1
|
Karatrantos AV, Middendorf M, Nosov DR, Cai Q, Westermann S, Hoffmann K, Nürnberg P, Shaplov AS, Schönhoff M. Diffusion and structure of propylene carbonate-metal salt electrolyte solutions for post-lithium-ion batteries: From experiment to simulation. J Chem Phys 2024; 161:054502. [PMID: 39087537 DOI: 10.1063/5.0216222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
The diffusion of cations in organic solvent solutions is important for the performance of metal-ion batteries. In this article, pulsed field gradient nuclear magnetic resonance experiments and fully atomistic molecular dynamic simulations were employed to study the temperature-dependent diffusive behavior of various liquid electrolytes representing 1M propylene carbonate solutions of metal salts with bis(trifluoromethylsulfonyl)imide (TFSI-) or hexafluorophosphate (PF6-) anions commonly used in lithium-ion batteries and beyond. The experimental studies revealed the temperature dependence of the diffusion coefficients for the propylene carbonate (PC) solvent and for the anions following an Arrhenius type of behavior. It was observed that the PC molecules are the faster species. For the monovalent cations (Li+, Na+, K+), the PC solvent diffusion was enhanced as the cation size increased, while for the divalent cations (Mg2+, Ca2+, Sr2+, Ba2+), the opposite trend was observed, i.e., the diffusion coefficients decreased as the cation size increased. The anion diffusion in LiTFSI and NaTFSI solutions was found to be similar, while in electrolytes with divalent cations, a decrease in anion diffusion with increasing cation size was observed. It was shown that non-polarizable charge-scaled force fields could correspond perfectly to the experimental values of the anion and PC solvent diffusion coefficients in salt solutions of both monovalent (Li+, Na+, K+) and divalent (Mg2+, Ca2+, Sr2+, Ba2+) cations at a range of operational temperatures. Finally, after calculating the radial distribution functions between cations, anions, and solvent molecules, the increase in the PC diffusion coefficient established with the increase in cation size for monovalent cations was clearly explained by the large hydration shell of small Li+ cations, due to their strong interaction with the PC solvent. In solutions with larger monovalent cations, such as Na+, and with a smaller solvation shell of PC, the PC diffusion is faster due to more liberated solvent molecules. In the salt solutions with divalent cations, both the anion and the PC diffusion coefficients decreased as the cation size increased due to an enhanced cation-anion coordination, which was accompanied by an increase in the amount of PC in the cation solvation shell due to the presence of anions.
Collapse
Affiliation(s)
- Argyrios V Karatrantos
- Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
- School of Chemistry and Chemical Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7EX, United Kingdom
| | - Maleen Middendorf
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
- International Graduate School on Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), Münster, Germany
| | - Daniil R Nosov
- Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
- Department of Physics and Materials Science, University of Luxembourg, 2 Avenue de l'Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Qiong Cai
- School of Chemistry and Chemical Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7EX, United Kingdom
| | - Stephan Westermann
- Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Katja Hoffmann
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Pinchas Nürnberg
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Alexander S Shaplov
- Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Monika Schönhoff
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
| |
Collapse
|
2
|
Moreno-Chaparro D, Moreno N, Usabiaga FB, Ellero M. Computational modeling of passive transport of functionalized nanoparticles. J Chem Phys 2023; 158:104108. [PMID: 36922140 DOI: 10.1063/5.0136833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Functionalized nanoparticles (NPs) are complex objects present in a variety of systems ranging from synthetic grafted nanoparticles to viruses. The morphology and number of the decorating groups can vary widely between systems. Thus, the modeling of functionalized NPs typically considers simplified spherical objects as a first-order approximation. At the nanoscale label, complex hydrodynamic interactions are expected to emerge as the morphological features of the particles change, and they can be further amplified when the NPs are confined or near walls. Direct estimation of these variations can be inferred via diffusion coefficients of the NPs. However, the evaluation of the coefficients requires an improved representation of the NPs morphology to reproduce important features hidden by simplified spherical models. Here, we characterize the passive transport of free and confined functionalized nanoparticles using the Rigid Multi-Blob (RMB) method. The main advantage of RMB is its versatility to approximate the mobility of complex structures at the nanoscale with significant accuracy and reduced computational cost. In particular, we investigate the effect of functional groups' distribution, size, and morphology over nanoparticle translational and rotational diffusion. We identify that the presence of functional groups significantly affects the rotational diffusion of the nanoparticles; moreover, the morphology of the groups and number induce characteristic mobility reduction compared to non-functionalized nanoparticles. Confined NPs also evidenced important alterations in their diffusivity, with distinctive signatures in the off-diagonal contributions of the rotational diffusion. These results can be exploited in various applications, including biomedical, polymer nanocomposite fabrication, drug delivery, and imaging.
Collapse
Affiliation(s)
| | - Nicolas Moreno
- Basque Center for Applied Mathematics, BCAM, Alameda de Mazarredo 14, Bilbao 48400, Spain
| | | | - Marco Ellero
- Basque Center for Applied Mathematics, BCAM, Alameda de Mazarredo 14, Bilbao 48400, Spain
| |
Collapse
|
3
|
Karatrantos AV, Mugemana C, Bouhala L, Clarke N, Kröger M. From Ionic Nanoparticle Organic Hybrids to Ionic Nanocomposites: Structure, Dynamics, and Properties: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:2. [PMID: 36615912 PMCID: PMC9823933 DOI: 10.3390/nano13010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Ionic nanoparticle organic hybrids have been the focus of research for almost 20 years, however the substitution of ionic canopy by an ionic-entangled polymer matrix was implemented only recently, and can lead to the formulation of ionic nanocomposites. The functionalization of nanoparticle surface by covalently grafting a charged ligand (corona) interacting electrostatically with the oppositely charged canopy (polymer matrix) can promote the dispersion state and stability which are prerequisites for property "tuning", polymer reinforcement, and fabrication of high-performance nanocomposites. Different types of nanoparticle, shape (spherical or anisotropic), loading, graft corona, polymer matrix type, charge density, molecular weight, can influence the nanoparticle dispersion state, and can alter the rheological, mechanical, electrical, self-healing, and shape-memory behavior of ionic nanocomposites. Such ionic nanocomposites can offer new properties and design possibilities in comparison to traditional polymer nanocomposites. However, to achieve a technological breakthrough by designing and developing such ionic nanomaterials, a synergy between experiments and simulation methods is necessary in order to obtain a fundamental understanding of the underlying physics and chemistry. Although there are a few coarse-grained simulation efforts to disclose the underlying physics, atomistic models and simulations that could shed light on the interphase, effect of polymer and nanoparticle chemistry on behavior, are completely absent.
Collapse
Affiliation(s)
- Argyrios V. Karatrantos
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Clement Mugemana
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Lyazid Bouhala
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Nigel Clarke
- Department of Physics & Astronomy, University of Sheffield, Hicks Buildingv Hounsfield Road, Sheffield S3 7RH, UK
| | - Martin Kröger
- Polymer Physics, Department of Materials, ETH Zurich, Leopold-Ruzicka-Weg 4, CH-8093 Zurich, Switzerland
| |
Collapse
|
4
|
Karatrantos AV, Khantaveramongkol J, Kröger M. Structure and Diffusion of Ionic PDMS Melts. Polymers (Basel) 2022; 14:3070. [PMID: 35956584 PMCID: PMC9370667 DOI: 10.3390/polym14153070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
Ionic polymers exhibit mechanical properties that can be widely tuned upon selectively charging them. However, the correlated structural and dynamical properties underlying the microscopic mechanism remain largely unexplored. Here, we investigate, for the first time, the structure and diffusion of randomly and end-functionalized ionic poly(dimethylsiloxane) (PDMS) melts with negatively charged bromide counterions, by means of atomistic molecular dynamics using a united atom model. In particular, we find that the density of the ionic PDMS melts exceeds the one of their neutral counterpart and increases as the charge density increases. The counterions are condensed to the cationic part of end-functionalized cationic PDMS chains, especially for the higher molecular weights, leading to a slow diffusion inside the melt; the counterions are also correlated more strongly to each other for the end-functionalized PDMS. Temperature has a weak effect on the counterion structure and leads to an Arrhenius type of behavior for the counterion diffusion coefficient. In addition, the charge density of PDMS chains enhances the diffusion of counterions especially at higher temperatures, but hinders PDMS chain dynamics. Neutral PDMS chains are shown to exhibit faster dynamics (diffusion) than ionic PDMS chains. These findings contribute to the theoretical description of the correlations between structure and dynamical properties of ion-containing polymers.
Collapse
Affiliation(s)
- Argyrios V. Karatrantos
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg;
| | - Jettawat Khantaveramongkol
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg;
| | - Martin Kröger
- Polymer Physics, Department of Materials, ETH Zurich, Leopold-Ruzicka-Weg 4, CH-8093 Zurich, Switzerland
| |
Collapse
|
5
|
The Dispersion and Coagulation of Negatively Charged Ca2Nb3O10 Perovskite Nanosheets in Sodium Alginate Dispersion. NANOMATERIALS 2022; 12:nano12152591. [PMID: 35957020 PMCID: PMC9370453 DOI: 10.3390/nano12152591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023]
Abstract
Chemically exfoliated nanosheets have been extensively employed as functional nanofillers for the fabrication of polymer nanocomposites due to their remarkable electrical, magnetic and optical properties. However, achieving a good dispersion of charged nanosheets in polymer matrix, which will determine the performance of polymer nanocomposites, remains a challenge. Herein, we investigated the dispersion and aggregation behavior of negatively charged Ca2Nb3O10 (CNO) perovskite nanosheets in negatively charged sodium alginate (SA) aqueous dispersion using dynamic light scattering (DLS). When CNO nanosheets meet with SA, aggregation and coagulation inevitably occurred owing to the absorption of SA on nanosheets. By controlling the electrostatic attraction between positively charged poly(ethylene imine) (PEI) and negatively charged SA, the charge density and hydrodynamic size of SA can be tuned to enable the good dispersion of CNO nanosheets in SA. This result may provide a new strategy to achieve the good dispersion of charged nanosheets in charged polymers for the rational design of multifunctional nanocomposites.
Collapse
|
6
|
Mugemana C, Moghimikheirabadi A, Arl D, Addiego F, Schmidt DF, Kröger M, Karatrantos AV. Ionic poly(dimethylsiloxane)-silica nanocomposites: Dispersion and self-healing. MRS BULLETIN 2022; 47:1185-1197. [PMID: 36846500 PMCID: PMC9947054 DOI: 10.1557/s43577-022-00346-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 05/16/2023]
Abstract
ABSTRACT Poly(dimethylsiloxane) (PDMS)-based nanocomposites have attracted increasing attention due to their inherent outstanding properties. Nevertheless, the realization of high levels of dispersion of nanosilicas in PDMS represents a challenge arising from the poor compatibility between the two components. Herein, we explore the use of ionic interactions located at the interface between silica and a PDMS matrix by combining anionic sulfonate-functionalized silica and cationic ammonium-functionalized PDMS. A library of ionic PDMS nanocomposites was synthesized and characterized to highlight the impact of charge location, density, and molecular weight of ionic PDMS polymers on the dispersion of nanosilicas and the resulting mechanical reinforcement. The use of reversible ionic interactions at the interface of nanoparticles-polymer matrix enables the healing of scratches applied to the surface of the nanocomposites. Molecular dynamics simulations were used to estimate the survival probability of ionic cross-links between nanoparticles and the polymer matrix, revealing a dependence on polymer charge density. IMPACT STATEMENT Poly(dimethylsiloxane) (PDMS) has been widely used in diverse applications due to its inherent attractive and multifunctional properties including optical transparency, high flexibility, and biocompatibility. The combination of such properties in a single polymer matrix has paved the way toward a wide range of applications in sensors, electronics, and biomedical devices. As a liquid at room temperature, the cross-linking of the PDMS turns the system into a mechanically stable elastomer for several applications. Nanofillers have served as a reinforcing agent to design PDMS nanocomposites. However, due to significant incompatibility between silica and the PDMS matrix, the dispersion of nanosilica fillers has been challenging. One of the existing strategies to improve nanoparticle dispersion consists of grafting oppositely charged ionic functional groups to the nanoparticle surface and the polymer matrix, respectively, creating nanoparticle ionic materials. Here, this approach has been explored further to improve the dispersion of nanosilicas in a PDMS matrix. The designed ionic PDMS nanocomposites exhibit self-healing properties due to the reversible nature of ionic interactions. The developed synthetic approach can be transferred to other kinds of inorganic nanoparticles dispersed in a PDMS matrix, where dispersion at the nanometer scale is a prerequisite for specific applications such as encapsulants for light-emitting diodes (LEDs). SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1557/s43577-022-00346-x.
Collapse
Affiliation(s)
- Clément Mugemana
- Materials Research and Technology, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | | | - Didier Arl
- Materials Research and Technology, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Frédéric Addiego
- Materials Research and Technology, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Daniel F. Schmidt
- Materials Research and Technology, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Martin Kröger
- Polymer Physics, Department of Materials, ETH Zürich, Zurich, Switzerland
| | - Argyrios V. Karatrantos
- Materials Research and Technology, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
7
|
Ionic Polymer Nanocomposites Subjected to Uniaxial Extension: A Nonequilibrium Molecular Dynamics Study. Polymers (Basel) 2021; 13:polym13224001. [PMID: 34833305 PMCID: PMC8621629 DOI: 10.3390/polym13224001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/17/2022] Open
Abstract
We explore the behavior of coarse-grained ionic polymer nanocomposites (IPNCs) under uniaxial extension up to 800% strain by means of nonequilibrium molecular dynamics simulations. We observe a simultaneous increase of stiffness and toughness of the IPNCs upon increasing the engineering strain rate, in agreement with experimental observations. We reveal that the excellent toughness of the IPNCs originates from the electrostatic interaction between polymers and nanoparticles, and that it is not due to the mobility of the nanoparticles or the presence of polymer-polymer entanglements. During the extension, and depending on the nanoparticle volume fraction, polymer-nanoparticle ionic crosslinks are suppressed with the increase of strain rate and electrostatic strength, while the mean pore radius increases with strain rate and is altered by the nanoparticle volume fraction and electrostatic strength. At relatively low strain rates, IPNCs containing an entangled matrix exhibit self-strengthening behavior. We provide microscopic insight into the structural, conformational properties and crosslinks of IPNCs, also referred to as polymer nanocomposite electrolytes, accompanying their unusual mechanical behavior.
Collapse
|
8
|
Moghimikheirabadi A, Kröger M, Karatrantos AV. Insights from modeling into structure, entanglements, and dynamics in attractive polymer nanocomposites. SOFT MATTER 2021; 17:6362-6373. [PMID: 34128028 PMCID: PMC8262555 DOI: 10.1039/d1sm00683e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/08/2021] [Indexed: 05/28/2023]
Abstract
Conformations, entanglements and dynamics in attractive polymer nanocomposites are investigated in this work by means of coarse-grained molecular dynamics simulation, for both weak and strong confinements, in the presence of nanoparticles (NPs) at NP volume fractions φ up to 60%. We show that the behavior of the apparent tube diameter dapp in such nanocomposites can be greatly different from nanocomposites with nonattractive interactions. We find that this effect originates, based on a mean field argument, from the geometric confinement length dgeo at strong confinement (large φ) and not from the bound polymer layer on NPs (interparticle distance ID <2Rg) as proposed recently based on experimental measurements. Close to the NP surface, the entangled polymer mobility is reduced in attractive nanocomposites but still faster than the NP mobility for volume fractions beyond 20%. Furthermore, entangled polymer dynamics is hindered dramatically by the strong confinement created by NPs. For the first time using simulations, we show that the entangled polymer conformation, characterized by the polymer radius of gyration Rg and form factor, remains basically unperturbed by the presence of NPs up to the highest volume fractions studied, in agreement with various experiments on attractive nanocomposites. As a side-result we demonstrate that the loose concept of ID can be made a microscopically well defined quantity using the mean pore size of the NP arrangement.
Collapse
Affiliation(s)
- Ahmad Moghimikheirabadi
- Department of Materials, Polymer Physics, ETH Zurich, Leopold-Ruzicka-Weg 4, CH-8093 Zurich, Switzerland.
| | - Martin Kröger
- Department of Materials, Polymer Physics, ETH Zurich, Leopold-Ruzicka-Weg 4, CH-8093 Zurich, Switzerland.
| | - Argyrios V Karatrantos
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
9
|
Moghimikheirabadi A, Mugemana C, Kröger M, Karatrantos AV. Polymer Conformations, Entanglements and Dynamics in Ionic Nanocomposites: A Molecular Dynamics Study. Polymers (Basel) 2020; 12:E2591. [PMID: 33158229 PMCID: PMC7694256 DOI: 10.3390/polym12112591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 11/17/2022] Open
Abstract
We investigate nanoparticle (NP) dispersion, polymer conformations, entanglements and dynamics in ionic nanocomposites. To this end, we study nanocomposite systems with various spherical NP loadings, three different molecular weights, two different Bjerrum lengths, and two types of charge-sequenced polymers by means of molecular dynamics simulations. NP dispersion can be achieved in either oligomeric or entangled polymeric matrices due to the presence of electrostatic interactions. We show that the overall conformations of ionic oligomer chains, as characterized by their radii of gyration, are affected by the presence and the amount of charged NPs, while the dimensions of charged entangled polymers remain unperturbed. Both the dynamical behavior of polymers and NPs, and the lifetime and amount of temporary crosslinks, are found to depend on the ratio between the Bjerrum length and characteristic distance between charged monomers. Polymer-polymer entanglements start to decrease beyond a certain NP loading. The dynamics of ionic NPs and polymers is very different compared with their non-ionic counterparts. Specifically, ionic NP dynamics is getting enhanced in entangled matrices and also accelerates with the increase of NP loading.
Collapse
Affiliation(s)
- Ahmad Moghimikheirabadi
- Polymer Physics, Department of Materials, ETH Zurich, Leopold-Ruzicka-Weg 4, CH-8093 Zurich, Switzerland
| | - Clément Mugemana
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg;
| | - Martin Kröger
- Polymer Physics, Department of Materials, ETH Zurich, Leopold-Ruzicka-Weg 4, CH-8093 Zurich, Switzerland
| | - Argyrios V. Karatrantos
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg;
| |
Collapse
|
10
|
Chen S, Olson E, Jiang S, Yong X. Nanoparticle assembly modulated by polymer chain conformation in composite materials. NANOSCALE 2020; 12:14560-14572. [PMID: 32613987 DOI: 10.1039/d0nr01740j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mixing nanoparticles into a strategically selected polymer matrix yields nanocomposites with well-controlled microstructures and unique properties and functions. The modulation of nanoparticle assembly by polymer chain conformation can play a dominant role in determining nanocomposite structures, yet such a physical mechanism remains largely unexplored. We hypothesize that highly ordered microdomains of rigid linear polymers provide a template for nanoparticle assembly into open fractal structures. We conducted mesoscopic computer simulations and physical experiments to elucidate how polymer chain conformation regulates the dynamic evolution of nanoparticle structures during the drying processing of polymer nanocomposite films. The evaporation of polymer-nanoparticle mixtures with varying chain stiffnesses was simulated using dissipative particle dynamics. The formation of distinguished nanoparticle assemblies as a result of matrix selection was further corroborated by probing nanoparticle aggregation in different polymer nanocomposite coatings. The results show that polymer conformation not only influences the dispersion states of individual particles (dispersed vs. aggregated), but also modulates the morphologies of large-scale assembly (globular vs. fractal). The emergence of nematically ordered polymer clusters when the chain rigidity is increased creates local solvent-rich "voids" that promote anisotropic particle aggregates, which then percolate into open fractal structures upon solvent evaporation. The nanoparticle dynamics also exhibits an intriguing non-monotonic behavior attributed to the transitions between the coupling and decoupling with polymer dynamics. The nanoparticle assembly morphologies obtained in simulations match well with the electron microscopy images taken in physical experiments.
Collapse
Affiliation(s)
- Shensheng Chen
- Department of Mechanical Engineering, Binghamton University, Binghamton, New York 13902, USA.
| | | | | | | |
Collapse
|
11
|
Bailey EJ, Winey KI. Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: A review. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101242] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Park J, Bailey EJ, Composto RJ, Winey KI. Single-Particle Tracking of Nonsticky and Sticky Nanoparticles in Polymer Melts. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00457] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jinseok Park
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eric J. Bailey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Russell J. Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Karen I. Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
13
|
Karatrantos A, Composto RJ, Winey KI, Clarke N. Nanorod Diffusion in Polymer Nanocomposites by Molecular Dynamics Simulations. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02141] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Argyrios Karatrantos
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Russell J. Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Karen I. Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nigel Clarke
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| |
Collapse
|