1
|
Wang YM, Xin T, Deng H, Chen J, Tang SL, Liu LS, Chen XL. Keratin/chitosan film promotes wound healing in rats with combined radiation-wound injury. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:15. [PMID: 39869238 PMCID: PMC11772442 DOI: 10.1007/s10856-025-06860-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/10/2025] [Indexed: 01/28/2025]
Abstract
Human hair keratin, a natural protein derived from human hair, has emerged prominently in the field of wound repair, showcasing its unique regenerative capabilities and extensive application potential. However, it is a challenge for the keratin to efficiently therapy the impaired wound healing, such as combined radiation-wound injury. Here, we report a keratin/chitosan (KRT/CS) film for skin repair of chronic wounds in in rats with combined radiation-wound injury. In brief, the KRT/CS film was characterized by scanning electron microscopy (SEM), mechanical property analysis, water absorption, and swelling analysis. A rat model of combined radiation-wound injury was employed to evaluate the therapeutic efficacy of the KRT/CS film. Finally, the systemic biotoxicity of KRT/CS film was assessed through histological analysis. The surface of KRT/CS film was uniform and smooth compared with the KRT film, and the mechanical property, swelling rate and water absorption rate of KRT/CS film were significantly improved, which can meet the application requirements of wound excipient dressing. Furthermore, the combined radiation-wound injury in rats was established that the wound closure rate was achieved 74.46% after 14 days of treatment with KRT/CS film, comparing to the single KRT membrane and commercially available Band-Aids. Histological analysis demonstrated that the amount of angiogenesis and collagen deposition in wounds treated with KRT/CS were significantly improved. These findings demonstrate the KRT/CS film as a promising therapeutic agent for combined radiation-wound injury.
Collapse
Affiliation(s)
- Yu-Mei Wang
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, No. 181 HanYu St, Shapingba District, Chongqing, 400030, PR China
| | - Tong Xin
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, No. 181 HanYu St, Shapingba District, Chongqing, 400030, PR China
| | - Hao Deng
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, No. 181 HanYu St, Shapingba District, Chongqing, 400030, PR China
| | - Jie Chen
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, No. 181 HanYu St, Shapingba District, Chongqing, 400030, PR China
| | - Shen-Lin Tang
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, No. 181 HanYu St, Shapingba District, Chongqing, 400030, PR China.
| | - Li-Sheng Liu
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, No. 181 HanYu St, Shapingba District, Chongqing, 400030, PR China.
| | - Xiao-Liang Chen
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, No. 181 HanYu St, Shapingba District, Chongqing, 400030, PR China.
| |
Collapse
|
2
|
Sanchez Armengol E, Hock N, Saribal S, To D, Summonte S, Veider F, Kali G, Bernkop-Schnürch A, Laffleur F. Unveiling the potential of biomaterials and their synergistic fusion in tissue engineering. Eur J Pharm Sci 2024; 196:106761. [PMID: 38580169 DOI: 10.1016/j.ejps.2024.106761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/17/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Inspired by nature, tissue engineering aims to employ intricate mechanisms for advanced clinical interventions, unlocking inherent biological potential and propelling medical breakthroughs. Therefore, medical, and pharmaceutical fields are growing interest in tissue and organ replacement, repair, and regeneration by this technology. Three primary mechanisms are currently used in tissue engineering: transplantation of cells (I), injection of growth factors (II) and cellular seeding in scaffolds (III). However, to develop scaffolds presenting highest potential, reinforcement with polymeric materials is growing interest. For instance, natural and synthetic polymers can be used. Regardless, chitosan and keratin are two biopolymers presenting great biocompatibility, biodegradability and non-antigenic properties for tissue engineering purposes offering restoration and revitalization. Therefore, combination of chitosan and keratin has been studied and results exhibit highly porous scaffolds providing optimal environment for tissue cultivation. This review aims to give an historical as well as current overview of tissue engineering, presenting mechanisms used and polymers involved in the field.
Collapse
Affiliation(s)
- Eva Sanchez Armengol
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Nathalie Hock
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria; ITM Isotope Technologies Munich SE, Walther-von-Dyck Str. 4, 85748, Garching bei Munich, Germany
| | - Sila Saribal
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Dennis To
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Simona Summonte
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria; ThioMatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020, Innsbruck, Austria
| | - Florina Veider
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria; Sandoz, Biochemiestraße 10, 6250, Kundl, Austria
| | - Gergely Kali
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| |
Collapse
|
3
|
Soleymani Eil Bakhtiari S, Karbasi S. Keratin-containing scaffolds for tissue engineering applications: a review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:916-965. [PMID: 38349200 DOI: 10.1080/09205063.2024.2311450] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/24/2024] [Indexed: 04/13/2024]
Abstract
In tissue engineering and regenerative medicine applications, the utilization of bioactive materials has become a routine tool. The goal of tissue engineering is to create new organs and tissues by combining cell biology, materials science, reactor engineering, and clinical research. As part of the growth pattern for primary cells in an organ, backing material is frequently used as a supporting material. A porous three-dimensional (3D) scaffold can provide cells with optimal conditions for proliferating, migrating, differentiating, and functioning as a framework. Optimizing the scaffolds' structure and altering their surface may improve cell adhesion and proliferation. A keratin-based biomaterials platform has been developed as a result of discoveries made over the past century in the extraction, purification, and characterization of keratin proteins from hair and wool fibers. Biocompatibility, biodegradability, intrinsic biological activity, and cellular binding motifs make keratin an attractive biomaterial for tissue engineering scaffolds. Scaffolds for tissue engineering have been developed from extracted keratin proteins because of their capacity to self-assemble and polymerize into intricate 3D structures. In this review article, applications of keratin-based scaffolds in different tissues including bone, skin, nerve, and vascular are explained based on common methods of fabrication such as electrospinning, freeze-drying process, and sponge replication method.
Collapse
Affiliation(s)
- Sanaz Soleymani Eil Bakhtiari
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Saeed Karbasi
- Biomaterials and Tissue Engineering Department, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Mirhaj M, Varshosaz J, Labbaf S, Emadi R, Seifalian AM, Sharifianjazi F, Tavakoli M. Mupirocin loaded core-shell pluronic-pectin-keratin nanofibers improve human keratinocytes behavior, angiogenic activity and wound healing. Int J Biol Macromol 2023; 253:126700. [PMID: 37673152 DOI: 10.1016/j.ijbiomac.2023.126700] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/11/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
In the current study, a core-shell nanofibrous wound dressing based on Pluronic-F127 (F127) containing 2 wt% mupirocin (Mup) core and pectin (Pec)-keratin (Kr) shell was fabricated through coaxial electrospinning technique, and the blended nanofibers were also fabricated from the same materials. The fiber diameter and specific surface area of the blended nanofibers were about 101.56 nm and 20.16 m2/g, while for core-shell nanofibers they were about 97.32 nm and 25.26 m2/g, respectively. The resultant blended and core-shell nanofibers experienced a degradation of 27.65 % and 32.28 % during 7 days, respectively. The drug release profile of core-shell nanofibers revealed a sustained release of Mup over 7 days (87.66 %), while the blended F127-Pec-Kr-Mup nanofibers had a burst release within the first few hours (89.38 % up to 48 h) and a cumulative release of 91.36 % after 7 days. Due to the controlled release of Mup, the core-shell structure significantly improved the human keratinocytes behavior, angiogenic potential and wound healing in a rat model compared to the blended structure. In conclusion, the F127-Mup/Pec-Kr core-shell nanofibrous wound dressing appears to be a promising candidate for the prevention of infection, and can potentially accelerate the recovery and healing of chronic and ischemic wounds.
Collapse
Affiliation(s)
- Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre, Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Rahmatollah Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Alexander Marcus Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd, Nanoloom Ltd, Liberum Health Ltd), London BioScience Innovation Centre, London, United Kingdom
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, University of Georgia, Tbilisi 0171, Georgia.
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
5
|
Recent progress in polymeric biomaterials and their potential applications in skin regeneration and wound care management. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
6
|
Bashir SM, Ahmed Rather G, Patrício A, Haq Z, Sheikh AA, Shah MZUH, Singh H, Khan AA, Imtiyaz S, Ahmad SB, Nabi S, Rakhshan R, Hassan S, Fonte P. Chitosan Nanoparticles: A Versatile Platform for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15196521. [PMID: 36233864 PMCID: PMC9570720 DOI: 10.3390/ma15196521] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 05/10/2023]
Abstract
Chitosan is a biodegradable and biocompatible natural polymer that has been extensively explored in recent decades. The Food and Drug Administration has approved chitosan for wound treatment and nutritional use. Furthermore, chitosan has paved the way for advancements in different biomedical applications including as a nanocarrier and tissue-engineering scaffold. Its antibacterial, antioxidant, and haemostatic properties make it an excellent option for wound dressings. Because of its hydrophilic nature, chitosan is an ideal starting material for biocompatible and biodegradable hydrogels. To suit specific application demands, chitosan can be combined with fillers, such as hydroxyapatite, to modify the mechanical characteristics of pH-sensitive hydrogels. Furthermore, the cationic characteristics of chitosan have made it a popular choice for gene delivery and cancer therapy. Thus, the use of chitosan nanoparticles in developing novel drug delivery systems has received special attention. This review aims to provide an overview of chitosan-based nanoparticles, focusing on their versatile properties and different applications in biomedical sciences and engineering.
Collapse
Affiliation(s)
- Showkeen Muzamil Bashir
- Molecular Biology Laboratory, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Alusteng, Srinagar 190006, India
- Correspondence: (S.M.B.); (G.A.R.); (P.F.)
| | - Gulzar Ahmed Rather
- Department of Biomedical Engineering, Sathyabama Institute of Science & Technology (Deemed to be University), Chennai 600119, India
- Correspondence: (S.M.B.); (G.A.R.); (P.F.)
| | - Ana Patrício
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Zulfiqar Haq
- ICAR-Poultry Seed Project, Division of LPM, Skuast-K 132001, India
| | - Amir Amin Sheikh
- International Institute of Veterinary Education and Research (IIVER), Bahu Akbarpur, Rohtak 124001, India
| | - Mohd Zahoor ul Haq Shah
- Laboratory of Endocrinology, Department of Bioscience, Barkatullah University, Bhopal 462026, India
| | - Hemant Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee 247667, India
| | - Azmat Alam Khan
- ICAR-Poultry Seed Project, Division of LPM, Skuast-K 132001, India
| | - Sofi Imtiyaz
- Molecular Biology Laboratory, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Alusteng, Srinagar 190006, India
| | - Sheikh Bilal Ahmad
- Molecular Biology Laboratory, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Alusteng, Srinagar 190006, India
| | - Showket Nabi
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Alusteng, Srinagar 190006, India
| | - Rabia Rakhshan
- Molecular Biology Laboratory, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Alusteng, Srinagar 190006, India
| | - Saqib Hassan
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Pedro Fonte
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Center for Marine Sciences (CCMAR), Gambelas Campus, University of Algarve, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, Gambelas Campus, University of Algarve, 8005-139 Faro, Portugal
- Correspondence: (S.M.B.); (G.A.R.); (P.F.)
| |
Collapse
|
7
|
Ye W, Qin M, Qiu R, Li J. Keratin-based wound dressings: From waste to wealth. Int J Biol Macromol 2022; 211:183-197. [PMID: 35513107 DOI: 10.1016/j.ijbiomac.2022.04.216] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023]
Abstract
Keratin is a natural protein with a high content of cysteine residues (7-13%) and is widely found in hair, wool, horns, hooves, and nails. Keratin possesses abundant cell-binding motifs such as leucine-aspartate-valine (LDV), glutamate-aspartate-serine (EDS), and arginine-glycine-aspartate (RGD), which benefit cell attachment and proliferation. It has been confirmed that keratin plays important roles in every stage of wound healing, including hemostasis, inflammation, proliferation, and remodeling, making keratin-based materials good candidates for wound dressings. In combination with synthetic and natural polymers, keratin-based wound dressings in the forms of films, hydrogels, and nanofibers can be achieved with improved mechanical properties. This review focuses on the recent development of keratin-based wound dressings. Firstly, the physicochemical and biological properties of keratin, are systematically discussed. Secondly, the role of keratin in wound healing is proposed. Thirdly, the applications of keratin-based wound dressings are summarized, in terms of the forms and functionalization. Finally, the current challenges and future development of keratin-based wound dressings are presented.
Collapse
Affiliation(s)
- Wenjin Ye
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065
| | - Rongmin Qiu
- College & Hospital of Stomatology, Guangxi Medical University, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, Guangxi 530021, PR China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China; Med-X Center for Materials, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
8
|
Ghaffari-Bohlouli P, Jafari H, Taebnia N, Abedi A, Amirsadeghi A, Niknezhad SV, Alimoradi H, Jafarzadeh S, Mirzaei M, Nie L, Zhang J, Varma RS, Shavandi A. Protein by-products: Composition, extraction, and biomedical applications. Crit Rev Food Sci Nutr 2022; 63:9436-9481. [PMID: 35546340 DOI: 10.1080/10408398.2022.2067829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Significant upsurge in animal by-products such as skin, bones, wool, hides, feathers, and fats has become a global challenge and, if not properly disposed of, can spread contamination and viral diseases. Animal by-products are rich in proteins, which can be used as nutritional, pharmacologically functional ingredients, and biomedical materials. Therefore, recycling these abundant and renewable by-products and extracting high value-added components from them is a sustainable approach to reclaim animal by-products while addressing scarce landfill resources. This article appraises the most recent studies conducted in the last five years on animal-derived proteins' separation and biomedical application. The effort encompasses an introduction about the composition, an overview of the extraction and purification methods, and the broad range of biomedical applications of these ensuing proteins.
Collapse
Affiliation(s)
| | - Hafez Jafari
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| | - Nayere Taebnia
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ali Abedi
- Department of Life Science Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| | - Armin Amirsadeghi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Houman Alimoradi
- School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sina Jafarzadeh
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mahta Mirzaei
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| | - Lei Nie
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic
| | - Amin Shavandi
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| |
Collapse
|
9
|
Chu W, Hu G, Peng L, Zhang W, Ma Z. The use of a novel deer antler decellularized cartilage-derived matrix scaffold for repair of osteochondral defects. J Biol Eng 2021; 15:23. [PMID: 34479610 PMCID: PMC8414868 DOI: 10.1186/s13036-021-00274-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/16/2021] [Indexed: 01/17/2023] Open
Abstract
Background The physiologic regenerative capacity of cartilage is severely limited. Current studies on the repair of osteochondral defects (OCDs) have mainly focused on the regeneration of cartilage tissues. The antler cartilage is a unique regenerative cartilage that has the potential for cartilage repair. Methods Antler decellularized cartilage-derived matrix scaffolds (adCDMs) were prepared by combining freezing-thawing and enzymatic degradation. Their DNA, glycosaminoglycans (GAGs), and collagen content were then detected. Biosafety and biocompatibility were evaluated by pyrogen detection, hemolysis analysis, cytotoxicity evaluation, and subcutaneous implantation experiments. adCDMs were implanted into rabbit articular cartilage defects for 2 months to evaluate their therapeutic effects. Results AdCDMs were observed to be rich in collagen and GAGs and devoid of cells. AdCDMs were also determined to have good biosafety and biocompatibility. Both four- and eight-week treatments of OCDs showed a flat and smooth surface of the healing cartilage at the adCDMs filled site. The international cartilage repair society scores (ICRS) of adCDMs were significantly higher than those of controls (porcine dCDMs and normal saline) (p < 0.05). The repaired tissue in the adCDM group was fibrotic with high collagen, specifically, type II collagen. Conclusions We concluded that adCDMs could achieve excellent cartilage regeneration repair in a rabbit knee OCDs model. Our study stresses the importance and benefits of adCDMs in bone formation and overall anatomical reconstitution, and it provides a novel source for developing cartilage-regenerating repair materials. Supplementary Information The online version contains supplementary material available at 10.1186/s13036-021-00274-5.
Collapse
Affiliation(s)
- Wenhui Chu
- School of Life Science, Taizhou University, 1139 Shifu Avenue, Jiaojiang District, Zhejiang, 318000, Taizhou, China
| | - Gaowei Hu
- School of Life Science, Taizhou University, 1139 Shifu Avenue, Jiaojiang District, Zhejiang, 318000, Taizhou, China
| | - Lin Peng
- School of Life Science, Taizhou University, 1139 Shifu Avenue, Jiaojiang District, Zhejiang, 318000, Taizhou, China
| | - Wei Zhang
- Post-Doctoral Innovation Site, Jinan University Affiliation, Yuanzhi Health Technology Co, Ltd, Hengqin New District, 519000, Zhuhai, Guangdong, China. .,Medical Imaging Center, The First Affiliated Hospital of Jinan University, Jinan University, 613 Huangpu Avenue West, Tianhe District, Guangdong, 510080, Guangzhou, China.
| | - Zhe Ma
- School of Life Science, Taizhou University, 1139 Shifu Avenue, Jiaojiang District, Zhejiang, 318000, Taizhou, China.
| |
Collapse
|
10
|
Bonferoni MC, Caramella C, Catenacci L, Conti B, Dorati R, Ferrari F, Genta I, Modena T, Perteghella S, Rossi S, Sandri G, Sorrenti M, Torre ML, Tripodo G. Biomaterials for Soft Tissue Repair and Regeneration: A Focus on Italian Research in the Field. Pharmaceutics 2021; 13:pharmaceutics13091341. [PMID: 34575417 PMCID: PMC8471088 DOI: 10.3390/pharmaceutics13091341] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/22/2022] Open
Abstract
Tissue repair and regeneration is an interdisciplinary field focusing on developing bioactive substitutes aimed at restoring pristine functions of damaged, diseased tissues. Biomaterials, intended as those materials compatible with living tissues after in vivo administration, play a pivotal role in this area and they have been successfully studied and developed for several years. Namely, the researches focus on improving bio-inert biomaterials that well integrate in living tissues with no or minimal tissue response, or bioactive materials that influence biological response, stimulating new tissue re-growth. This review aims to gather and introduce, in the context of Italian scientific community, cutting-edge advancements in biomaterial science applied to tissue repair and regeneration. After introducing tissue repair and regeneration, the review focuses on biodegradable and biocompatible biomaterials such as collagen, polysaccharides, silk proteins, polyesters and their derivatives, characterized by the most promising outputs in biomedical science. Attention is pointed out also to those biomaterials exerting peculiar activities, e.g., antibacterial. The regulatory frame applied to pre-clinical and early clinical studies is also outlined by distinguishing between Advanced Therapy Medicinal Products and Medical Devices.
Collapse
Affiliation(s)
| | | | | | - Bice Conti
- Correspondence: (M.C.B.); (B.C.); (F.F.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lazarus BS, Chadha C, Velasco-Hogan A, Barbosa JD, Jasiuk I, Meyers MA. Engineering with keratin: A functional material and a source of bioinspiration. iScience 2021; 24:102798. [PMID: 34355149 PMCID: PMC8319812 DOI: 10.1016/j.isci.2021.102798] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Keratin is a highly multifunctional biopolymer serving various roles in nature due to its diverse material properties, wide spectrum of structural designs, and impressive performance. Keratin-based materials are mechanically robust, thermally insulating, lightweight, capable of undergoing reversible adhesion through van der Waals forces, and exhibit structural coloration and hydrophobic surfaces. Thus, they have become templates for bioinspired designs and have even been applied as a functional material for biomedical applications and environmentally sustainable fiber-reinforced composites. This review aims to highlight keratin's remarkable capabilities as a biological component, a source of design inspiration, and an engineering material. We conclude with future directions for the exploration of keratinous materials.
Collapse
Affiliation(s)
- Benjamin S. Lazarus
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Charul Chadha
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Audrey Velasco-Hogan
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | | | - Iwona Jasiuk
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Marc A. Meyers
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA
- Department of Nanoengineering, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
12
|
Chitosan grafted/cross-linked with biodegradable polymers: A review. Int J Biol Macromol 2021; 178:325-343. [PMID: 33652051 DOI: 10.1016/j.ijbiomac.2021.02.200] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/29/2022]
Abstract
Public perception of polymers has been drastically changed with the improved plastic management at the end of their life. However, it is widely recognised the need of developing biodegradable polymers, as an alternative to traditional petrochemical polymers. Chitosan (CH), a biodegradable biopolymer with excellent physiological and structural properties, together with its immunostimulatory and antibacterial activity, is a good candidate to replace other polymers, mainly in biomedical applications. However, CH has also several drawbacks, which can be solved by chemical modifications to improve some of its characteristics such as solubility, biological activity, and mechanical properties. Many chemical modifications have been studied in the last decade to improve the properties of CH. This review focussed on a critical analysis of the state of the art of chemical modifications by cross-linking and graft polymerization, between CH or CH derivatives and other biodegradable polymers (polysaccharides or proteins, obtained from microorganisms, synthetized from biomonomers, or from petrochemical products). Both techniques offer the option of including a wide variety of functional groups into the CH chain. Thus, enhanced and new properties can be obtained in accordance with the requirements for different applications, such as the release of drugs, the improvement of antimicrobial properties of fabrics, the removal of dyes, or as scaffolds to develop bone tissues.
Collapse
|
13
|
Deng X, Gould M, Ali MA. Fabrication and characterisation of melt-extruded chitosan/keratin/PCL/PEG drug-eluting sutures designed for wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111696. [PMID: 33545855 DOI: 10.1016/j.msec.2020.111696] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/20/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
Diclofenac potassium loaded sutures based upon PEG/PCL/chitosan-keratin blends were fabricated using the hot-melt extrusion technique. Polymer sutures were evaluated based on their physical, thermal and mechanical properties, while the drug-eluting sutures were evaluated for drug release properties. Lastly, the performance of the drug-loaded sutures in the contact with the human keratinocyte cell line HaCat were assessed. Results showed that the sutures extruded homogeneously at a temperature of 63 ± 1 °C providing a uniform thickness of fibres. Analysis by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) showed that completely amorphous and miscible solid dispersions were created. Fourier transform infrared (FTIR) spectroscopy indicated that the presence of hydrogen bonds between the polymers improved material miscibility. Tensile properties of the sutures were clearly affected by the PEG, chitosan and keratin additions. The optimal formulation of tensile strength was obtained when PCL/PEG/chitosan-keratin were combined at a ratio of 80/19/1 w/w. Rapid and sustained drug release rates were achieved with the PEG/PCL/chitosan/keratin blends at various combinations. The composite of PCL/PEG/chitosan-keratin with 30 wt% of diclofenac potassium also exhibited high cell viability and wound healing rates in vitro cytotoxicity testing. The anti-inflammatory properties imparted by the PCL/PEG/chitosan/keratin/drug sutures may further the use of composite sutures for wound healing in clinical settings.
Collapse
Affiliation(s)
- Xiaoxuan Deng
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Food Science, Division of Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Maree Gould
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Food Science, Division of Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - M Azam Ali
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Food Science, Division of Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
14
|
Okur ME, Karantas ID, Şenyiğit Z, Üstündağ Okur N, Siafaka PI. Recent trends on wound management: New therapeutic choices based on polymeric carriers. Asian J Pharm Sci 2020; 15:661-684. [PMID: 33363624 PMCID: PMC7750807 DOI: 10.1016/j.ajps.2019.11.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 01/06/2023] Open
Abstract
Wound healing is an unmet therapeutic challenge among medical society since wound assessment and management is a complex procedure including several factors playing major role in healing process. Wounds can mainly be categorized as acute or chronic. It is well referred that the acute wound displays normal wound physiology while healing, in most cases, is seemed to progress through the normal phases of wound healing. On the other hand, a chronic wound is physiologically impaired. The main problem in wound management is that the majority of wounds are colonized with microbes, whereas this does not mean that all wounds will be infected. In this review, we address the problems that clinicians face to manage while treat acute and chronic wounds. Moreover, we demonstrate the pathophysiology, etiology, prognosis and microbiology of wounds. We further introduce the state of art in pharmaceutical technology field as part of wound management aiming to assist health professionals to overcome the current implications on wound assessment. In addition, authors review researches which included the use of gels and dermal films as wound healing agents. It can be said that natural and synthetic drugs or carriers provide promising solutions in order to meet the wound management standards. However, are the current strategies as desirable as medical society wish?
Collapse
Affiliation(s)
- Mehmet Evren Okur
- Department of Pharmacology, Faculty of Pharmacy, University of Health Sciences, Istanbul TR-34668, Turkey
| | - Ioannis D. Karantas
- Hippokration General Hospital, 2nd Clinic of Internal Medicine, Thessaloniki 54124, Greece
| | - Zeynep Şenyiğit
- Department of Pharmaceutical Technology, Faculty of Pharmacy, İzmir Katip Çelebi University, İzmir, Turkey
| | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul TR-34668, Turkey
| | - Panoraia I. Siafaka
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
15
|
Lu TY, Huang WC, Chen Y, Baskaran N, Yu J, Wei Y. Effect of varied hair protein fractions on the gel properties of keratin/chitosan hydrogels for the use in tissue engineering. Colloids Surf B Biointerfaces 2020; 195:111258. [PMID: 32683238 DOI: 10.1016/j.colsurfb.2020.111258] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 02/07/2023]
Abstract
Keratin/chitosan composite is a readily available source for a hybrid hydrogel in tissue engineering. While human hair keratins could provide biological functions, chitosan could further enhance the mechanical strength of the hybrid hydrogels. However, hair keratin is a group of natural proteins, and the uncontrolled hair protein contents in a hydrogel may lead to the batch-to-batch inconsistent gel properties. The purpose of this study was to investigate the role of hair protein composition, including the keratin-associated proteins (KAPs, 6-30 kDa) and keratin intermediate filaments (KIFs, 45-60 kDa) on gel characteristics of the keratin/chitosan hydrogel. The various compressive and tensile modulus of the gel was observed based on the selection of different protein fractions as the significant gel components. These results thus suggest a straightforward method of preparing hair keratin/chitosan hydrogel with much more controllable gel properties by merely modulating the KAPs/KIFs ratios in a gel.
Collapse
Affiliation(s)
- Ting-Yu Lu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei, 106, Taiwan
| | - Wen-Chuan Huang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 106, Taiwan
| | - Yi Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 106, Taiwan
| | - Nareshkumar Baskaran
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 106, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei, 106, Taiwan.
| | - Yang Wei
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 106, Taiwan.
| |
Collapse
|
16
|
Sakthiguru N, Sithique MA. Fabrication of bioinspired chitosan/gelatin/allantoin biocomposite film for wound dressing application. Int J Biol Macromol 2020; 152:873-883. [DOI: 10.1016/j.ijbiomac.2020.02.289] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
|
17
|
Carvalho CR, Costa JB, Costa L, Silva-Correia J, Moay ZK, Ng KW, Reis RL, Oliveira JM. Enhanced performance of chitosan/keratin membranes with potential application in peripheral nerve repair. Biomater Sci 2020; 7:5451-5466. [PMID: 31642822 DOI: 10.1039/c9bm01098j] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although surgical management of peripheral nerve injuries (PNIs) has improved over time, autografts are still the current "gold standard" treatment for PNIs, which presents numerous limitations. In an attempt to improve natural biomaterial-based nerve guidance conduits (NGCs), chitosan (CHT), a derivative of the naturally occurring biopolymer chitin, has been explored for peripheral nerve regeneration (PNR). In addition to CHT, keratin has gained enormous attention as a biomaterial and tissue engineering scaffolding. In this study, biomimetic CHT/keratin membranes were produced using a solvent casting technique. These membranes were broadly characterized in terms of their surface topography and physicochemical properties, with techniques such as Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), contact angle, weight loss and water uptake measurements, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Biological in vitro assays were also performed, where a preliminary cytotoxicity screening with the L929 fibroblast cell line revealed that the membranes and respective materials are suitable for cell culture. In addition, Schwann cells, fibroblasts and endothelial cells were directly seeded in the membranes. Quantitative and qualitative assays revealed that the addition of keratin enhanced cell viablity and adhesion. Based on the encouraging in vitro results, the in vivo angiogenic/antiangiogenic potential of CHT and CHT/keratin membranes was assessed, using an optimized chick embryo chorioallantoic membrane assay, where higher angiogenic responses were seen in keratin-enriched materials. Overall, the obtained results indicate the higher potential of CHT/keratin membranes for guided tissue regeneration applications in the field of PNR.
Collapse
Affiliation(s)
- Cristiana R Carvalho
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Huang Y, Dan N, Dan W, Zhao W. Reinforcement of Polycaprolactone/Chitosan with Nanoclay and Controlled Release of Curcumin for Wound Dressing. ACS OMEGA 2019; 4:22292-22301. [PMID: 31909312 PMCID: PMC6941175 DOI: 10.1021/acsomega.9b02217] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/05/2019] [Indexed: 05/27/2023]
Abstract
A novel clay-reinforced polycaprolactone/chitosan/curcumin (PCl/CS/Clay/Cur) composite film was fabricated in this study. The prepared Cur-loading composite films were characterized with attenuated total reflection Fourier transformed infrared spectroscopy, scanning electron microscopy, atomic force microscopy, water contact angle, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction, and the results showed good dispersion of clay in the composite films. The addition of nanoclay was found to significantly increase the tensile strength. Also, the clay-enhanced drug-loading films exhibited better controlled-release profiles of Cur than those membranes without clay. Skin disinfection test demonstrated that the curcumin-loaded film could protect wound from bacterial infection. Cytotoxicity analysis proved the good biocompatibility of the composite films. The clay-enhanced Cur-loading films might be promising candidates for wound care.
Collapse
Affiliation(s)
- Yanping Huang
- College
of Biomass Science and Engineering, Key Laboratory for Leather
Chemistry and Engineering of the Education Ministry, Research Center of Biomedical Engineering, and College of Polymer
Science and Engineering, State Key Laboratory of Polymer Materials
Engineering, Sichuan University, Chengdu 610065, China
| | - Nianhua Dan
- College
of Biomass Science and Engineering, Key Laboratory for Leather
Chemistry and Engineering of the Education Ministry, Research Center of Biomedical Engineering, and College of Polymer
Science and Engineering, State Key Laboratory of Polymer Materials
Engineering, Sichuan University, Chengdu 610065, China
| | - Weihua Dan
- College
of Biomass Science and Engineering, Key Laboratory for Leather
Chemistry and Engineering of the Education Ministry, Research Center of Biomedical Engineering, and College of Polymer
Science and Engineering, State Key Laboratory of Polymer Materials
Engineering, Sichuan University, Chengdu 610065, China
| | - Weifeng Zhao
- College
of Biomass Science and Engineering, Key Laboratory for Leather
Chemistry and Engineering of the Education Ministry, Research Center of Biomedical Engineering, and College of Polymer
Science and Engineering, State Key Laboratory of Polymer Materials
Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
19
|
Donato RK, Mija A. Keratin Associations with Synthetic, Biosynthetic and Natural Polymers: An Extensive Review. Polymers (Basel) 2019; 12:E32. [PMID: 31878054 PMCID: PMC7023547 DOI: 10.3390/polym12010032] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022] Open
Abstract
Among the biopolymers from animal sources, keratin is one the most abundant, with a major contribution from side stream products from cattle, ovine and poultry industry, offering many opportunities to produce cost-effective and sustainable advanced materials. Although many reviews have discussed the application of keratin in polymer-based biomaterials, little attention has been paid to its potential in association with other polymer matrices. Thus, herein, we present an extensive literature review summarizing keratin's compatibility with other synthetic, biosynthetic and natural polymers, and its effect on the materials' final properties in a myriad of applications. First, we revise the historical context of keratin use, describe its structure, chemical toolset and methods of extraction, overview and differentiate keratins obtained from different sources, highlight the main areas where keratin associations have been applied, and describe the possibilities offered by its chemical toolset. Finally, we contextualize keratin's potential for addressing current issues in materials sciences, focusing on the effect of keratin when associated to other polymers' matrices from biomedical to engineering applications, and beyond.
Collapse
Affiliation(s)
- Ricardo K. Donato
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
- Institute of Chemistry of Nice, UMR CNRS 7272, Université Côte d’Azur, University of Nice Sophia Antipolis, Parc Valrose, 06108 Nice CEDEX 2, France
| | - Alice Mija
- Institute of Chemistry of Nice, UMR CNRS 7272, Université Côte d’Azur, University of Nice Sophia Antipolis, Parc Valrose, 06108 Nice CEDEX 2, France
| |
Collapse
|
20
|
Li S, Tian X, Fan J, Tong H, Ao Q, Wang X. Chitosans for Tissue Repair and Organ Three-Dimensional (3D) Bioprinting. MICROMACHINES 2019; 10:E765. [PMID: 31717955 PMCID: PMC6915415 DOI: 10.3390/mi10110765] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022]
Abstract
Chitosan is a unique natural resourced polysaccharide derived from chitin with special biocompatibility, biodegradability, and antimicrobial activity. During the past three decades, chitosan has gradually become an excellent candidate for various biomedical applications with prominent characteristics. Chitosan molecules can be chemically modified, adapting to all kinds of cells in the body, and endowed with specific biochemical and physiological functions. In this review, the intrinsic/extrinsic properties of chitosan molecules in skin, bone, cartilage, liver tissue repair, and organ three-dimensional (3D) bioprinting have been outlined. Several successful models for large scale-up vascularized and innervated organ 3D bioprinting have been demonstrated. Challenges and perspectives in future complex organ 3D bioprinting areas have been analyzed.
Collapse
Affiliation(s)
- Shenglong Li
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Xiaohong Tian
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Jun Fan
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Hao Tong
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Qiang Ao
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (X.T.); (J.F.); (H.T.); (Q.A.)
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
Sultankulov B, Berillo D, Sultankulova K, Tokay T, Saparov A. Progress in the Development of Chitosan-Based Biomaterials for Tissue Engineering and Regenerative Medicine. Biomolecules 2019; 9:E470. [PMID: 31509976 PMCID: PMC6770583 DOI: 10.3390/biom9090470] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022] Open
Abstract
Over the last few decades, chitosan has become a good candidate for tissue engineering applications. Derived from chitin, chitosan is a unique natural polysaccharide with outstanding properties in line with excellent biodegradability, biocompatibility, and antimicrobial activity. Due to the presence of free amine groups in its backbone chain, chitosan could be further chemically modified to possess additional functional properties useful for the development of different biomaterials in regenerative medicine. In the current review, we will highlight the progress made in the development of chitosan-containing bioscaffolds, such as gels, sponges, films, and fibers, and their possible applications in tissue repair and regeneration, as well as the use of chitosan as a component for drug delivery applications.
Collapse
Affiliation(s)
- Bolat Sultankulov
- Department of Chemical Engineering, School of Engineering, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Dmitriy Berillo
- Water Technology Center (WATEC) Department of Bioscience - Microbiology, Aarhus University, Aarhus 8000, Denmark
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | | | - Tursonjan Tokay
- School of Science and Technology, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Arman Saparov
- School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan.
| |
Collapse
|
22
|
Lin CW, Chen YK, Tang KC, Yang KC, Cheng NC, Yu J. Keratin scaffolds with human adipose stem cells: Physical and biological effects toward wound healing. J Tissue Eng Regen Med 2019; 13:1044-1058. [PMID: 30938939 DOI: 10.1002/term.2855] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 02/26/2019] [Accepted: 03/15/2019] [Indexed: 01/31/2023]
Abstract
Keratin, a natural biomaterial derived from wool or human hair, has the intrinsic ability to interact with different types of cells and the potential to serve as a controllable extracellular matrix that can be used a scaffold for tissue engineering. In this study, we demonstrated a simple and fast technique to construct 3D keratin scaffolds for accelerated wound healing using a lyophilization method based on extraction of keratin from human hair. The physical properties of the keratin scaffolds such as water uptake, pore size, and porosity can be adjusted by changing the protein concentrations during the fabrication process. The keratin scaffolds supported human adipose stem cells (hASCs) adhesion, proliferation, and differentiation. In vivo study performed on ICR mice showed that keratin scaffolds with hASCs shortened skin wound healing time, accelerated epithelialization, and promoted wound remodeling. Therefore, keratin scaffolds alone or together with hASCs may serve as therapeutic agents for repairing wounded tissue.
Collapse
Affiliation(s)
- Che-Wei Lin
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan.,Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yi-Kai Chen
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Kao-Chun Tang
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Kai-Chiang Yang
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|