1
|
Song J, Zhang Z, Wang H, Meng Y, Sun Y, Yi Y. Study on the structure and lipid-lowering activity of different components of lotus root polysaccharides. Food Res Int 2025; 203:115801. [PMID: 40022331 DOI: 10.1016/j.foodres.2025.115801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 03/03/2025]
Abstract
Lotus root is a widely popular aquatic vegetable with edible and medicinal values. Here we report the structure and lipid-lowering activity of two lotus root polysaccharides LRW (lotus root polysaccharide by water extraction) and LRA (lotus root polysaccharide by alkali extraction), that were extracted by aqueous and alkaline solution respectively. The results showed that the yield of polysaccharide from lotus root could be significantly improved by alkali extraction. Basic composition and structural characterization showed that the total sugar contents of LRW and LRA were 96.83 % and 73.66 %, and the molecular weights were 2.464 × 105 Da and 1.727 × 105 Da, respectively. LRW and LRA had the similar structure that the main backbone consisted of →4)-α-D-Glcp-(1→ with branches at C-6 site. Both LRW and LRA could scavenge DPPH and hydroxyl radicals effectively, and have strong adsorption capacity to cholate salts in a concentration-dependent manner. In HepG2 cells, LRW and LRA inhibited the accumulation of lipid droplets induced by oleic acid, and increased the activity of T-SOD and CAT, meanwhile, reduced the level of MDA, TC and TG, showing good lipid-lowering activity. In comparison, the lipid-lowering effect of LRA was better than that of LRW. In addition, gene sequencing and RT-PCR showed that AMPK, ACC, PPARα and CPT-1 were essential for LRA to exert a lipid-lowering effect. This study provides a theoretical basis for the extraction and lipid-lowering application of lotus root polysaccharides.
Collapse
Affiliation(s)
- Jie Song
- College of Food Science and Engineering/Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Zhao Zhang
- College of Food Science and Engineering/Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Hongxun Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yan Meng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Ying Sun
- College of Food Science and Engineering/Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yang Yi
- College of Food Science and Engineering/Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
2
|
Verma R, Sahu A, Gupta RK, Sanyal I. Sonication-assisted Rhizobium radiobacter-mediated genetic transformation of Indian Lotus (Nelumbo nucifera Gaertn.). Transgenic Res 2025; 34:4. [PMID: 39775301 DOI: 10.1007/s11248-024-00427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/28/2024] [Indexed: 01/11/2025]
Abstract
This study aimed to develop a reliable and efficient genetic transformation method for the ornamental Indian Lotus (Nelumbo nucifera Gaertn.) using the sonication-assisted Rhizobium radiobacter-mediated transformation technique. To conduct the transformation, shoot apical meristem explants were infected with Rhizobium radiobacter (synonym Agrobacterium tumefaciens) strain LBA 4404 containing a binary vector pBI121 that harbours the GUS reporter gene (uidA) and kanamycin resistance gene nptII for plant selection. To improve the transformation efficiency, we optimized parameters such as bacterial cell density, sonication duration, infection time, co-cultivation duration, acetosyringone concentration, cefotaxime, and kanamycin concentrations. Sonication treatment at 42 kHz for 90 s recorded the highest transformation efficiency. The selection of regenerated plantlets was performed on a kanamycin-supplemented selection medium. The putative transformants showed GUS expression in the leaves and petioles. The presence of the GUS gene was also confirmed in the putative transformants through PCR, with the appearance of the expected amplicon size of 520 bp. The presence of nptII was confirmed by PCR in the putatively transformed plants with an amplicon size of 530 bp. The maximum regeneration frequency obtained was 72.66%, and the highest transformation efficiency achieved was 9.0% in the Indian Lotus.
Collapse
Affiliation(s)
- Rita Verma
- Plant Transgenic Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anshu Sahu
- Plant Transgenic Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajan Kumar Gupta
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Indraneel Sanyal
- Plant Transgenic Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Yu S, Li L, Liu T, Li J, Yang Q, Cui X. The effects of different hormone combinations on the growth of Panax notoginseng anther callus based on metabolome analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1503931. [PMID: 39719933 PMCID: PMC11667561 DOI: 10.3389/fpls.2024.1503931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024]
Abstract
Panax notoginseng saponins (PNS), the primary active components of Panax notoginseng (Burk.) F.H.Chen, a traditional and precious Chinese medicinal herb, are mainly derived from the roots of the plant. However, due to the long cultivation period and specific environmental requirements, the PNS supply is often limited. And, callus cultures of P. notoginseng, which grow rapidly, have short production cycles, and can be cultured under controlled conditions, provide a more efficient source for the quick acquisition of saponins. In this study, anthers of P. notoginseng were used as explants, and twelve hormone combinations were tested to induce callus formation. Eight kinds of hormone combinations successfully induced P. notoginseng anther callus. Among these, callus induced by combinations 5 and 7 had the highest saponin content, while those induced by combinations 1 and 3 exhibited the highest relative growth rates. Metabolomic analysis of these four callus types revealed that there were a total of 99 differential metabolites between combinations 5 and 7, 30 between combinations 1 and 3, 123 between combinations 3 and 7, and 116 between combinations 1 and 5. Further analysis showed that the tricarboxylic acid (TCA) cycle metabolites in callus induced by combinations 1 and 3 were significantly upregulated, with corresponding genes showing high expression levels, increased ATP accumulation, and low responses of the auxin response factor PnARF-3 and cytokinin response factor PnCRF-3. The abundance of metabolites in the PNS biosynthesis pathway in callus induced by combinations 5 and 7 increased significantly, with related genes showing high expression levels, increased IPP accumulation, and high responses of PnARF-3 and PnCRF-3. Overexpression of PnARF-3 and PnCRF-3 in callus induced by combination 3 promoted the production of IPP and saponins while reducing ATP production. In conclusion, different hormone combinations affect the distribution of Acetyl-CoA through PnARF-3 and PnCRF-3, resulting in the relative growth rate and saponin of P. notoginseng anther callus differences.
Collapse
Affiliation(s)
- Saiying Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
| | - Leilin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
| | - Tiantai Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
| | - Jianbin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
| | - Qian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
- Sanqi Research Institute of Yunnan Province, Kunming, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
- Sanqi Research Institute of Yunnan Province, Kunming, China
| |
Collapse
|
4
|
Pan H, Liao R, Zhang Y, Arif M, Zhang Y, Zhang S, Wang Y, Zhao P, Wang Z, Han B, Song C. Establishment of callus induction and plantlet regeneration systems of Peucedanum Praeruptorum dunn based on the tissue culture method. PLANT METHODS 2024; 20:174. [PMID: 39548586 PMCID: PMC11568572 DOI: 10.1186/s13007-024-01300-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Peucedanum praeruptorum Dunn has typical stacked umbels and medicinal value; however, the lack of an effective tissue culture system for P. praeruptorum has limited the large-scale propagation of its seedlings. RESULTS We systematically established an in vitro regeneration system for P. praeruptorum using young leaves and stems as explants. Tissue culture plantlets were successfully obtained within 123 and 90 d of somatic embryogenesis and organogenesis, respectively. Combined plant growth regulators (PGRs) were optimized to promote efficient plant regeneration at each stage of the culture process. Specifically, embryogenic callus induction was superior in Murashige and Skoog (MS) medium supplemented with 0.5 mg/L 6-benzyladenine (BA) and 2.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D). For somatic embryonic development, the highest differentiation rates were achieved using BA, 2,4-D, and 6-furfuryl aminopurine (6-KT). Induction of organogenesis resulted in the highest differentiation rates and proliferation coefficients of buds in MS medium supplemented with BA and α-naphthaleneacetic acid (NAA). Moreover, regeneration of P. praeruptorum seedlings was achieved by adjusting the BA and indole-3-butyric acid (IBA) concentrations in 1/2 MS medium. CONCLUSION Our results provide a technical system for the rapid propagation of P. praeruptorum, which can facilitate germplasm improvement, resource conservation, and further genetic transformation of Peucedanum species.
Collapse
Affiliation(s)
- Haoyu Pan
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Dabieshan Academy of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - Ranran Liao
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Dabieshan Academy of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yingyu Zhang
- The First Affiliated Hospital, College of Clinical Medicine of Henan, University of Science and Technology, Luoyang, 471003, China
| | - Muhammad Arif
- Department of Plant Protection, Faculty of agriculture, Sakarya University of Applied Sciences, Arifiye, 54580, Sakarya, Türkiye
| | - Yuxin Zhang
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Dabieshan Academy of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China
| | - Shuai Zhang
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Dabieshan Academy of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China
| | - Yuanyuan Wang
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Dabieshan Academy of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Pengcheng Zhao
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Dabieshan Academy of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China
| | - Zaigui Wang
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China.
| | - Bangxing Han
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Dabieshan Academy of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China.
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China.
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Cheng Song
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Dabieshan Academy of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China.
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
5
|
Deng X, Huang J, Zhang M, Wei X, Song H, Wang Y, Xin J, Sun H, Liu J, Yang D, Li J, Yang M. Metabolite profiling and screening of callus browning-related genes in lotus (Nelumbo nucifera). PHYSIOLOGIA PLANTARUM 2023; 175:e14027. [PMID: 37882309 DOI: 10.1111/ppl.14027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/04/2023] [Accepted: 08/20/2023] [Indexed: 10/27/2023]
Abstract
Callus browning is a major drawback to lotus callus proliferation and regeneration. However, the underlying mechanism of its formation remains largely unknown. Herein, we aimed to explore the metabolic and molecular basis of lotus callus browning by combining histological staining, high-throughput metabolomics, and transcriptomic assays for lotus callus at three browning stages. Histological stained brown callus cross sections displayed severe cell death symptoms, accompanied by an obvious accumulation of polyphenols and lignified materials. Widely targeted metabolomics revealed extensively decreased accumulation of most detected flavonoids and benzylisoquinoline alkaloids (BIAs), as well as a few phenolic acids, amino acids and their derivatives in callus with browning symptoms. Conversely, the contents of most detected tannins were significantly increased. Subsequent comparative transcriptomics identified a set of differentially expressed genes (DEGs) associated with the biosynthesis and regulation of flavonoids and BIAs in lotus. Notably, callus browning was coupled with significantly up-regulated expression of two polyphenol oxidase (PPO) and 17 peroxidase (POD) encoding genes, while the expression of ethylene associated genes remained at marginal levels. These results suggest that lotus callus browning is primarily controlled at the level of metabolism, wherein the oxidation of flavonoids and BIAs is crucially decisive.
Collapse
Affiliation(s)
- Xianbao Deng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Jinghao Huang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Minghua Zhang
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Wei
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Heyun Song
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuxin Wang
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia Xin
- University of Chinese Academy of Sciences, Beijing, China
| | - Heng Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Juan Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Dong Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Jing Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Mei Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
6
|
Sun X, Wang Y, Yang T, Wang X, Wang H, Wang D, Liu H, Wang X, Zhang G, Wei Z. Establishment of an efficient regeneration and Agrobacterium transformation system in mature embryos of calla lily ( Zantedeschia spp.). Front Genet 2022; 13:1085694. [PMID: 36561313 PMCID: PMC9763309 DOI: 10.3389/fgene.2022.1085694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Calla lily (Zantedeschia spp.) have great aesthetic value due to their spathe-like appearance and richness of coloration. However, embryonic callus regeneration is absent from its current regeneration mechanism. As a result, constructing an adequate and stable genetic transformation system is hampered, severely hindering breeding efforts. In this research, the callus induction effectiveness of calla lily seed embryos of various maturities was evaluated. The findings indicated that mature seed embryos were more suitable for in vitro regeneration. Using orthogonal design experiments, the primary elements influencing in vitro regeneration, such as plant growth regulators, genotypes, and nanoscale materials, which was emergent uses for in vitro regeneration, were investigated. The findings indicated that MS supplemented with 6-BA 2 mg/L and NAA 0.1 mg/L was the optimal medium for callus induction (CIM); the germination medium (GM) was MS supplemented with 6-BA 2 mg/L NAA 0.2 mg/L and 1 mg/L CNTs, and the rooting medium (RM) was MS supplemented with 6-BA 2 mg/L NAA 0.7 mg/L and 2 mg/L CNTs. This allowed us to verify, in principle, that the Agrobacterium tumefaciens-mediated genetic transformation system operates under optimal circumstances using the GUS reporter gene. Here, we developed a seed embryo-based genetic transformation regeneration system, which set the stage for future attempts to create new calla lily varieties.
Collapse
Affiliation(s)
- Xuan Sun
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China,Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yi Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China,College of Horticulture, China Agricultural University, Beijing, China
| | - Tuo Yang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xue Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Huanxiao Wang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China,Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Di Wang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China,Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hongyan Liu
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China,Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xian Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Guojun Zhang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China,Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, Qinhuangdao, China,*Correspondence: Guojun Zhang, ; Zunzheng Wei,
| | - Zunzheng Wei
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China,*Correspondence: Guojun Zhang, ; Zunzheng Wei,
| |
Collapse
|
7
|
Alsafran M, Wickramanayake K, Usman K, Ahmed T. Efficient shoot regeneration of medicinal plant Haplophyllum tuberculatum by direct and indirect organogenesis and genetic fidelity assessment using Inter Simple Sequence Repeats markers. FRONTIERS IN PLANT SCIENCE 2022; 13:995825. [PMID: 36262661 PMCID: PMC9574544 DOI: 10.3389/fpls.2022.995825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
In vitro plant cell and tissue cultures are potent tools to propagating germplasm resources in conserving and managing plant genetic resources. A reliable micropropagation protocol was developed for efficient callus proliferation and direct and indirect shoot regeneration of Meseika (Haplophyllum tuberculatum). With the applied sterilization procedure, immature, unopened H. tuberculatum seed pods can be identified as a potent explant with high viability and low contamination percentage. Multiple shoots were regenerated from leaf and stem explants through direct organogenesis on Murashige and Skoog's (MS) + 3% sucrose medium amended with BAP. Indirect regeneration of several shoots was achieved on 1/2 MS + 1% sucrose media amended with 2 and 4 mg/l BAP. An efficient callus proliferation from both explants can be achieved by supplementing the MS media with NAA and BAP. All the cultures were incubated in a controlled growth chamber under 5/19 h light/dark photoperiod, temperature (25 ± 2°C), and 60% relative humidity (RH).10 ISSR (Inter Simple Sequence Repeat) markers were screened to test the genetic fidelity of regenerated H. tuberculatum shoots. Callus development was observed after 15 days and shoot regeneration was occurred after 30 days after callus initiation. 10 ISSR primers produced a total of 39 clear, distinct amplicons. 75, 60, 40, and 16% polymorphism percentages were recorded by the ISSR primer 11, 7, 5, and 4, respectively. The developed micropropagation protocol is appropriate for rapid in-vitro multiplication of H. tuberculatum shoots and callus.
Collapse
Affiliation(s)
- Mohammed Alsafran
- Agricultural Research Station, Office of VP for Research and Graduate Studies, Qatar University, Doha, Qatar
- Central Laboratories Unit, Office of VP for Research and Graduate Studies, Qatar University, Doha, Qatar
| | | | - Kamal Usman
- Agricultural Research Station, Office of VP for Research and Graduate Studies, Qatar University, Doha, Qatar
| | - Talaat Ahmed
- Environmental Science Center, Qatar University, Doha, Qatar
| |
Collapse
|
8
|
Abdelsalam NR, Hasan ME, Javed T, Rabie SMA, El-Wakeel HEDMF, Zaitoun AF, Abdelsalam AZ, Aly HM, Ghareeb RY, Hemeida AA, Shah AN. Endorsement and phylogenetic analysis of some Fabaceae plants based on DNA barcoding. Mol Biol Rep 2022; 49:5645-5657. [PMID: 35655052 PMCID: PMC9262781 DOI: 10.1007/s11033-022-07574-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/26/2022] [Indexed: 12/23/2022]
Abstract
Background DNA barcoding have been considered as a tool to facilitate species identification based on its simplicity and high-level accuracy in compression to the complexity and subjective biases linked to morphological identification of taxa. MaturaseK gene (MatK gene) of the chloroplast is very vital in the plant system which is involved in the group II intron splicing. The main objective of this study is to determine the relative utility of the “MatK” chloroplast gene for barcoding in 15 legume as a tool to facilitate species identification based on their simplicity and high-level accuracy linked to morphological identification of taxa. Methods and Results MatK gene sequences were submitted to GenBank and the accession numbers were obtained with sequence length ranging from 730 to 1545 nucleotides. These DNA sequences were aligned with database sequence using PROMALS server, Clustal Omega server and Bioedit program. Maximum likelihood and neighbor-joining algorithms were employed for constructing phylogeny. Overall, these results indicated that the phylogenetic tree analysis and the evolutionary distances of an individual dataset of each species were agreed with a phylogenetic tree of all each other consisting of two clades, the first clade comprising (Enterolobium contortisiliquum, Albizia lebbek), Acacia saligna, Leucaena leucocephala, Dichrostachys Cinerea, (Delonix regia, Parkinsonia aculeata), (Senna surattensis, Cassia fistula, Cassia javanica) and Schotia brachypetala were more closely to each other, respectively. The remaining four species of Erythrina humeana, (Sophora secundiflora, Dalbergia Sissoo, Tipuana Tipu) constituted the second clade. Conclusion Moreover, their sequences could be successfully utilized in single nucleotide polymorphism or as part of the sequence as DNA fragment analysis utilizing polymerase chain reaction in plant systematic. Therefore, MatK gene is considered promising a candidate for DNA barcoding in the plant family Fabaceae and provides a clear relationship between the families.
Collapse
Affiliation(s)
- Nader R Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt.
| | - Mohamed E Hasan
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, Sadat City University, Sadat City, Egypt
| | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Samar M A Rabie
- Agricultural Botany Department, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Houssam El-Din M F El-Wakeel
- Agricultural Botany Department, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Amera F Zaitoun
- Agricultural Botany Department, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Aly Z Abdelsalam
- Genetics Department, Faculty of Agriculture, Ain-Shams University, Ain Shams, Egypt
| | - Hesham M Aly
- Department of Forestry and Wood Technology, Horticulture Institute, Agriculture Research Center, Antoniadis Botanical Garden, Alexandria, 21554, Egypt
| | - Rehab Y Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Borg El-Arab, Alexandria, 21934, Egypt
| | - Alaa A Hemeida
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, Sadat City University, Sadat City, Egypt
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Punjab, Pakistan
| |
Collapse
|
9
|
Guan X, Feng Y, Jiang Y, Hu Y, Zhang J, Li Z, Song C, Li F, Hou J, Shen T, Hu W. Simulated digestion and in vitro fermentation of a polysaccharide from lotus (Nelumbo nucifera Gaertn.) root residue by the human gut microbiota. Food Res Int 2022; 155:111074. [DOI: 10.1016/j.foodres.2022.111074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 01/08/2023]
|
10
|
Al-Qurainy F, Tarroum M, Khan S, Nadeem M, Gaafar ARZ, Alansi S, Alfarraj NS. Genome Estimation and Phytochemical Compound Identification in the Leaves and Callus of Abrus precatorius: A Locally Endangered Plant from the Flora of Saudi Arabia. PLANTS (BASEL, SWITZERLAND) 2022; 11:567. [PMID: 35214900 PMCID: PMC8877254 DOI: 10.3390/plants11040567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Abrus precatorius is considered to be a valuable source of natural products for the development of drugs against various diseases. Herein, the genome size and phytochemical compounds in the leaves and callus of A. precatorius were evaluated. The endangered A. precatorius was collected from the Al-Baha mountains, Saudi Arabia and identified based on the phylogenetic analysis of a DNA sequence amplified by ITS1 and ITS4 primers. The callus was induced by the culture of stem explants onto Murashige and Skoog medium (MS) supplemented with various combinations of 2,4-dichlorophenoxyacetic acid (2,4D) and 6-Benzylaminopurine (BAP). The callus with the highest fresh weight (2.03 g) was obtained in the medium containing 0.5µM BA and 5 µM 2,4-D after 8 weeks of culture; thus, the callus of this combination was selected for the genome estimation and phytochemical compound extraction. The genetic stability of the leaves from the donor as well as in the regenerated callus was analyzed by flow cytometry with optimized tomato (2C = 1.96 pg) as an external reference standard. The 2C DNA content was estimated to 1.810 pg ± 0.008 and 1.813 pg ± 0.004 for the leaves and callus, respectively. Then, the total phenol and total flavonoid contents in the methanol extract of the callus and leaves were measured using a spectrophotometer and the High-performance liquid chromatography (HPLC ) methods. The results showed that the methanolic extract of the leaves was higher in total phenols and total flavonoids than the callus extract. Finally, the extracts of callus and leaves were analyzed for phytochemical compound through the Gas chromatography and Mass spectroscopy (GC-MS). A total of 22 and 28 compounds were detected in the callus and leaves, respectively. The comparative analysis showed that 12 compounds of the secondary metabolites were present in both extracts.
Collapse
|
11
|
Trunjaruen A, Luecha P, Taratima W. Micropropagation of pokeweed ( Phytolacca americana L.) and comparison of phenolic, flavonoid content, and antioxidant activity between pokeweed callus and other parts. PeerJ 2022; 10:e12892. [PMID: 35186483 PMCID: PMC8830332 DOI: 10.7717/peerj.12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/16/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Pokeweed (Phytolacca americana L.) is regarded as an invasive plant in many parts of the world but possesses therapeutic characteristics used for antitumor and rheumatism treatment. This study investigated the effects of auxins and four explants on pokeweed callus induction. The effects of cytokinins and combinations between cytokinins and NAA on shoot and root induction were also studied. TPC, TFC and antioxidant activity of calli were screened and compared with other pokeweed plant parts. METHODS Four explants were used to induce callus using 2,4-D and IBA at 1, 2, 3 and 4 mg/l for each auxin. Direct shoot organogenesis from nodal explants was investigated using BAP, kinetin and TDZ (1, 2 and 4 mg/l for each cytokinin). Combined effects between cytokinins and NAA at 0.1, 0.2 and 0.3 mg/l were further simultaneously estimated with root induction. Calli derived from the leaves were compared with other plant parts for TPC, TFC and antioxidant activity using the Folin-Ciocalteu, AlCl3 colorimetric assay and DPPH assays, respectively. RESULTS Results showed that MS medium containing 2 mg/l 2,4-D induced callus formation on leaf explants that provided highest fresh and dry weights. Three types of synthetic cytokinins as kinetin, TDZ and BAP were used for direct shoot organogenesis from pokeweed nodes. MS medium containing 2 mg/l kinetin was effective in stimulating normal shoots, with the largest number of shoots and leaves and the longest shoots. The combination between cytokinins and NAA showed no positive effect on shoot and root induction from pokeweed nodal explants. For TPC and TFC determination, pokeweed seeds and leaves possessed the highest phenolic and flavonoid contents, respectively. Highest phenolic content of pokeweed seeds led to lowest IC50 by DPPH assay. Phenolic content was higher than flavonoid content. CONCLUSION Results suggested promising conditions for callus induction. Leaf explants cultured on MS medium with 2 mg/l 2,4-D and nodal explants cultured on MS medium with 2 mg/l kinetin provided the largest number of normal shoots and leaves. NAA did not show positive effects on shoot and root induction when combined with cytokinins. Chemical constituent screening indicated that seeds and leaves provided highest TPC and TFC, respectively, while pokeweed calli contained higher phenolic than flavonoid content. This is the first report describing chemical constituent screening and antioxidant activity of calli and other parts of the pokeweed plant. Results provided significant information to further enhance bioactive compound contents of pokeweed calli using elicitation methods.
Collapse
Affiliation(s)
- Attachai Trunjaruen
- Salt-Tolerant Rice Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Prathan Luecha
- Department of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Science, Khon Kaen University, Khon Kaen, Thailand
| | - Worasitikulya Taratima
- Salt-Tolerant Rice Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|