1
|
Martinez-Seidel F, Suwanchaikasem P, Gentry-Torfer D, Rajarathinam Y, Ebert A, Erban A, Firmino A, Nie S, Leeming M, Williamson N, Roessner U, Kopka J, Boughton BA. Remodelled ribosomal populations synthesize a specific proteome in proliferating plant tissue during cold. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230384. [PMID: 40045790 PMCID: PMC11883437 DOI: 10.1098/rstb.2023.0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/21/2024] [Accepted: 09/11/2024] [Indexed: 03/09/2025] Open
Abstract
Plant acclimation occurs through system-wide mechanisms that include proteome shifts, some of which occur at the level of protein synthesis. All proteins are synthesized by ribosomes. Rather than being monolithic, transcript-to-protein translation machines, ribosomes can be selective and cause proteome shifts. In this study, we use apical root meristems of germinating seedlings of the monocotyledonous plant barley as a model to examine changes in protein abundance and synthesis during cold acclimation. We measured metabolic and physiological parameters that allowed us to compare protein synthesis in the cold to optimal rearing temperatures. We demonstrated that the synthesis and assembly of ribosomal proteins are independent processes in root proliferative tissue. We report the synthesis and accumulation of various macromolecular complexes and propose how ribosome compositional shifts may be associated with functional proteome changes that are part of successful cold acclimation. Our study indicates that translation initiation is limiting during cold acclimation while the ribosome population is remodelled. The distribution of the triggered ribosomal protein heterogeneity suggests that altered compositions may confer 60S subunits selective association capabilities towards translation initiation complexes. To what extent selective translation depends on heterogeneous ribo-proteome compositions in barley proliferative root tissue remains a yet unresolved question.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Federico Martinez-Seidel
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pipob Suwanchaikasem
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Dione Gentry-Torfer
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Yogeswari Rajarathinam
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Alina Ebert
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Alexander Erban
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Alexandre Firmino
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Shuai Nie
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Leeming
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
- School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas Williamson
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Research School of Biology, The Australian National University, Acton, Australia
| | - Joachim Kopka
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Berin A. Boughton
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- La Trobe Institute of Sustainable Agriculture and Food, La Trobe University, Bundoora, Victoria3083, Australia
| |
Collapse
|
2
|
Murillo E, Martínez-Seidel F, Atanasov KE, Gentry-Torfer D, Pereira Firmino AA, Erban A, Nie S, Leeming MG, Suwanchaikasem P, Boughton BA, Williamson NA, Roessner U, Kopka J, Alcázar R. Polyamines and flg22 reshape the ribosomal protein composition of actively translating ribosomes in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109585. [PMID: 39893946 DOI: 10.1016/j.plaphy.2025.109585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/16/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Polyamines are small, polycationic molecules with amino groups that are present in most living organisms. Studies indicate that polyamines increase general protein synthesis and are essential for efficient translation. While progress has been made in understanding the role of polyamines in translation in bacteria and mammals, their contribution and mode of action in plants remain largely unexplored. In a previous study, we found that putrescine (Put) and the pathogen-associated molecular pattern (PAMP) from bacterial flagellin (flg22) transcriptionally induced ribosome biogenesis in plants. Here we examined the impact of polyamines (Put and spermine, Spm) and flg22 on ribosome complex formation in Arabidopsis. Our results indicate that polyamines, flg22 and their combinations increase the abundance of actively translating polysomes. Riboproteomic analyses revealed that polyamines and flg22 trigger differential changes in the accumulation of ribosomal proteins, which are structurally confined in response to Put. Importantly, Put was found binding to non-translating and actively translating ribosomes, suggesting that this polyamine has a role in functional aspects of translation, such as stabilization and/or remodeling of polysomal complexes. Additional global proteomics analyses in polyamine biosynthesis mutants revealed that lower Put availability triggers changes in proteins associated with ribonucleoprotein complex binding and biogenesis. Overall, our findings highlight the effect of polyamines and flg22 on shaping the ribosomal protein composition of actively translating ribosomes in plants.
Collapse
Affiliation(s)
- Ester Murillo
- Department of Biology, Healthcare and Environment. Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Federico Martínez-Seidel
- Applied Metabolome Analysis, Max Planck Institute of Molecular Plant Physiology, Golm, Potsdam, Germany; School of Biosciences, The University of Melbourne, Parkville, VIC, Australia; Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kostadin E Atanasov
- Department of Biology, Healthcare and Environment. Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Dione Gentry-Torfer
- Applied Metabolome Analysis, Max Planck Institute of Molecular Plant Physiology, Golm, Potsdam, Germany; School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | | | - Alexander Erban
- Applied Metabolome Analysis, Max Planck Institute of Molecular Plant Physiology, Golm, Potsdam, Germany
| | - Shuai Nie
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC, Australia
| | - Michael G Leeming
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC, Australia; School of Chemistry, The University of Melbourne, Parkville, VIC, Australia
| | | | - Berin A Boughton
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia; Australian National Phenome Centre, Murdoch University, Murdoch, WA, Australia; Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Nicholas A Williamson
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Ute Roessner
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia; Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Joachim Kopka
- Applied Metabolome Analysis, Max Planck Institute of Molecular Plant Physiology, Golm, Potsdam, Germany.
| | - Rubén Alcázar
- Department of Biology, Healthcare and Environment. Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
| |
Collapse
|
3
|
Lee S, Seo YE, Choi J, Yan X, Kim T, Choi D, Lee JH. Nucleolar actions in plant development and stress responses. PLANT, CELL & ENVIRONMENT 2024; 47:5189-5204. [PMID: 39169813 DOI: 10.1111/pce.15099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
The nucleolus is conventionally acknowledged for its role in ribosomal RNA (rRNA) synthesis and ribosome biogenesis. Recent research has revealed its multifaceted involvement in plant biology, encompassing regulation of the cell cycle, development, and responses to environmental stresses. This comprehensive review explores the diverse roles of the nucleolus in plant growth and responses to environmental stresses. The introduction delves into its traditional functions in rRNA synthesis and potential participation in nuclear liquid-liquid phase separation. By examining the multifaceted roles of nucleolar proteins in plant development, we highlight the impacts of various nucleolar mutants on growth, development, and embryogenesis. Additionally, we reviewed the involvement of nucleoli in responses to abiotic and biotic stresses. Under abiotic stress conditions, the nucleolar structure undergoes morphological changes. In the context of biotic stress, the nucleolus emerges as a common target for effectors of pathogens for manipulation of host immunity to enhance pathogenicity. The detailed exploration of how pathogens interact with nucleoli and manipulate host responses provides valuable insights into plant stress responses as well as plant growth and development. Understanding these processes may pave the way for promising strategies to enhance crop resilience and mitigate the impact of biotic and abiotic stresses in agricultural systems.
Collapse
Affiliation(s)
- Soeui Lee
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Ye-Eun Seo
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Jeen Choi
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Xin Yan
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Taewon Kim
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Doil Choi
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Joo Hyun Lee
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
4
|
Kwasniak-Owczarek M, Janska H. Experimental approaches to studying translation in plant semi-autonomous organelles. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5175-5187. [PMID: 38592734 PMCID: PMC11389837 DOI: 10.1093/jxb/erae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Plant mitochondria and chloroplasts are semi-autonomous organelles originated from free-living bacteria that have retained reduced genomes during evolution. As a consequence, relatively few of the mitochondrial and chloroplast proteins are encoded in the organellar genomes and synthesized by the organellar ribosomes. Since both organellar genomes encode mainly components of the energy transduction systems, oxidative phosphorylation in mitochondria and photosynthetic apparatus in chloroplasts, understanding organellar translation is critical for a thorough comprehension of key aspects of mitochondrial and chloroplast activity affecting plant growth and development. Recent studies have clearly shown that translation is a key regulatory node in the expression of plant organellar genes, underscoring the need for an adequate methodology to study this unique stage of gene expression. The organellar translatome can be analysed by studying newly synthesized proteins or the mRNA pool recruited to the organellar ribosomes. In this review, we present experimental approaches used for studying translation in plant bioenergetic organelles. Their benefits and limitations, as well as the critical steps, are discussed. Additionally, we briefly mention several recently developed strategies to study organellar translation that have not yet been applied to plants.
Collapse
Affiliation(s)
- Malgorzata Kwasniak-Owczarek
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, Wroclaw, 50-383, Poland
| | - Hanna Janska
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, Wroclaw, 50-383, Poland
| |
Collapse
|
5
|
Gentry-Torfer D, Murillo E, Barrington CL, Nie S, Leeming MG, Suwanchaikasem P, Williamson NA, Roessner U, Boughton BA, Kopka J, Martinez-Seidel F. Streamlining Protein Fractional Synthesis Rates Using SP3 Beads and Stable Isotope Mass Spectrometry: A Case Study on the Plant Ribosome. Bio Protoc 2024; 14:e4981. [PMID: 38737506 PMCID: PMC11082790 DOI: 10.21769/bioprotoc.4981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 05/14/2024] Open
Abstract
Ribosomes are an archetypal ribonucleoprotein assembly. Due to ribosomal evolution and function, r-proteins share specific physicochemical similarities, making the riboproteome particularly suited for tailored proteome profiling methods. Moreover, the structural proteome of ribonucleoprotein assemblies reflects context-dependent functional features. Thus, characterizing the state of riboproteomes provides insights to uncover the context-dependent functionality of r-protein rearrangements, as they relate to what has been termed the ribosomal code, a concept that parallels that of the histone code, in which chromatin rearrangements influence gene expression. Compared to high-resolution ribosomal structures, omics methods lag when it comes to offering customized solutions to close the knowledge gap between structure and function that currently exists in riboproteomes. Purifying the riboproteome and subsequent shot-gun proteomics typically involves protein denaturation and digestion with proteases. The results are relative abundances of r-proteins at the ribosome population level. We have previously shown that, to gain insight into the stoichiometry of individual proteins, it is necessary to measure by proteomics bound r-proteins and normalize their intensities by the sum of r-protein abundances per ribosomal complex, i.e., 40S or 60S subunits. These calculations ensure that individual r-protein stoichiometries represent the fraction of each family/paralog relative to the complex, effectively revealing which r-proteins become substoichiometric in specific physiological scenarios. Here, we present an optimized method to profile the riboproteome of any organism as well as the synthesis rates of r-proteins determined by stable isotope-assisted mass spectrometry. Our method purifies the r-proteins in a reversibly denatured state, which offers the possibility for combined top-down and bottom-up proteomics. Our method offers a milder native denaturation of the r-proteome via a chaotropic GuHCl solution as compared with previous studies that use irreversible denaturation under highly acidic conditions to dissociate rRNA and r-proteins. As such, our method is better suited to conserve post-translational modifications (PTMs). Subsequently, our method carefully considers the amino acid composition of r-proteins to select an appropriate protease for digestion. We avoid non-specific protease cleavage by increasing the pH of our standardized r-proteome dilutions that enter the digestion pipeline and by using a digestion buffer that ensures an optimal pH for a reliable protease digestion process. Finally, we provide the R package ProtSynthesis to study the fractional synthesis rates of r-proteins. The package uses physiological parameters as input to determine peptide or protein fractional synthesis rates. Once the physiological parameters are measured, our equations allow a fair comparison between treatments that alter the biological equilibrium state of the system under study. Our equations correct peptide enrichment using enrichments in soluble amino acids, growth rates, and total protein accumulation. As a means of validation, our pipeline fails to find "false" enrichments in non-labeled samples while also filtering out proteins with multiple unique peptides that have different enrichment values, which are rare in our datasets. These two aspects reflect the accuracy of our tool. Our method offers the possibility of elucidating individual r-protein family/paralog abundances, PTM status, fractional synthesis rates, and dynamic assembly into ribosomal complexes if top-down and bottom-up proteomic approaches are used concomitantly, taking one step further into mapping the native and dynamic status of the r-proteome onto high-resolution ribosome structures. In addition, our method can be used to study the proteomes of all macromolecular assemblies that can be purified, although purification is the limiting step, and the efficacy and accuracy of the proteases may be limited depending on the digestion requirements. Key features • Efficient purification of the ribosomal proteome: streamlined procedure for the specific purification of the ribosomal proteome or complex Ome. • Accurate calculation of fractional synthesis rates: robust method for calculating fractional protein synthesis rates in macromolecular complexes under different physiological steady states. • Holistic ribosome methodology focused on plants: comprehensive approach that provides insights into the ribosomes and translational control of plants, demonstrated using cold acclimation [1]. • Tailored strategies for stable isotope labeling in plants: methodology focusing on materials and labeling considerations specific to free and proteinogenic amino acid analysis [2].
Collapse
Affiliation(s)
- Dione Gentry-Torfer
- Applied Metabolome Analysis, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- School of Biosciences, The University of Melbourne, Parkville, Australia
| | - Ester Murillo
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Chloe L. Barrington
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
| | - Shuai Nie
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Australia
| | - Michael G. Leeming
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Australia
- School of Chemistry, The University of Melbourne, Parkville, Australia
| | | | - Nicholas A. Williamson
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Australia
| | - Ute Roessner
- School of Biosciences, The University of Melbourne, Parkville, Australia
- Research School of Biology, The Australian National University, Acton, Australia
| | - Berin A. Boughton
- School of Biosciences, The University of Melbourne, Parkville, Australia
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Australia
| | - Joachim Kopka
- Applied Metabolome Analysis, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Federico Martinez-Seidel
- Applied Metabolome Analysis, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- School of Biosciences, The University of Melbourne, Parkville, Australia
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
6
|
Shanmugam T, Chaturvedi P, Streit D, Ghatak A, Bergelt T, Simm S, Weckwerth W, Schleiff E. Low dose ribosomal DNA P-loop mutation affects development and enforces autophagy in Arabidopsis. RNA Biol 2024; 21:1-15. [PMID: 38156797 PMCID: PMC10761087 DOI: 10.1080/15476286.2023.2298532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
Arabidopsis contains hundreds of ribosomal DNA copies organized within the nucleolar organizing regions (NORs) in chromosomes 2 and 4. There are four major types of variants of rDNA, VAR1-4, based on the polymorphisms of 3' external transcribed sequences. The variants are known to be differentially expressed during plant development. We created a mutant by the CRISPR-Cas9-mediated excision of ~ 25 nt from predominantly NOR4 ribosomal DNA copies, obtaining mosaic mutational events on ~ 5% of all rDNA copies. The excised region consists of P-loop and Helix-82 segments of 25S rRNA. The mutation led to allelic, dosage-dependent defects marked by lateral root inhibition, reduced size, and pointy leaves, all previously observed for defective ribosomal function. The mutation in NOR4 led to dosage compensation from the NOR2 copies by elevated expression of VAR1 in mutants and further associated single-nucleotide variants, thus, resulting in altered rRNA sub-population. Furthermore, the mutants exhibited rRNA maturation defects specifically in the minor pathway typified by 32S pre-rRNA accumulation. Density-gradient fractionation and subsequent RT-PCR of rRNA analyses revealed that mutated copies were not incorporated into the translating ribosomes. The mutants in addition displayed an elevated autophagic flux as shown by the autophagic marker GFP-ATG8e, likely related to ribophagy.
Collapse
Affiliation(s)
- Thiruvenkadam Shanmugam
- Molecular Cell Biology of Plants, Institute for Molecular Biosciences & Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Palak Chaturvedi
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Deniz Streit
- Molecular Cell Biology of Plants, Institute for Molecular Biosciences & Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Arindam Ghatak
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Thorsten Bergelt
- Molecular Cell Biology of Plants, Institute for Molecular Biosciences & Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stefan Simm
- Molecular Cell Biology of Plants, Institute for Molecular Biosciences & Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Enrico Schleiff
- Molecular Cell Biology of Plants, Institute for Molecular Biosciences & Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| |
Collapse
|
7
|
Siodmak A, Martinez-Seidel F, Rayapuram N, Bazin J, Alhoraibi H, Gentry-Torfer D, Tabassum N, Sheikh AH, Kise J, Blilou I, Crespi M, Kopka J, Hirt H. Dynamics of ribosome composition and ribosomal protein phosphorylation in immune signaling in Arabidopsis thaliana. Nucleic Acids Res 2023; 51:11876-11892. [PMID: 37823590 PMCID: PMC10681734 DOI: 10.1093/nar/gkad827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
In plants, the detection of microbe-associated molecular patterns (MAMPs) induces primary innate immunity by the activation of mitogen-activated protein kinases (MAPKs). We show here that the MAMP-activated MAPK MPK6 not only modulates defense through transcriptional regulation but also via the ribosomal protein translation machinery. To understand the effects of MPK6 on ribosomes and their constituent ribosomal proteins (RPs), polysomes, monosomes and the phosphorylation status of the RPs, MAMP-treated WT and mpk6 mutant plants were analysed. MAMP-activation induced rapid changes in RP composition of monosomes, polysomes and in the 60S ribosomal subunit in an MPK6-specific manner. Phosphoproteome analysis showed that MAMP-activation of MPK6 regulates the phosphorylation status of the P-stalk ribosomal proteins by phosphorylation of RPP0 and the concomitant dephosphorylation of RPP1 and RPP2. These events coincide with a significant decrease in the abundance of ribosome-bound RPP0s, RPP1s and RPP3s in polysomes. The P-stalk is essential in regulating protein translation by recruiting elongation factors. Accordingly, we found that RPP0C mutant plants are compromised in basal resistance to Pseudomonas syringae infection. These data suggest that MAMP-induced defense also involves MPK6-induced regulation of P-stalk proteins, highlighting a new role of ribosomal regulation in plant innate immunity.
Collapse
Affiliation(s)
- Anna Siodmak
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Federico Martinez-Seidel
- Willmitzer Department, Max Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Naganand Rayapuram
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Jeremie Bazin
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
| | - Hanna Alhoraibi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21551 Jeddah, Saudi Arabia
| | - Dione Gentry-Torfer
- Willmitzer Department, Max Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Naheed Tabassum
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Arsheed H Sheikh
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - José Kenyi González Kise
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Ikram Blilou
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Martin Crespi
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
| | - Joachim Kopka
- Willmitzer Department, Max Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Heribert Hirt
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, 1030 Vienna, Austria
| |
Collapse
|
8
|
Shirokikh NE. Translation complex stabilization on messenger RNA and footprint profiling to study the RNA responses and dynamics of protein biosynthesis in the cells. Crit Rev Biochem Mol Biol 2021; 57:261-304. [PMID: 34852690 DOI: 10.1080/10409238.2021.2006599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During protein biosynthesis, ribosomes bind to messenger (m)RNA, locate its protein-coding information, and translate the nucleotide triplets sequentially as codons into the corresponding sequence of amino acids, forming proteins. Non-coding mRNA features, such as 5' and 3' untranslated regions (UTRs), start sites or stop codons of different efficiency, stretches of slower or faster code and nascent polypeptide interactions can alter the translation rates transcript-wise. Most of the homeostatic and signal response pathways of the cells converge on individual mRNA control, as well as alter the global translation output. Among the multitude of approaches to study translational control, one of the most powerful is to infer the locations of translational complexes on mRNA based on the mRNA fragments protected by these complexes from endonucleolytic hydrolysis, or footprints. Translation complex profiling by high-throughput sequencing of the footprints allows to quantify the transcript-wise, as well as global, alterations of translation, and uncover the underlying control mechanisms by attributing footprint locations and sizes to different configurations of the translational complexes. The accuracy of all footprint profiling approaches critically depends on the fidelity of footprint generation and many methods have emerged to preserve certain or multiple configurations of the translational complexes, often in challenging biological material. In this review, a systematic summary of approaches to stabilize translational complexes on mRNA for footprinting is presented and major findings are discussed. Future directions of translation footprint profiling are outlined, focusing on the fidelity and accuracy of inference of the native in vivo translation complex distribution on mRNA.
Collapse
Affiliation(s)
- Nikolay E Shirokikh
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
9
|
Schlossarek D, Luzarowski M, Sokołowska E, Górka M, Willmitzer L, Skirycz A. PROMISed: A novel web-based tool to facilitate analysis and visualization of the molecular interaction networks from co-fractionation mass spectrometry (CF-MS) experiments. Comput Struct Biotechnol J 2021; 19:5117-5125. [PMID: 34589187 PMCID: PMC8453180 DOI: 10.1016/j.csbj.2021.08.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
Co-fractionation mass spectrometry (CF-MS)-based approaches enable cell-wide identification of protein-protein and protein-metabolite complexes present in the cellular lysate. CF-MS combines biochemical separation of molecular complexes with an untargeted mass-spectrometry-based proteomics and/or metabolomics analysis of the obtained fractions, and is used to delineate putative interactors. CF-MS data are a treasure trove for biological discovery. To facilitate analysis and visualization of original or publically available CF-MS datasets, we designed PROMISed, a user-friendly tool available online via https://myshiny.mpimp-golm.mpg.de/PDP1/ or as a repository via https://github.com/DennisSchlossarek/PROMISed. Specifically, starting with raw fractionation profiles, PROMISed (i) contains activities for data pre-processing and normalization, (ii) deconvolutes complex fractionation profiles into single, distinct peaks, (iii) identifies co-eluting protein-protein or protein-metabolite pairs using user-defined correlation methods, and (iv) performs co-fractionation network analysis. Given multiple CF-MS datasets, for instance representing different environmental condition, PROMISed allows to select for proteins and metabolites that differ in their elution profile, which may indicate change in the interaction status. But it also enables the identification of protein-protein and protein-metabolite pairs that co-elute together across multiple datasets. PROMISed enables users to (i) easily adjust parameters at each step of the analysis, (ii) download partial and final results, and (iii) select among different data-visualization options. PROMISed renders CF-MS data accessible to a broad scientific audience, allowing users with no computational or statistical background to look for novel protein-protein and protein-metabolite complexes for further experimental validation.
Collapse
Affiliation(s)
- Dennis Schlossarek
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ewelina Sokołowska
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Michał Górka
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Lothar Willmitzer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany.,Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY 14853, United States
| |
Collapse
|
10
|
Shanmugam T, Streit D, Schroll F, Kovacevic J, Schleiff E. Dynamics and thermal sensitivity of ribosomal RNA maturation paths in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab434. [PMID: 34591082 DOI: 10.1093/jxb/erab434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 06/13/2023]
Abstract
Ribosome biogenesis is a constitutive fundamental process for cellular function. Its rate of production depends on the rate of maturation of precursor ribosomal RNA (pre-rRNA). The rRNA maturation paths are marked by four dominant rate-limiting intermediates with cell-type variation of the processivity rate. We have identified that high temperature stress in plants, while halting the existing pre-rRNA maturation schemes, also transiently triggers an atypical pathway for 35S pre-rRNA processing. This pathway leads to production of an aberrant precursor rRNA, reminiscent of yeast 24S, encompassing 18S and 5.8S rRNA that do not normally co-occur together at sub-unit levels; this response is elicited specifically by high and not low temperatures. We show this response to be conserved in two other model crop plant species (Rice and Tomato). This pathway persists even after returning to normal growth conditions for 1 hour and is reset between 1-6 hours after stress treatment, likely, due to resumption of normal 35S pre-rRNA synthesis and processing. The heat-induced ITS2 cleavage-derived precursors and stalled P-A2-like precursors were heterogeneous in nature with a fraction containing polymeric (A) tails. Furthermore, high temperature treatment and subsequent fractionation resulted in polysome and precursor rRNA depletion.
Collapse
Affiliation(s)
- Thiruvenkadam Shanmugam
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, 60438 Frankfurt, Germany
| | - Deniz Streit
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, 60438 Frankfurt, Germany
| | - Frank Schroll
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, 60438 Frankfurt, Germany
| | - Jelena Kovacevic
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, 60438 Frankfurt, Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, 60438 Frankfurt, Germany
- Frankfurt Institute for Advanced Studies, D-60438 Frankfurt, Germany
- Buchman Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|
11
|
Isolation of bacteria from artificial bronchoalveolar lavage fluid using density gradient centrifugation and their accessibility by Raman spectroscopy. Anal Bioanal Chem 2021; 413:5193-5200. [PMID: 34215913 PMCID: PMC8405473 DOI: 10.1007/s00216-021-03488-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 11/20/2022]
Abstract
Raman spectroscopy is an analytical method to identify medical samples of bacteria. Because Raman spectroscopy detects the biochemical properties of a cell, there are many factors that can influence and modify the Raman spectra of bacteria. One possible influence is a proper method for isolation of the bacteria. Medical samples in particular never occur in purified form, so a Raman-compatible isolation method is needed which does not affect the bacteria and thus the resulting spectra. In this study, we present a Raman-compatible method for isolation of bacteria from bronchoalveolar lavage (BAL) fluid using density gradient centrifugation. In addition to measuring the bacteria from a patient sample, the yield and the spectral influence of the isolation on the bacteria were investigated. Bacteria isolated from BAL fluid show additional peaks in comparison to pure culture bacteria, which can be attributed to components in the BAL sample. The isolation gradient itself has no effect on the spectra, and with a yield of 63% and 78%, the method is suitable for isolation of low concentrations of bacteria from a complex matrix. Graphical abstract ![]()
Collapse
|
12
|
Martinez-Seidel F, Beine-Golovchuk O, Hsieh YC, Eshraky KE, Gorka M, Cheong BE, Jimenez-Posada EV, Walther D, Skirycz A, Roessner U, Kopka J, Pereira Firmino AA. Spatially Enriched Paralog Rearrangements Argue Functionally Diverse Ribosomes Arise during Cold Acclimation in Arabidopsis. Int J Mol Sci 2021; 22:6160. [PMID: 34200446 PMCID: PMC8201131 DOI: 10.3390/ijms22116160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Ribosome biogenesis is essential for plants to successfully acclimate to low temperature. Without dedicated steps supervising the 60S large subunits (LSUs) maturation in the cytosol, e.g., Rei-like (REIL) factors, plants fail to accumulate dry weight and fail to grow at suboptimal low temperatures. Around REIL, the final 60S cytosolic maturation steps include proofreading and assembly of functional ribosomal centers such as the polypeptide exit tunnel and the P-Stalk, respectively. In consequence, these ribosomal substructures and their assembly, especially during low temperatures, might be changed and provoke the need for dedicated quality controls. To test this, we blocked ribosome maturation during cold acclimation using two independent reil double mutant genotypes and tested changes in their ribosomal proteomes. Additionally, we normalized our mutant datasets using as a blank the cold responsiveness of a wild-type Arabidopsis genotype. This allowed us to neglect any reil-specific effects that may happen due to the presence or absence of the factor during LSU cytosolic maturation, thus allowing us to test for cold-induced changes that happen in the early nucleolar biogenesis. As a result, we report that cold acclimation triggers a reprogramming in the structural ribosomal proteome. The reprogramming alters the abundance of specific RP families and/or paralogs in non-translational LSU and translational polysome fractions, a phenomenon known as substoichiometry. Next, we tested whether the cold-substoichiometry was spatially confined to specific regions of the complex. In terms of RP proteoforms, we report that remodeling of ribosomes after a cold stimulus is significantly constrained to the polypeptide exit tunnel (PET), i.e., REIL factor binding and functional site. In terms of RP transcripts, cold acclimation induces changes in RP families or paralogs that are significantly constrained to the P-Stalk and the ribosomal head. The three modulated substructures represent possible targets of mechanisms that may constrain translation by controlled ribosome heterogeneity. We propose that non-random ribosome heterogeneity controlled by specialized biogenesis mechanisms may contribute to a preferential or ultimately even rigorous selection of transcripts needed for rapid proteome shifts and successful acclimation.
Collapse
Affiliation(s)
- Federico Martinez-Seidel
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Olga Beine-Golovchuk
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- Heidelberg University, Biochemie-Zentrum, Nuclear Pore Complex and Ribosome Assembly, 69120 Heidelberg, Germany
| | - Yin-Chen Hsieh
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- Institute for Arctic and Marine Biology, UiT Arctic University of Norway, 9037 Tromsø, Norway
| | - Kheloud El Eshraky
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Michal Gorka
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Bo-Eng Cheong
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Malaysia
| | - Erika V. Jimenez-Posada
- Grupo de Biotecnología-Productos Naturales, Universidad Tecnológica de Pereira, Pereira 660003, Colombia;
- Emerging Infectious Diseases and Tropical Medicine Research Group—Sci-Help, Pereira 660009, Colombia
| | - Dirk Walther
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Aleksandra Skirycz
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Joachim Kopka
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Alexandre Augusto Pereira Firmino
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| |
Collapse
|
13
|
Martinez-Seidel F, Suwanchaikasem P, Nie S, Leeming MG, Pereira Firmino AA, Williamson NA, Kopka J, Roessner U, Boughton BA. Membrane-Enriched Proteomics Link Ribosome Accumulation and Proteome Reprogramming With Cold Acclimation in Barley Root Meristems. FRONTIERS IN PLANT SCIENCE 2021; 12:656683. [PMID: 33995454 PMCID: PMC8121087 DOI: 10.3389/fpls.2021.656683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/22/2021] [Indexed: 05/17/2023]
Abstract
Due to their sessile nature, plants rely on root systems to mediate many biotic and abiotic cues. To overcome these challenges, the root proteome is shaped to specific responses. Proteome-wide reprogramming events are magnified in meristems due to their active protein production. Using meristems as a test system, here, we study the major rewiring that plants undergo during cold acclimation. We performed tandem mass tag-based bottom-up quantitative proteomics of two consecutive segments of barley seminal root apexes subjected to suboptimal temperatures. After comparing changes in total and ribosomal protein (RP) fraction-enriched contents with shifts in individual protein abundances, we report ribosome accumulation accompanied by an intricate translational reprogramming in the distal apex zone. Reprogramming ranges from increases in ribosome biogenesis to protein folding factors and suggests roles for cold-specific RP paralogs. Ribosome biogenesis is the largest cellular investment; thus, the vast accumulation of ribosomes and specific translation-related proteins during cold acclimation could imply a divergent ribosomal population that would lead to a proteome shift across the root. Consequently, beyond the translational reprogramming, we report a proteome rewiring. First, triggered protein accumulation includes spliceosome activity in the root tip and a ubiquitous upregulation of glutathione production and S-glutathionylation (S-GSH) assemblage machineries in both root zones. Second, triggered protein depletion includes intrinsically enriched proteins in the tip-adjacent zone, which comprise the plant immune system. In summary, ribosome and translation-related protein accumulation happens concomitantly to a proteome reprogramming in barley root meristems during cold acclimation. The cold-accumulated proteome is functionally implicated in feedbacking transcript to protein translation at both ends and could guide cold acclimation.
Collapse
Affiliation(s)
- Federico Martinez-Seidel
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Shuai Nie
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC, Australia
| | - Michael G. Leeming
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC, Australia
- School of Chemistry, The University of Melbourne, Parkville, VIC, Australia
| | | | - Nicholas A. Williamson
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Joachim Kopka
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Berin A. Boughton
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Australian National Phenome Centre, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
14
|
Arabidopsis REI-LIKE proteins activate ribosome biogenesis during cold acclimation. Sci Rep 2021; 11:2410. [PMID: 33510206 PMCID: PMC7844247 DOI: 10.1038/s41598-021-81610-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Arabidopsis REIL proteins are cytosolic ribosomal 60S-biogenesis factors. After shift to 10 °C, reil mutants deplete and slowly replenish non-translating eukaryotic ribosome complexes of root tissue, while controlling the balance of non-translating 40S- and 60S-subunits. Reil mutations respond by hyper-accumulation of non-translating subunits at steady-state temperature; after cold-shift, a KCl-sensitive 80S sub-fraction remains depleted. We infer that Arabidopsis may buffer fluctuating translation by pre-existing non-translating ribosomes before de novo synthesis meets temperature-induced demands. Reil1 reil2 double mutants accumulate 43S-preinitiation and pre-60S-maturation complexes and alter paralog composition of ribosomal proteins in non-translating complexes. With few exceptions, e.g. RPL3B and RPL24C, these changes are not under transcriptional control. Our study suggests requirement of de novo synthesis of eukaryotic ribosomes for long-term cold acclimation, feedback control of NUC2 and eIF3C2 transcription and links new proteins, AT1G03250, AT5G60530, to plant ribosome biogenesis. We propose that Arabidopsis requires biosynthesis of specialized ribosomes for cold acclimation.
Collapse
|