1
|
Yun Y, Kim S, Lee SN, Cho HY, Choi JW. Nanomaterial-based detection of circulating tumor cells and circulating cancer stem cells for cancer immunotherapy. NANO CONVERGENCE 2024; 11:56. [PMID: 39671082 PMCID: PMC11645384 DOI: 10.1186/s40580-024-00466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Nanomaterials have emerged as transformative tools for detecting circulating tumor cells (CTCs) and circulating cancer stem cells (CCSCs), significantly enhancing cancer diagnostics and immunotherapy. Nanomaterials, including those composed of gold, magnetic materials, and silica, have enhanced the sensitivity, specificity, and efficiency of isolating these rare cells from blood. These developments are of paramount importance for the early detection of cancer and for providing real-time insights into metastasis and treatment resistance, which are essential for the development of personalized immunotherapies. The combination of nanomaterial-based platforms with phenotyping techniques, such as Raman spectroscopy and microfluidics, enables researchers to enhance immunotherapy protocols targeting specific CTC and CCSC markers. Nanomaterials also facilitate the targeted delivery of immunotherapeutic agents, including immune checkpoint inhibitors and therapeutic antibodies, directly to tumor cells. This synergistic approach has the potential to enhance therapeutic efficacy and mitigate the risk of metastasis and relapse. In conclusion, this review critically examines the use of nanomaterial-driven detection systems for detecting CTCs and CCSCs, their application in immunotherapy, and suggests future directions, highlighting their potential to transform the integration of diagnostics and treatment, thereby paving the way for more precise and personalized cancer therapies.
Collapse
Affiliation(s)
- Yeochan Yun
- Department of Bio and Fermentation Convergence Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 02707, Republic of Korea
| | - Seewoo Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Sang-Nam Lee
- Uniance Gene Inc., 273, Digital-ro, Guro-gu, Seoul, 08381, Republic of Korea.
| | - Hyeon-Yeol Cho
- Department of Bio and Fermentation Convergence Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 02707, Republic of Korea.
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea.
| |
Collapse
|
2
|
Hazra RS, Kale N, Boyle C, Molina KB, D'Souza A, Aland G, Jiang L, Chaturvedi P, Ghosh S, Mallik S, Khandare J, Quadir M. Magnetically-activated, nanostructured cellulose for efficient capture of circulating tumor cells from the blood sample of head and neck cancer patients. Carbohydr Polym 2024; 323:121418. [PMID: 37940250 DOI: 10.1016/j.carbpol.2023.121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 11/10/2023]
Abstract
In this report, the relative efficiency of cellulose nanocrystals (CNCs) and nanofibers (CNFs) to capture circulating tumor cells (CTCs) from the blood sample of head and neck cancer (HNC) patients was evaluated. Detection and enumeration of CTCs are critical for monitoring cancer progression. Both types of nanostructured cellulose were chemically modified with Epithelial Cell Adhesion Molecule (EpCAM) antibody and iron oxide nanoparticles. The EpCAM antibody facilitated the engagement of CTCs, promoting entrapment within the cellulose cage structure. Iron oxide nanoparticles, on the other hand, rendered the cages activatable via the use of a magnet for the capture and separation of entrapped CTCs. The efficiency of the network structures is shown in head and neck cancer (HNC) patients' blood samples. It was observed that the degree of chemical functionalization of hydroxyl groups located within the CNCs or CNFs with anti-EpCAM determined the efficiency of the system's interaction with CTCs. Further, our result indicated that inflexible scaffolds of nanocrystals interacted more efficiently with CTCs than that of the fibrous CNF scaffolds. Network structures derived from CNCs demonstrated comparable CTC capturing efficiency to commercial standard, OncoDiscover®. The output of the work will provide the chemical design principles of cellulosic materials intended for constructing affordable platforms for monitoring cancer progression in 'real time'.
Collapse
Affiliation(s)
- Raj Shankar Hazra
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND 58108, USA; Department of Coatings and Polymeric Materials, North Dakota State University, Fargo 58108, ND, USA
| | - Narendra Kale
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo 58108, ND, USA; Department of Pharmaceutical Sciences, North Dakota State University, Fargo 58108, ND, USA
| | - Camden Boyle
- Department of Engineering and Technology, Southeast Missouri State University, One University Plaza, MS6825, Cape Girardeau, MO 63701, USA
| | - Kayla B Molina
- Department of Biomedical Engineering, The University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Alain D'Souza
- Actorius Innovations and Research, Pune, India; Actorius Innovations and Research, Simi Valley, CA 93063, USA
| | - Gourishankar Aland
- Actorius Innovations and Research, Pune, India; Actorius Innovations and Research, Simi Valley, CA 93063, USA
| | - Long Jiang
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND 58108, USA
| | - Pankaj Chaturvedi
- Department of Head and Neck Surgical Oncology, Tata Memorial Hospital, Mumbai, India
| | - Santaneel Ghosh
- Department of Engineering and Technology, Southeast Missouri State University, One University Plaza, MS6825, Cape Girardeau, MO 63701, USA
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo 58108, ND, USA
| | - Jayant Khandare
- Actorius Innovations and Research, Pune, India; School of Pharmacy, Dr. Vishwananth Karad MIT World Peace University, Pune 411038, India; School of Consciousness, Dr. Vishwananth Karad MIT World Peace University, Pune 411038, India; Actorius Innovations and Research, Simi Valley, CA 93063, USA.
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo 58108, ND, USA.
| |
Collapse
|
3
|
Cheng EL, Cardle II, Kacherovsky N, Bansia H, Wang T, Zhou Y, Raman J, Yen A, Gutierrez D, Salipante SJ, des Georges A, Jensen MC, Pun SH. Discovery of a Transferrin Receptor 1-Binding Aptamer and Its Application in Cancer Cell Depletion for Adoptive T-Cell Therapy Manufacturing. J Am Chem Soc 2022; 144:13851-13864. [PMID: 35875870 PMCID: PMC10024945 DOI: 10.1021/jacs.2c05349] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The clinical manufacturing of chimeric antigen receptor (CAR) T cells includes cell selection, activation, gene transduction, and expansion. While the method of T-cell selection varies across companies, current methods do not actively eliminate the cancer cells in the patient's apheresis product from the healthy immune cells. Alarmingly, it has been found that transduction of a single leukemic B cell with the CAR gene can confer resistance to CAR T-cell therapy and lead to treatment failure. In this study, we report the identification of a novel high-affinity DNA aptamer, termed tJBA8.1, that binds transferrin receptor 1 (TfR1), a receptor broadly upregulated by cancer cells. Using competition assays, high resolution cryo-EM, and de novo model building of the aptamer into the resulting electron density, we reveal that tJBA8.1 shares a binding site on TfR1 with holo-transferrin, the natural ligand of TfR1. We use tJBA8.1 to effectively deplete B lymphoma cells spiked into peripheral blood mononuclear cells with minimal impact on the healthy immune cell composition. Lastly, we present opportunities for affinity improvement of tJBA8.1. As TfR1 expression is broadly upregulated in many cancers, including difficult-to-treat T-cell leukemias and lymphomas, our work provides a facile, universal, and inexpensive approach for comprehensively removing cancerous cells from patient apheresis products for safe manufacturing of adoptive T-cell therapies.
Collapse
Affiliation(s)
- Emmeline L Cheng
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| | - Ian I Cardle
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States.,Seattle Children's Therapeutics, Seattle, Washington 98101, United States
| | - Nataly Kacherovsky
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| | - Harsh Bansia
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Tong Wang
- Nanoscience Initiative, CUNY Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Yunshi Zhou
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| | - Jai Raman
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| | - Albert Yen
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| | - Dominique Gutierrez
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York, New York, New York 10031, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York (CUNY), New York, New York 10016, United States
| | - Stephen J Salipante
- Department of Laboratory Medicine, University of Washington, Seattle, Washington 98195-7110, United States
| | - Amédée des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York, New York, New York 10031, United States.,Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States.,Department of Chemistry and Biochemistry, City College of New York, New York, New York 10031, United States
| | - Michael C Jensen
- Seattle Children's Therapeutics, Seattle, Washington 98101, United States.,Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| | - Suzie H Pun
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| |
Collapse
|
4
|
|
5
|
He M, Lin J, Akakuru OU, Xu X, Li Y, Cao Y, Xu Y, Wu A. Octahedral silver oxide nanoparticles enabling remarkable SERS activity for detecting circulating tumor cells. SCIENCE CHINA-LIFE SCIENCES 2021; 65:561-571. [PMID: 34258713 DOI: 10.1007/s11427-020-1931-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/29/2021] [Indexed: 01/25/2023]
Abstract
The detection of circulating tumor cells (CTCs) is a crucial tool for early cancer diagnosis, prognosis, and postoperative evaluation. However, detection sensitivity remains a major challenge because CTCs are extremely rare in peripheral blood. To effectively detect CTCs, octahedral Ag2O nanoparticles (NPs) with high dispersibility, good biocompatibility, remarkable surface-enhanced Raman scattering (SERS) enhancement, and obvious enhancement selectivity are designed as an SERS platform. Ag2O NPs with many oxygen vacancy defects are successfully synthesized, which exhibit an ultra-high SERS enhancement factor (1.98×106) for 4-mercaptopyridine molecules. The remarkable SERS activity of octahedral Ag2O NPs is derived from the synergistic effect of the surface defect-promoted photo-induced charge transfer (PICT) process and strong vibration coupling resonance in the Ag2O-molecule SERS complex, greatly amplifying the molecular Raman scattering cross-section. The promoted PICT process is confirmed using ultraviolet-visible (UV-Vis) absorption spectroscopy, demonstrating that obvious PICT resonance occurs in Ag2O SERS system under visible light. An additional growth step of SERS bioprobe is proposed by modifying the Raman signal molecules and functional biological molecules on Ag2O NPs for CTC detection. The Ag2O-based SERS bioprobe exhibits excellent detection specificity for different cancer cells in rabbit blood. Importantly, the high-sensitivity Ag2O-based SERS bioprobe satisfies the requirement for rare CTC detection in the peripheral blood of cancer patients, and the detection limit can reach 1 cell per mL. To our knowledge, this study is the first time that a semiconductor SERS substrate has been successfully utilized in CTC detection. This work provides new insights into CTC detection and the development of novel semiconductor-based SERS platforms for cancer diagnosis.
Collapse
Affiliation(s)
- Meng He
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Jie Lin
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiawei Xu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yanying Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yi Cao
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yanping Xu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| |
Collapse
|
6
|
|
7
|
Singh B, Arora S, D'Souza A, Kale N, Aland G, Bharde A, Quadir M, Calderón M, Chaturvedi P, Khandare J. Chemo-specific designs for the enumeration of circulating tumor cells: advances in liquid biopsy. J Mater Chem B 2021; 9:2946-2978. [PMID: 33480960 DOI: 10.1039/d0tb02574g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Advanced materials and chemo-specific designs at the nano/micrometer-scale have ensured revolutionary progress in next-generation clinically relevant technologies. For example, isolating a rare population of cells, like circulating tumor cells (CTCs) from the blood amongst billions of other blood cells, is one of the most complex scientific challenges in cancer diagnostics. The chemical tunability for achieving this degree of exceptional specificity for extra-cellular biomarker interactions demands the utility of advanced entities and multistep reactions both in solution and in the insoluble state. Thus, this review delineates the chemo-specific substrates, chemical methods, and structure-activity relationships (SARs) of chemical platforms used for isolation and enumeration of CTCs in advancing the relevance of liquid biopsy in cancer diagnostics and disease management. We highlight the synthesis of cell-specific, tumor biomarker-based, chemo-specific substrates utilizing functionalized linkers through chemistry-based conjugation strategies. The capacity of these nano/micro substrates to enhance the cell interaction specificity and efficiency with the targeted tumor cells is detailed. Furthermore, this review accounts for the importance of CTC capture and other downstream processes involving genotypic and phenotypic CTC analysis in real-time for the detection of the early onset of metastases progression and chemotherapy treatment response, and for monitoring progression free-survival (PFS), disease-free survival (DFS), and eventually overall survival (OS) in cancer patients.
Collapse
Affiliation(s)
- Balram Singh
- Actorius Innovations and Research Pvt. Ltd, Pune, 411057, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Biglione C, Bergueiro J, Wedepohl S, Klemke B, Strumia MC, Calderón M. Revealing the NIR-triggered chemotherapy therapeutic window of magnetic and thermoresponsive nanogels. NANOSCALE 2020; 12:21635-21646. [PMID: 32856647 DOI: 10.1039/d0nr02953j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The combination of magnetic nanoparticles and thermoresponsive nanogels represents an appealing strategy for the development of theranostic probes. These hybrid nanocarriers present several advantages such as outstanding properties for guided therapy, magnetic resonance imaging, and triggered release of encapsulated cargoes. Most magnetic thermoresponsive nanogels are built with strategies that comprise a physical interaction of particles with the polymeric network or the covalent attachment of a single particle to the linear polymer. Herein, we report a facile synthetic approach for the synthesis of magnetic and thermoresponsive nanogels that allows the controlled incorporation of multiple superparamagnetic inorganic cores as covalent cross-linkers. An ultrasonication-assisted precipitation-polymerization afforded nanogels with sizes in the nanometric range and similar magnetization and light transduction properties compared to the discrete magnetic nanoparticles. The theranostic capability of these nanocarriers was further investigated both in vitro and in vivo. In vivo experiments demonstrated the capacity of these materials as nanocarriers for near-infrared (NIR) triggered chemotherapy and highlighted the relevance of the correct concentration/dose in this antitumoral modality to achieve a superior therapeutic efficacy.
Collapse
Affiliation(s)
- Catalina Biglione
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Hazra RS, Kale N, Aland G, Qayyumi B, Mitra D, Jiang L, Bajwa D, Khandare J, Chaturvedi P, Quadir M. Cellulose Mediated Transferrin Nanocages for Enumeration of Circulating Tumor Cells for Head and Neck Cancer. Sci Rep 2020; 10:10010. [PMID: 32561829 PMCID: PMC7305211 DOI: 10.1038/s41598-020-66625-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 05/20/2020] [Indexed: 01/05/2023] Open
Abstract
Herein we report a hierarchically organized, water-dispersible 'nanocage' composed of cellulose nanocrystals (CNCs), which are magnetically powered by iron oxide (Fe3O4) nanoparticles (NPs) to capture circulating tumor cells (CTCs) in blood for head and neck cancer (HNC) patients. Capturing CTCs from peripheral blood is extremely challenging due to their low abundance and its account is clinically validated in progression-free survival of patients with HNC. Engaging multiple hydroxyl groups along the molecular backbone of CNC, we co-ordinated Fe3O4 NPs onto CNC scaffold, which was further modified by conjugation with a protein - transferrin (Tf) for targeted capture of CTCs. Owing to the presence of Fe3O4 nanoparticles, these nanocages were magnetic in nature, and CTCs could be captured under the influence of a magnetic field. Tf-CNC-based nanocages were evaluated using HNC patients' blood sample and compared for the CTC capturing efficiency with clinically relevant Oncoviu platform. Conclusively, we observed that CNC-derived nanocages efficiently isolated CTCs from patient's blood at 85% of cell capture efficiency to that of the standard platform. Capture efficiency was found to vary with the concentration of Tf and Fe3O4 nanoparticles immobilized onto the CNC scaffold. We envision that, Tf-CNC platform has immense connotation in 'liquid biopsy' for isolation and enumeration of CTCs for early detection of metastasis in cancer.
Collapse
Affiliation(s)
- Raj Shankar Hazra
- Department of Mechanical Engineering, Materials and Nanotechnology Program, North Dakota State University, Fargo, 58108, ND, USA
| | - Narendra Kale
- Maharashtra Institute of Technology-WPU, School of Pharmacy, Pune, India
| | | | - Burhanuddin Qayyumi
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, 400012, Maharashtra, India
| | - Dipankar Mitra
- Department of Electrical and Computer Engineering, North Dakota State University, Fargo, 58108, ND, USA
| | - Long Jiang
- Department of Mechanical Engineering, Materials and Nanotechnology Program, North Dakota State University, Fargo, 58108, ND, USA
| | - Dilpreet Bajwa
- Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT, 59717-3800, USA
| | - Jayant Khandare
- Maharashtra Institute of Technology-WPU, School of Pharmacy, Pune, India. .,Actorius Innovations and Research (AIR) Pvt. Ltd., Pune, India.
| | - Pankaj Chaturvedi
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, 400012, Maharashtra, India
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, 58108, ND, USA.
| |
Collapse
|
10
|
Kuzajewska D, Wszołek A, Żwierełło W, Kirczuk L, Maruszewska A. Magnetotactic Bacteria and Magnetosomes as Smart Drug Delivery Systems: A New Weapon on the Battlefield with Cancer? BIOLOGY 2020; 9:E102. [PMID: 32438567 PMCID: PMC7284773 DOI: 10.3390/biology9050102] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022]
Abstract
An important direction of research in increasing the effectiveness of cancer therapies is the design of effective drug distribution systems in the body. The development of the new strategies is primarily aimed at improving the stability of the drug after administration and increasing the precision of drug delivery to the destination. Due to the characteristic features of cancer cells, distributing chemotherapeutics exactly to the microenvironment of the tumor while sparing the healthy tissues is an important issue here. One of the promising solutions that would meet the above requirements is the use of Magnetotactic bacteria (MTBs) and their organelles, called magnetosomes (BMs). MTBs are commonly found in water reservoirs, and BMs that contain ferromagnetic crystals condition the magnetotaxis of these microorganisms. The presented work is a review of the current state of knowledge on the potential use of MTBs and BMs as nanocarriers in the therapy of cancer. The growing amount of literature data indicates that MTBs and BMs may be used as natural nanocarriers for chemotherapeutics, such as classic anti-cancer drugs, antibodies, vaccine DNA, and siRNA. Their use as transporters increases the stability of chemotherapeutics and allows the transfer of individual ligands or their combinations precisely to cancerous tumors, which, in turn, enables the drugs to reach molecular targets more effectively.
Collapse
Affiliation(s)
- Danuta Kuzajewska
- Institute of Biology, University of Szczecin, Felczaka 3c St, 71-412 Szczecin, Poland; (D.K.); (L.K.)
| | - Agata Wszołek
- Institute of Biology, University of Szczecin, Felczaka 3c St, 71-412 Szczecin, Poland; (D.K.); (L.K.)
| | - Wojciech Żwierełło
- Department of Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 71 St, 70-111 Szczecin, Poland;
| | - Lucyna Kirczuk
- Institute of Biology, University of Szczecin, Felczaka 3c St, 71-412 Szczecin, Poland; (D.K.); (L.K.)
| | - Agnieszka Maruszewska
- Institute of Biology, University of Szczecin, Felczaka 3c St, 71-412 Szczecin, Poland; (D.K.); (L.K.)
| |
Collapse
|
11
|
Chen M, Liu A, Chen B, Zhu DM, Xie W, Deng FF, Ji LW, Chen LB, Huang HM, Fu YR, Liu W, Wang FB. Erythrocyte-derived vesicles for circulating tumor cell capture and specific tumor imaging. NANOSCALE 2019; 11:12388-12396. [PMID: 31215952 DOI: 10.1039/c9nr01805k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The precise diagnosis of cancer remains a great challenge; therefore, it is our research interest to develop safe, tumor-specific reagents. In this study, we designed nanovesicles derived from erythrocyte membranes; the nanovesicles are capable of recognizing tumor cells for both circulating tumor cell (CTC) capture and tumor imaging. The tumor-targeting molecules folic acid (FA) and fluorescein Cy5 were modified on the nanovesicle surface. The developed nanovesicles exhibit excellent tumor targeting ability both in vitro and in vivo for CTC capture and in tumor imaging. Compared with traditional immunomagnetic beads, the proposed nanovesicles are capable of avoiding non-specific adsorption as a derivative of red blood cells. Combined with a non-invasive means of micromanipulation, the nanometer-sized vesicles show a high purity of CTC capture (over 90%). In vivo, the nanovesicles can also be employed for efficient tumor imaging without obvious toxicity and side effects. In brief, the nanovesicles prepared herein show potential clinical application for integrated diagnosis in vitro and in vivo.
Collapse
Affiliation(s)
- Ming Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Ao Liu
- Huazhong Agricultural University, College of Plant Science and Technology, Wuhan, China
| | - Bei Chen
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Dao-Ming Zhu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Wei Xie
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Fang-Fang Deng
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Li-Wei Ji
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Li-Ben Chen
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Hui-Ming Huang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - You-Rong Fu
- Department of Blood Transfusion, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Fu-Bing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Li K, Yang X, Xue C, Zhao L, Zhang Y, Gao X. Biomimetic human lung-on-a-chip for modeling disease investigation. BIOMICROFLUIDICS 2019. [PMID: 31263514 DOI: 10.1063/1.5119052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The lung is the primary respiratory organ of the human body and has a complicated and precise tissue structure. It comprises conductive airways formed by the trachea, bronchi and bronchioles, and many alveoli, the smallest functional units where gas-exchange occurs via the unique gas-liquid exchange interface known as the respiratory membrane. In vitro bionic simulation of the lung or its microenvironment, therefore, presents a great challenge, which requires the joint efforts of anatomy, physics, material science, cell biology, tissue engineering, and other disciplines. With the development of micromachining and miniaturization technology, the concept of a microfluidics-based organ-on-a-chip has received great attention. An organ-on-a-chip is a small cell-culture device that can accurately simulate tissue and organ functions in vitro and has the potential to replace animal models in evaluations of drug toxicity and efficacy. A lung-on-a-chip, as one of the first proposed and developed organs-on-a-chip, provides new strategies for designing a bionic lung cell microenvironment and for in vitro construction of lung disease models, and it is expected to promote the development of basic research and translational medicine in drug evaluation, toxicological detection, and disease model-building for the lung. This review summarizes current lungs-on-a-chip models based on the lung-related cellular microenvironment, including the latest advances described in studies of lung injury, inflammation, lung cancer, and pulmonary fibrosis. This model should see effective use in clinical medicine to promote the development of precision medicine and individualized diagnosis and treatment.
Collapse
Affiliation(s)
- Kaiyan Li
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Xingyuan Yang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Chang Xue
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Lijuan Zhao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | | | - Xinghua Gao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| |
Collapse
|
13
|
Macchione MA, Biglione C, Strumia M. Design, Synthesis and Architectures of Hybrid Nanomaterials for Therapy and Diagnosis Applications. Polymers (Basel) 2018; 10:E527. [PMID: 30966561 PMCID: PMC6415435 DOI: 10.3390/polym10050527] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/25/2022] Open
Abstract
Hybrid nanomaterials based on inorganic nanoparticles and polymers are highly interesting structures since they combine synergistically the advantageous physical-chemical properties of both inorganic and polymeric components, providing superior functionality to the final material. These unique properties motivate the intensive study of these materials from a multidisciplinary view with the aim of finding novel applications in technological and biomedical fields. Choosing a specific synthetic methodology that allows for control over the surface composition and its architecture, enables not only the examination of the structure/property relationships, but, more importantly, the design of more efficient nanodevices for therapy and diagnosis in nanomedicine. The current review categorizes hybrid nanomaterials into three types of architectures: core-brush, hybrid nanogels, and core-shell. We focus on the analysis of the synthetic approaches that lead to the formation of each type of architecture. Furthermore, most recent advances in therapy and diagnosis applications and some inherent challenges of these materials are herein reviewed.
Collapse
Affiliation(s)
- Micaela A Macchione
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre esq. Av. Medina Allende, Córdoba X5000HUA, Argentina.
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET. Av. Velez Sárfield 1611, Córdoba X5000HUA, Argentina.
| | - Catalina Biglione
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| | - Miriam Strumia
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre esq. Av. Medina Allende, Córdoba X5000HUA, Argentina.
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET. Av. Velez Sárfield 1611, Córdoba X5000HUA, Argentina.
| |
Collapse
|