direct Contact Membrane Distillation. Molecules 2021; 26:molecules26061808. [PMID: 33806935 PMCID: PMC8004892 DOI: 10.3390/molecules26061808] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/29/2022] Open
Abstract
Olive mill wastewater (OMW), generated as a by-product of olive oil production, is considered one of the most polluting effluents produced by the agro-food industry, due to its high concentration of organic matter and nutrients. However, OMW is rich in several polyphenols, representing compounds with remarkable biological properties. This study aimed to analyze the chemical profile as well as the antioxidant and anti-obesity properties of concentrated fractions obtained from microfiltered OMW treated by direct contact membrane distillation (DCMD). Ultra-high performance liquid chromatography (UHPLC) analyses were applied to quantify some phenols selected as phytochemical markers. Moreover, α-Amylase, α-glucosidase, and lipase inhibitory activity were investigated together with the antioxidant activity by means of assays, namely β-carotene bleaching, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic) acid (ABTS) diammonium salts, 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, and Ferric Reducing Activity Power (FRAP) tests. MD retentate—which has content of about five times greater of hydroxytyrosol and verbascoside and about 7 times greater of oleuropein than the feed—was more active as an antioxidant in all applied assays. Of interest is the result obtained in the DPPH test (an inhibitory concentration 50% (IC50) of 9.8 μg/mL in comparison to the feed (IC50 of 97.2 μg/mL)) and in the ABTS assay (an IC50 of 0.4 μg/mL in comparison to the feed (IC50 of 1.2 μg/mL)).
Collapse
Affiliation(s)
- Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (R.T.); (M.R.L.)
| | - Carmela Conidi
- Institute on Membrane Technology, ITM-CNR, 87036 Rende, CS, Italy;
| | - Monica R. Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (R.T.); (M.R.L.)
| | - Vincenzo Sicari
- Department of Agricultural Science, Mediterranean University of Reggio Calabria, 89123 Reggio Calabria, Italy; (V.S.); (R.R.)
| | - Rosa Romeo
- Department of Agricultural Science, Mediterranean University of Reggio Calabria, 89123 Reggio Calabria, Italy; (V.S.); (R.R.)
| | - Alfredo Cassano
- Institute on Membrane Technology, ITM-CNR, 87036 Rende, CS, Italy;
- Correspondence: ; Tel.: +39-0984-492067
| |
Collapse
|
22
|
Salvia officinalis L. from Italy: A Comparative Chemical and Biological Study of Its Essential Oil in the Mediterranean Context. Molecules 2020; 25:molecules25245826. [PMID: 33321838 PMCID: PMC7763040 DOI: 10.3390/molecules25245826] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
Salvia officinalis L. (sage) is one of the most appreciated plants for its plethora of biologically active compounds. The objective of our research was a comparative study, in the Mediterranean context, of chemical composition, anticholinesterases, and antioxidant properties of essential oils (EOs) from sage collected in three areas (S1–S3) of Southern Italy. EOs were extracted by hydrodistillation and analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory properties were investigated by employing Ellman’s method. Four in vitro assays, namely, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric-reducing ability power (FRAP), and β-carotene bleaching tests, were used to study the antioxidant effects. Camphor (16.16–18.92%), 1,8-cineole (8.80–9.86%), β-pinene (3.08–9.14%), camphene (6.27–8.08%), and α-thujone (1.17–9.26%) are identified as the most abundant constituents. However, the content of these constituents varied depending on environmental factors and pedoclimatic conditions. Principal component analysis (PCA) was performed. Based on Relative Antioxidant Capacity Index (RACI), S2 essential oil exhibited the highest radical potential with an IC50 value of 20.64 μg/mL in ABTS test and presented the highest protection of lipid peroxidation with IC50 values of 38.06 and 46.32 μg/mL after 30 and 60 min of incubation, respectively. The most promising inhibitory activity against BChE was found for S3 sample (IC50 of 33.13 μg/mL).
Collapse
|