1
|
Ma L, Yin K, Zhu W, Wang Y, Zhang L, Yang N. Allelopathic inhibitory of thymol on Arabidopsis thaliana primary root growth is mediated by ABA signaling pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112453. [PMID: 40057048 DOI: 10.1016/j.plantsci.2025.112453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/17/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025]
Abstract
Abscisic acid (ABA) is a sesquiterpenoid phytohormone involved in controlling plant root growth and development. Thymol, a monoterpene allelochemical, showed a potent phytotoxic effect in plants. It can rapidly inhibit seed germination and seedling growth. In this study, we employed a combination of transcriptome sequencing and validation methods from plant genetics and physiology to investigate the allelopathic inhibitory effects of thymol on the primary roots of Arabidopsis. We found that thymol affected the growth of Arabidopsis thaliana primary root in a dose-dependent manner, low concentration (10 μM) generally enhances, and high concentration (150 μM) inhibits. RNA sequencing analysis showed that a high concentration of thymol affected a series of biological processes and signaling transduction, including ABA biosynthesis, auxin polar transport, oxidative stress, root growth, and development. Exogenous ABA (10 μM) enhanced the inhibitory effect of thymol on the primary root and the application of the ABA biosynthesis inhibitor Na2WO4 rescued this inhibitory effect. During this process, the content and distribution of auxin in the roots were significantly altered. The lengths of primary root and meristem of mutant abi1, abi2, and abi1 abi2, showed that ABI1 and ABI2 positively regulate the process of thymol inhibition of root growth. In summary, the allelopathic inhibitory of thymol on Arabidopsis thaliana primary root growth is mediated by ABA signaling pathway.
Collapse
Affiliation(s)
- Liai Ma
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Kai Yin
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Wenhui Zhu
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Yuanbo Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Lina Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Ning Yang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
2
|
Laosinwattana C, Somala N, Dimak J, Teerarak M, Chotsaeng N. Ultrasonic emulsification of Cananga odorata nanoemulsion formulation for enhancement of herbicidal potential. Sci Rep 2025; 15:3263. [PMID: 39863692 PMCID: PMC11762320 DOI: 10.1038/s41598-025-87810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025] Open
Abstract
A nanoemulsion was fabricated from Cananga odorata essential oil (EO) and stabilized by incorporation of Tween 80 using ultrasonication. The major constituents of the EO were benzyl benzoate, linalool, and phenylmethyl ester. Differing sonication amplitude (20-60%) and time (2-10 min) were assessed for effects on nanoemulsion droplet size and polydispersity index (PI). The smallest droplet size of 43.98 nm (PI 0.222) was obtained using 40% amplitude for 8 min; this nanoemulsion was evaluated for its droplet characteristics and pre-emergence herbicidal activities on Amaranthus tricolor. FT-IR confirmed ultrasonic emulsification to not affect the EO components. Regarding stability, storage at 4 °C was determined appropriate, with droplet size changing slightly after five weeks. Assays of herbicidal potential showed the coarse emulsion and nanoemulsion to both reduce A. tricolor germination and growth, with the nanoemulsion being more effective at a given concentration and the difference in effectivity correlating to droplet size. Remarkably, treatment with 250 ppm nanoemulsion and coarse emulsion respectively resulted in 100% and 63.75% germination inhibition. Both emulsions decreased seed imbibition and alpha-amylase activity. The highest relative electrolyte leakage was achieved in seed treated with the nanoemulsion. Therefore, this ultrasonic-based nanoemulsion may have utility as bioherbicide alternative.
Collapse
Affiliation(s)
- Chamroon Laosinwattana
- School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Naphat Somala
- School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
| | - Jantra Dimak
- School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Montinee Teerarak
- School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Nawasit Chotsaeng
- School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| |
Collapse
|
3
|
Petřík I, Hladík P, Zhang C, Pěnčík A, Novák O. Spatio-temporal plant hormonomics: from tissue to subcellular resolution. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5295-5311. [PMID: 38938164 DOI: 10.1093/jxb/erae267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
Due to technological advances in mass spectrometry, significant progress has been achieved recently in plant hormone research. Nowadays, plant hormonomics is well established as a fully integrated scientific field focused on the analysis of phytohormones, mainly on their isolation, identification, and spatiotemporal quantification in plants. This review represents a comprehensive meta-study of the advances in the phytohormone analysis by mass spectrometry over the past decade. To address current trends and future perspectives, Web of Science data were systematically collected and key features such as mass spectrometry-based analyses were evaluated using multivariate data analysis methods. Our findings showed that plant hormonomics is currently divided into targeted and untargeted approaches. Both aim to miniaturize the sample, allowing high-resolution quantification to be covered in plant organs as well as subcellular compartments. Therefore, we can study plant hormone biosynthesis, metabolism, and signalling at a spatio-temporal resolution. Moreover, this trend has recently been accelerated by technological advances such as fluorescence-activated cell sorting or mass spectrometry imaging.
Collapse
Affiliation(s)
- Ivan Petřík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Pavel Hladík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Chao Zhang
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| |
Collapse
|
4
|
Oliveira JAC, Fernandes LA, Figueiredo KG, Corrêa EJA, Lima LHF, Alves DS, Bertolucci SKV, Carvalho GA. Effects of Essential Oils on Biological Characteristics and Potential Molecular Targets in Spodoptera frugiperda. PLANTS (BASEL, SWITZERLAND) 2024; 13:1801. [PMID: 38999641 PMCID: PMC11244083 DOI: 10.3390/plants13131801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Spodoptera frugiperda control methods have proved to be inefficient, which justifies the search for new control measures. In this search for botanical insecticides for controlling S. frugiperda, the following were evaluated: (i) the toxicity of essential oils (EOs) from Cinnamodendron dinisii, Eugenia uniflora, and Melaleuca armillaris; (ii) the effect of EOs on life table parameters against S. frugiperda; (iii) the chemical characterization of EOs; and (iv) the in silico interaction of the chemical constituents present in the three EOs with the molecular targets of S. frugiperda. The EO from E. uniflora had the lowest LD50 (1.19 µg of EO/caterpillar). The major compounds bicyclogermacrene (18.64%) in C. dinisii and terpinolene (57.75%) in M. armillaris are highly predicted to interact with the octopamine receptor (OctpR). The compound 1,8-cineole (21.81%) in M. armillaris interacts mainly with a tolerant methoprene receptor (MET) and curzerene (41.22%) in E. uniflora, which acts on the OctpR receptor. Minor compounds, such as nerolidol in C. dinisii and β-elemene in E. uniflora, are highly ranked for multiple targets: AChE, MET, OctpR, and 5-HT1. It was concluded that the EO from E. uniflora negatively affects several biological parameters of S. frugiperda development and is promising as an active ingredient in formulations for controlling this insect pest.
Collapse
Affiliation(s)
- Júlia A. C. Oliveira
- Department of Agriculture, Federal University of Lavras, Lavras 37203-202, Brazil; (J.A.C.O.); (L.A.F.); (S.K.V.B.)
| | - Letícia A. Fernandes
- Department of Agriculture, Federal University of Lavras, Lavras 37203-202, Brazil; (J.A.C.O.); (L.A.F.); (S.K.V.B.)
| | | | - Eduardo J. A. Corrêa
- Minas Gerais Agricultural Research Company (EPAMIG), Pitangui 352650-000, Brazil;
| | - Leonardo H. F. Lima
- Exact and Biological Science Department, Federal University of São João del Rei, Sete Lagoas Campus, Sete Lagoas 35701-970, Brazil;
| | - Dejane S. Alves
- Agronomy Course Coordination, Federal Technological University of Paraná, Santa Helena 85892-000, Brazil;
| | - Suzan K. V. Bertolucci
- Department of Agriculture, Federal University of Lavras, Lavras 37203-202, Brazil; (J.A.C.O.); (L.A.F.); (S.K.V.B.)
| | - Geraldo A. Carvalho
- Departament of Entomology, Federal University of Lavras, Lavras 37203-202, Brazil;
| |
Collapse
|
5
|
Álvarez-Rodríguez S, Araniti F, Teijeira M, Reigosa MJ, Sánchez-Moreiras AM. Azelaic acid can efficiently compete for the auxin binding site TIR1, altering auxin polar transport, gravitropic response, and root growth and architecture in Arabidopsisthaliana roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108592. [PMID: 38569422 DOI: 10.1016/j.plaphy.2024.108592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
The present study investigates the phytotoxic potential of azelaic acid (AZA) on Arabidopsis thaliana roots. Effects on root morphology, anatomy, auxin content and transport, gravitropic response and molecular docking were analysed. AZA inhibited root growth, stimulated lateral and adventitious roots, and altered the root apical meristem by reducing meristem cell number, length and width. The treatment also slowed down the roots' gravitropic response, likely due to a reduction in statoliths, starch-rich organelles involved in gravity perception. In addition, auxin content, transport and distribution, together with PIN proteins' expression and localisation were altered after AZA treatment, inducing a reduction in auxin transport and its distribution into the meristematic zone. Computational simulations showed that AZA has a high affinity for the auxin receptor TIR1, competing with auxin for the binding site. The AZA binding with TIR1 could interfere with the normal functioning of the TIR1/AFB complex, disrupting the ubiquitin E3 ligase complex and leading to alterations in the response of the plant, which could perceive AZA as an exogenous auxin. Our results suggest that AZA mode of action could involve the modulation of auxin-related processes in Arabidopsis roots. Understanding such mechanisms could lead to find environmentally friendly alternatives to synthetic herbicides.
Collapse
Affiliation(s)
- Sara Álvarez-Rodríguez
- Universidade de Vigo. Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004, Ourense, Spain
| | - Fabrizio Araniti
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università Statale di Milano, Via Celoria nº2, 20133, Milano, Italy.
| | - Marta Teijeira
- Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, 36310, Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213, Vigo, Spain
| | - Manuel J Reigosa
- Universidade de Vigo. Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004, Ourense, Spain
| | - Adela M Sánchez-Moreiras
- Universidade de Vigo. Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004, Ourense, Spain
| |
Collapse
|
6
|
Álvarez-Rodríguez S, Alvite CM, Reigosa MJ, Sánchez-Moreiras AM, Araniti F. Application of Indole-Alkaloid Harmaline Induces Physical Damage to Photosystem II Antenna Complexes in Adult Plants of Arabidopsis thaliana (L.) Heynh. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6073-6086. [PMID: 37026701 PMCID: PMC10119982 DOI: 10.1021/acs.jafc.3c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Finding herbicides with new and multiple modes of action is a solution to stop the increase in resistant weed species. Harmaline, a natural alkaloid with proven phytotoxic potential, was tested on Arabidopsis adult plants by watering and spraying; watering resulted as the more effective treatment. Harmaline altered several photosynthetic parameters, reducing the efficiency of the light- (ΦII) and dark-adapted (Fv/Fm) PSII, suggesting physical damages in photosystem II, although dissipation of the energy in excess under the form of heat was not compromised as demonstrated by the significant increase in ΦNPQ. Metabolomic alterations, such as osmoprotectant accumulation and reduction in sugars' content, also indicate a reduction of photosynthetic efficiency and suggest early senescence and water status alteration induced by harmaline. Data suggest that harmaline might be considered a new phytotoxic molecule interesting for further studies.
Collapse
Affiliation(s)
- Sara Álvarez-Rodríguez
- Departamento
de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Carla M. Alvite
- Departamento
de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Manuel J. Reigosa
- Departamento
de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Adela M. Sánchez-Moreiras
- Departamento
de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Fabrizio Araniti
- Dipartimento
di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università Statale di Milano, Via Celoria n° 2, 20133 Milano, Italy
| |
Collapse
|
7
|
López-González D, Graña E, Teijeira M, Verdeguer M, Reigosa MJ, Sánchez-Moreiras AM, Araniti F. Similarities on the mode of action of the terpenoids citral and farnesene in Arabidopsis seedlings involve interactions with DNA binding proteins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:507-519. [PMID: 36764266 DOI: 10.1016/j.plaphy.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
The sesquiterpene farnesene and the monoterpene citral are phytotoxic natural compounds characterized by a high similarity in macroscopic effects, suggesting an equal or similar mechanism of action when assayed at IC50 concentration. In the present study, a short-time experiment (24 and 48 h) using an imaging spectrofluorometer allowed us to monitor the in-vivo effects of the two molecules, highlighting that both terpenoids were similarly affecting all PSII parameters, even when the effects of citral were quicker in appearing than those of farnesene. The multivariate, univariate, and pathway analyses, carried out on untargeted-metabolomic data, confirmed a clear separation of the plant metabolome in response to the two treatments, whereas similarity in the affected pathways was observed. The main metabolites affected were amino acids and polyamine, which significantly accumulated in response to both treatments. On the contrary, a reduction in sugar content (i.e. glucose and sucrose) was observed. Finally, the in-silico studies demonstrated a similar mechanism of action for both molecules by interacting with DNA binding proteins, although differences concerning the affinity with the proteins with which they could potentially interact were also highlighted. Despite the similarities in macroscopic effects of these two molecules, the metabolomic and in-silico data suggest that both terpenoids share a similar but not equal mechanism of action and that the similar effects observed on the photosynthetic machinery are more imputable to a side effect of molecules-induced oxidative stress.
Collapse
Affiliation(s)
- David López-González
- Universidade de Vigo. Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Elisa Graña
- Universidade de Vigo. Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Marta Teijeira
- Universidade de Vigo, Departamento de Química Orgánica, Facultade de Química, 36310, Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213, Vigo, Spain
| | - Mercedes Verdeguer
- Instituto Agroforestal Mediterráneo (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Manuel J Reigosa
- Universidade de Vigo. Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Adela M Sánchez-Moreiras
- Universidade de Vigo. Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain.
| | - Fabrizio Araniti
- Dipartamento di Science Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università Statale di Milano, Via Celoria n °2, 20133, Milano, Italy.
| |
Collapse
|
8
|
López-González D, Bruno L, Díaz-Tielas C, Lupini A, Aci MM, Talarico E, Madeo ML, Muto A, Sánchez-Moreiras AM, Araniti F. Short-Term Effects of Trans-Cinnamic Acid on the Metabolism of Zea mays L. Roots. PLANTS (BASEL, SWITZERLAND) 2023; 12:189. [PMID: 36616318 PMCID: PMC9824805 DOI: 10.3390/plants12010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
trans-Cinnamic acid is a phenolic compound widely studied in plant metabolism due to its importance in regulating different plant processes. Previous studies on maize plants showed that this compound could affect plant growth and causes metabolic changes in the leaves when applied. However, its effects on root metabolism are not well known. This study analyses the short-term effect of trans-cinnamic acid on the morphology of vascular bundle elements and metabolism in maize roots. At short times (between 6 and 12 h), there is a reduction in the content of many amino acids which may be associated with the altered nitrogen uptake observed in earlier work. In addition, the compound caused an alteration of the vascular bundles at 48 h and seemed to have changed the metabolism in roots to favor lignin and galactose synthesis. The results obtained complement those previously carried out on maize plants, demonstrating that in the short term trans-cinnamic acid can trigger stress-coping processes in the treated plants.
Collapse
Affiliation(s)
- David López-González
- Departmento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | - Leonardo Bruno
- Dipartimento di Biologia, Ecologia e Scienza della Terra, Università della Calabria (DiBEST-UNICAL), 87036 Arcavacata di Rende, Italy
| | - Carla Díaz-Tielas
- Departmento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | - Antonio Lupini
- Dipartimento Agraria, Università Mediterranea di Reggio Calabria, 89124 Reggio Calabria, Italy
| | - Meriem Miyassa Aci
- Dipartimento Agraria, Università Mediterranea di Reggio Calabria, 89124 Reggio Calabria, Italy
| | - Emanuela Talarico
- Dipartimento di Biologia, Ecologia e Scienza della Terra, Università della Calabria (DiBEST-UNICAL), 87036 Arcavacata di Rende, Italy
| | - Maria Letizia Madeo
- Dipartimento di Biologia, Ecologia e Scienza della Terra, Università della Calabria (DiBEST-UNICAL), 87036 Arcavacata di Rende, Italy
| | - Antonella Muto
- Dipartimento di Biologia, Ecologia e Scienza della Terra, Università della Calabria (DiBEST-UNICAL), 87036 Arcavacata di Rende, Italy
| | - Adela M. Sánchez-Moreiras
- Departmento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | - Fabrizio Araniti
- Dipartimento di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, Università Statale di Milano, Via Celoria n°2, 20133 Milano, Italy
| |
Collapse
|
9
|
Álvarez-Rodríguez S, López-González D, Reigosa MJ, Araniti F, Sánchez-Moreiras AM. Ultrastructural and hormonal changes related to harmaline-induced treatment in Arabidopsis thaliana (L.) Heynh. root meristem. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:78-89. [PMID: 35325658 DOI: 10.1016/j.plaphy.2022.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Harmaline is an indole alkaloid with demonstrated phytotoxicity and recognized pharmacological applications. However, no information is available concerning its mode of action on plant metabolism. Therefore, the present work evaluated bioherbicide mode of action of harmaline on plant metabolism of Arabidopsis thaliana (L.) Heynh. Harmaline induced a strong inhibitory activity on root growth of treated seedlings, reaching IC50 and IC80 values of 14 and 29 μM, respectively. Treated roots were shorter and thicker than control and were characterized by a shorter root meristem size and an increase of root hairs production. Harmaline induced ultrastructural changes such as increment of cell wall thickness, higher density and condensation of mitochondria and vacuolization, appearance of cell wall deposits, increment of Golgi secretory activity and higher percentage of aberrant nuclei. The ethylene inhibitor AgNO3 reversed high root hair appearance and increment of root thickness, and pTCSn::GFP transgenic line showed fluorescence cytokinin signal in stele zone after harmaline treatment that was absent in control, whereas the auxin signal in the transgenic line DR5 was significantly reduced by the treatment. All these results suggest that the mode of action of harmaline could be involving auxin, ethylene and cytokinin synergic/antagonistic action.
Collapse
Affiliation(s)
- Sara Álvarez-Rodríguez
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - David López-González
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Manuel J Reigosa
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Fabrizio Araniti
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università Statale di Milano, Via Celoria nº2, 20133, Milano, Italy
| | - Adela M Sánchez-Moreiras
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain.
| |
Collapse
|
10
|
Distribution Patterns of Essential Oil Terpenes in Native and Invasive Solidago Species and Their Comparative Assessment. PLANTS 2022; 11:plants11091159. [PMID: 35567160 PMCID: PMC9099864 DOI: 10.3390/plants11091159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022]
Abstract
The importance of invasive Solidago L. species to the environment creates a new approach to controlling their spread through the use of potentially high value raw materials. The aim of this study was to assess the distribution patterns of volatile compounds in the four Solidago spp., by identifying common and species-specific compounds with their potentials, and to confirm the origin of the spontaneous hybrid Solidago × niederederi on the basis of comparative assessment of essential oil (EO) profiles. Plant material in the flowering phase was collected in mixed populations from six different sites. The EOs were isolated separately from the leaf and the inflorescence samples by hydrodistillation for 3 h. The chemical analysis was performed by gas chromatography—mass spectrometry. Multivariate data analysis was employed to explain the interspecies relationships among Solidago spp. The results revealed the similarity among Solidago spp. EO profiles, which were dominated by monoterpenes and oxygenated compound fractions. Solidago spp. differed in species distinctive terpenes and their distribution between accessions and plant parts. Volatile compound patterns confirmed the origin of Solidago × niederederi between Solidago canadensis and Solidago virgaurea, with the higher contribution of alien species than native ones. Correct taxonomic identification of species is highly essential for the targeted collection of raw material from the wild for different applications. Solidago spp. can be considered to be underutilized sources of bioactive secondary metabolites.
Collapse
|
11
|
Analysis of Volatiles in Senecio anteuphorbium Essential Oil with a Focus on Its Allelopathic Effect by Means of Gas Chromatography. SEPARATIONS 2022. [DOI: 10.3390/separations9020036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The present study aimed to investigate Senecio anteuphorbium, an endemic plant growing in West Morocco and widely used in local folk medicine. The essential oil (EO) extracted from the aerial parts was analyzed by gas chromatography and tested for allelopathic activity. The quantitation of the volatiles was carried out by means of GC-FID with response factors, which were validated through reliable calibration procedures, based on external and internal standardization. This analytical approach allowed to define the real concentration of each constituent (weight%, g/100 g) alongside the conventional relative percent. On the other hand, the identification process was supported by a dual matching based on both mass spectra and retention indices. The essential oil resulted in being rich in sesquiterpenes, with the predominant constituents being bicyclogermacrene (22.75 g/100 g), spathulenol (25.26 g/100 g), epi-γ-eudesmol (6.8 g/100 g), and selina-4,11-diene (5.08 g/100 g). The allelopathic effect was evaluated by studying the inhibition of the germination and growth of Lactuca sativa seeds. A potent allelopathic effect was recorded by the essential oil at a dose of 0.281 mg/mL, with almost a total inhibition of germination.
Collapse
|
12
|
Santos Wagner AL, Araniti F, Ishii-Iwamoto EL, Abenavoli MR. Resveratrol exerts beneficial effects on the growth and metabolism of Lactuca sativa L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:26-37. [PMID: 34971953 DOI: 10.1016/j.plaphy.2021.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
In order to assist sustainable agriculture, new strategies and methods are being used based on the utilization of new natural molecules. These natural compounds can be used as potential natural crop protectors and growth promoters, and the elucidation of their modes/mechanisms of action can represent a big step towards cleaner agriculture free of agrochemicals. In the present paper, the mechanisms underlying the effects of exogenous resveratrol (R), a natural phytoalexin found in plants, on Lactuca sativa metabolism were investigated through physiological and metabolomic approaches. The results highlighted that R stimulates the growth of lettuce. A reduction of the O2⋅- production in R-treated seedlings and an increase in the photosynthesis efficiency was observed, indicated by a higher Fv/Fm. The metabolomic analysis of lettuce seedlings treated with R identified 116 metabolites related to galactose, amino acids, sugar and nucleotide sugar, and ascorbate and aldarate metabolisms. Increased content of some polyamines and several metabolites was also observed, which may have contributed to scavenging free radicals and activating antioxidant enzymes, thus reducing oxidative damage and improving PSII protection in R-treated seedlings.
Collapse
Affiliation(s)
- Ana Luiza Santos Wagner
- Laboratory of Biological Oxidations, Department of Biochemistry, State University of Maringa, 87020900, Maringa, Brazil
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, Via Celoria, 2, 20133, Milan, Italy
| | - Emy Luiza Ishii-Iwamoto
- Laboratory of Biological Oxidations, Department of Biochemistry, State University of Maringa, 87020900, Maringa, Brazil.
| | - Maria Rosa Abenavoli
- Department of Agriculture, University of Reggio di Calabria, 89124, Reggio Calabria, Italy.
| |
Collapse
|
13
|
Staszek P, Krasuska U, Ciacka K, Gniazdowska A. ROS Metabolism Perturbation as an Element of Mode of Action of Allelochemicals. Antioxidants (Basel) 2021; 10:antiox10111648. [PMID: 34829519 PMCID: PMC8614981 DOI: 10.3390/antiox10111648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
The allelopathic interaction between plants is one of the elements that influences plant communities. It has been commonly studied by applying tissue extracts onto the acceptors or by treating them with isolated allelotoxins. Despite descriptive observations useful for agricultural practice, data describing the molecular mode of action of allelotoxins cannot be found. Due to the development of -omic techniques, we have an opportunity to investigate specific reactive oxygen species (ROS)-dependent changes in proteome or transcriptome that are induced by allelochemicals. The aim of our review is to summarize data on the ROS-induced modification in acceptor plants in response to allelopathic plants or isolated allelochemicals. We present the idea of how ROS are involved in the hormesis and plant autotoxicity phenomena. As an example of an -omic approach in studies of the mode of action of allelopatic compounds, we describe the influence of meta-tyrosine, an allelochemical exudated from roots of fescues, on nitration-one of nitro-oxidative posttranslational protein modification in the roots of tomato plants. We conclude that ROS overproduction and an induction of oxidative stress are general plants' responses to various allelochemicals, thus modification in ROS metabolisms is regarded as an indirect mode of action of allelochemicals.
Collapse
|
14
|
Santos Wagner AL, Araniti F, Bruno L, Ishii-Iwamoto EL, Abenavoli MR. The Steroid Saponin Protodioscin Modulates Arabidopsis thaliana Root Morphology Altering Auxin Homeostasis, Transport and Distribution. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081600. [PMID: 34451648 PMCID: PMC8399103 DOI: 10.3390/plants10081600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
To date, synthetic herbicides are the main tools used for weed control, with consequent damage to both the environment and human health. In this respect, searching for new natural molecules and understanding their mode of action could represent an alternative strategy or support to traditional management methods for sustainable agriculture. Protodioscin is a natural molecule belonging to the class of steroid saponins, mainly produced by monocotyledons. In the present paper, protodioscin's phytotoxic potential was assessed to identify its target and the potential mode of action in the model plant Arabidopsis thaliana. The results highlighted that the root system was the main target of protodioscin, which caused a high inhibitory effect on the primary root length (ED50 50 μM) with morphological alteration, accompanied by a significant increase in the lateral root number and root hair density. Through a pharmacological and microscopic approach, it was underlined that this saponin modified both auxin distribution and transport, causing an auxin accumulation in the region of root maturation and an alteration of proteins responsible for the auxin efflux (PIN2). In conclusion, the saponin protodioscin can modulate the root system of A. thaliana by interfering with the auxin transport (PAT).
Collapse
Affiliation(s)
- Ana Luiza Santos Wagner
- Laboratory of Biological Oxidations, Department of Biochemistry, State University of Maringa, Maringa 87020900, Brazil;
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, Via Celoria, 20133 Milano, Italy;
| | - Leonardo Bruno
- Department of Biology, Ecology and Soil Science, University of Calabria, Arcavacata di Rende (CS), 87036 Arcavacata di Rende, Italy;
| | - Emy Luiza Ishii-Iwamoto
- Laboratory of Biological Oxidations, Department of Biochemistry, State University of Maringa, Maringa 87020900, Brazil;
| | - Maria Rosa Abenavoli
- Department of Agriculture, University of Reggio di Calabria, 89124 Reggio Calabria, Italy
| |
Collapse
|
15
|
Araniti F, Landi M, Laudicina VA, Abenavoli MR. Secondary Metabolites and Eco-Friendly Techniques for Agricultural Weed/Pest Management. PLANTS 2021; 10:plants10071418. [PMID: 34371621 PMCID: PMC8309274 DOI: 10.3390/plants10071418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Fabrizio Araniti
- Dipartimento di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, Università Statale di Milano, Via Celoria n°2, 20133 Milano, Italy
- Correspondence:
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Vito Armando Laudicina
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| | - Maria Rosa Abenavoli
- Dipartimento Agraria, Università Mediterranea di Reggio Calabria, Località Feo di Vito SNC, 89124 Reggio Calabria, Italy;
| |
Collapse
|
16
|
Verdeguer M, Sánchez-Moreiras AM, Araniti F. Phytotoxic Effects and Mechanism of Action of Essential Oils and Terpenoids. PLANTS 2020; 9:plants9111571. [PMID: 33202993 PMCID: PMC7697004 DOI: 10.3390/plants9111571] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
Weeds are one of the major constraints in crop production affecting both yield and quality. The excessive and exclusive use of synthetic herbicides for their management is increasing the development of herbicide-resistant weeds and is provoking risks for the environment and human health. Therefore, the development of new herbicides with multitarget-site activity, new modes of action and low impact on the environment and health are badly needed. The study of plant–plant interactions through the release of secondary metabolites could be a starting point for the identification of new molecules with herbicidal activity. Essential oils (EOs) and their components, mainly terpenoids, as pure natural compounds or in mixtures, because of their structural diversity and strong phytotoxic activity, could be good candidates for the development of new bioherbicides or could serve as a basis for the development of new natural-like low impact synthetic herbicides. EOs and terpenoids have been largely studied for their phytotoxicity and several evidences on their modes of action have been highlighted in the last decades through the use of integrated approaches. The review is focused on the knowledge concerning the phytotoxicity of these molecules, their putative target, as well as their potential mode of action.
Collapse
Affiliation(s)
- Mercedes Verdeguer
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - Adela M. Sánchez-Moreiras
- Department of Plant Biology and Soil Science, Faculty of Biology, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310 Vigo, Spain
- CITACA, Agri-Food Research and Transfer Cluster, Campus da Auga, University of Vigo, 32004 Ourense, Spain
- Correspondence:
| | - Fabrizio Araniti
- Department AGRARIA, University Mediterranea of Reggio Calabria, Loc. Feo di Vito, 89100 Reggio Calabria, Italy;
| |
Collapse
|