1
|
Farghal NS, Awadalkreem F, Dasnadi SP, Habush S, Hatab NA, Harhash A. Staining susceptibility and the effect of different stain removal techniques on the optical properties of injectable composite resins. FRONTIERS IN ORAL HEALTH 2025; 6:1556155. [PMID: 40092145 PMCID: PMC11908588 DOI: 10.3389/froh.2025.1556155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction The injectable composite resin technique using highly filled flowable composite for anterior restorations is relatively new. This study aims to detect the staining susceptibility and the effect of polishing and bleaching agents and their combination on the stain removal and surface gloss of the injectable composite resins compared to sculptable nanofilled composite. Methods Eighty-four disc-shaped specimens were prepared from two injectable composite resins: Beautifil Flow Plus X (BFP) and G-ænial Universal Injectable (GUI) and one sculptable nanofilled composite; Filtek™ Z350XT Universal Restorative (FUR), immersed in an instant coffee solution for 12 days. The specimens from each material were divided into four groups (n = 7) according to the stain-removal method: Group 1 (control): no stain removal treatment. Group 2: Polished with Super-Snap Buff Polisher and Direct DiaPaste for 60 s. Group 3: Bleached with Opalescence Boost 40% for one hour (3 rounds/20 min each). Group 4: bleached and polished. A Spectrophotometer recorded the color parameter initially (T0), after staining (T1) and after stain removal methods (T2) and color change (ΔE00) was calculated. Gloss (GU) was recorded initially and after stain removal methods using a glossmeter. Surface morphology was examined with Scanning Electron Microscopy. The data was analyzed using One and Two-way ANOVA and Tukey's HSD post hoc test using SPSS software at a 5% significance level. Results All tested materials showed clinically unacceptable staining susceptibility after coffee immersion and stain removing methods (ΔE00 >1.8), with FUR exhibiting the highest change (26.2 ± 2.6). In-office bleaching and combined bleaching/polishing significantly reduced color change for FUR (P < 0.05), while all stain removal methods was equally effective for BPF and GUI (P > 0.05). Surface gloss remained unchanged with the highest values after staining and bleaching for all materials (52.8 ± 11.2-49.7 ± 9.4, P > 0.05) but significantly decreased after polishing alone or combined with bleaching (31.6 ± 5.7-15.4 ± 1.5, P < 0.05). Conclusion Injectable composites exhibited lower staining susceptibility than the sculptable nanofilled composite. No stain-removing method restored the color for all composites to the clinically acceptable threshold. In-office bleaching with Opalescence Boost 40% effectively maintained optimal surface gloss, while polishing alone or after bleaching is not recommended due to its negative impact on gloss.
Collapse
Affiliation(s)
- Nancy Soliman Farghal
- Department of Restorative Dentistry and Endodontics, RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates
- Department of Dental Biomaterials, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Fadia Awadalkreem
- Department of Prosthodontics, RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates
| | - Shahistha Parveen Dasnadi
- Department of Orthodontics, RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates
| | - Shatha Habush
- Department of Restorative Dentistry and Endodontics, RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates
| | - Nur Ali Hatab
- Department of Oral Surgery, RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates
| | - Asmaa Harhash
- Restorative and Esthetic Dentistry Department, University of Fujairah, Fujairah, United Arab Emirates
| |
Collapse
|
2
|
Wu D, Yao Y, Cifuentes-Jimenez CC, Sano H, Álvarez-Lloret P, Yamauti M, Tomokiyo A. Long-Term Dentin Bonding Performance of Universal Adhesives: The Effect of HEMA Content and Bioactive Resin Composite. J Funct Biomater 2024; 15:379. [PMID: 39728179 DOI: 10.3390/jfb15120379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
This study investigated the effects of resin composites (RCs) containing surface pre-reacted glass ionomer (S-PRG) filler on the dentin microtensile bond strength (μTBS) of HEMA-free and HEMA-containing universal adhesives (UAs). Water sorption (WS) and solubility (SL), degree of conversion (DC), and ion release were measured. The UAs BeautiBond Xtreme (BBX; 0% HEMA), Modified Adhesive-1 (E-BBX1; 5% HEMA), Modified Adhesive-2 (E-BBX2; 10% HEMA), and two 2-step self-etch adhesives (2-SEAs): FL-BOND II (FBII; with S-PRG filler) and silica-containing adhesive (E-FBII) were used. Teeth were restored with Beautifil Flow Plus F00 with S-PRG filler (BFP) and flowable resin composite with silica filler (E-BFP). μTBS was evaluated after 24 h and 6 months of water storage. WS and SL measurement followed ISO 4049:2019; spectroscopy measured DC; ICP-MS evaluated ion release. BBX and FBII presented the highest DC. The adhesives did not comply with the WS ISO requirements, but the bonding resin of 2-SEAs complied with the SL threshold. BFP released more ions than E-BFP. BFP positively affected the μTBS of UAs, regardless of HEMA concentration after 24 h, comparable to the 2-SEAs. The 6 months μTBS decrease depended on the adhesive and RC combination. HEMA did not affect the μTBS of UAs, while bioactive resins had a positive impact.
Collapse
Affiliation(s)
- Di Wu
- Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Ye Yao
- Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | | | - Hidehiko Sano
- Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Pedro Álvarez-Lloret
- Department of Geology, Faculty of Geology, University of Oviedo, Campus de Llamaquique, s/n, 33005 Oviedo, Spain
| | - Monica Yamauti
- Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Department of Biomedical and Applied Sciences, School of Dentistry, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Atsushi Tomokiyo
- Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| |
Collapse
|
3
|
Iosif C, Cuc S, Prodan D, Moldovan M, Petean I, Labunet A, Barbu Tudoran L, Badea IC, Man SC, Badea ME, Chifor R. Mechanical Properties of Orthodontic Cements and Their Behavior in Acidic Environments. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7904. [PMID: 36431389 PMCID: PMC9697370 DOI: 10.3390/ma15227904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The present research is focused on three different classes of orthodontic cements: resin composites (e.g., BracePaste); resin-modified glass ionomer RMGIC (e.g., Fuji Ortho) and resin cement (e.g., Transbond). Their mechanical properties such as compressive strength, diametral tensile strength and flexural strength were correlated with the samples' microstructures, liquid absorption, and solubility in liquid. The results show that the best compressive (100 MPa) and flexural strength (75 Mpa) was obtained by BracePaste and the best diametral tensile strength was obtained by Transbond (230 MPa). The lowestvalues were obtained by Fuji Ortho RMGIC. The elastic modulus is relatively high around 14 GPa for BracePaste, and Fuji Ortho and Transbond have only 7 GPa. The samples were also subjected to artificial saliva and tested in different acidic environments such as Coca-Cola and Red Bull. Their absorption and solubility were investigated at different times ranging from 1 day to 21 days. Fuji Ortho presents the highest liquid absorption followed by Transbond, the artificial saliva has the best absorption and Red Bull has the lowest absorption. The best resistance to the liquids was obtained by BracePaste in all environments. Coca-Cola presents values four times greater than the ones observed for artificial saliva. Solubility tests show that BracePaste is more soluble in artificial saliva, and Fuji Ortho and Transbond are more soluble in Red Bull and Coca-Cola. Scanning electron microscopy (SEM) images evidenced a compact structure for BracePaste in all environments sustaining the lower liquid absorption values. Fuji Ortho and Transbond present a fissure network allowing the liquid to carry out in-depth penetration of materials. SEM observations are in good agreement with the atomic force microscopy (AFM) results. The surface roughness decreases with the acidity increasing for BracePaste meanwhile it increases with the acidity for Fuji Ortho and Transbond. In conclusion: BracePaste is recommended for long-term orthodontic treatment for patients who regularly consume acidic beverages, Fuji Ortho is recommended for short-term orthodontic treatment for patients who regularly consume acidic beverages and Transbond is recommended for orthodontic treatment over an average time period for patients who do not regularly consume acidic beverages.
Collapse
Affiliation(s)
- Cristina Iosif
- Department of Prosthetic Dentistry and Dental Materials, “Iuliu Hatieganu” University of Medicine and Pharmacy, 32 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Stanca Cuc
- Department of Polymer Composites, Institute of Chemistry “Raluca Ripan”, University Babes-Bolyai, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Doina Prodan
- Department of Polymer Composites, Institute of Chemistry “Raluca Ripan”, University Babes-Bolyai, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Marioara Moldovan
- Department of Polymer Composites, Institute of Chemistry “Raluca Ripan”, University Babes-Bolyai, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Ioan Petean
- Faculty of Chemistry and Chemical Engineering, University Babes-Bolyai, 11 Arany János Street, 400028 Cluj-Napoca, Romania
| | - Anca Labunet
- Department of Prosthetic Dentistry and Dental Materials, “Iuliu Hatieganu” University of Medicine and Pharmacy, 32 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Lucian Barbu Tudoran
- Department of Molecular Biology and Biotechnology, Electron Microscopy Laboratory, Biology and Geology Faculty, Babes-Bolyai University, 5–7 Clinicilor Str., 400006 Cluj-Napoca, Romania
- Electron Microscopy Integrated Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293 Cluj-Napoca, Romania
| | - Iulia Clara Badea
- Dental Prevention Department, Faculty of Dental Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Avram Iancu 31, 400083 Cluj-Napoca, Romania
| | - Sorin Claudiu Man
- Mother and Child Department, 3Rd Department of Paediatrics, “Iuliu Hatieganu” University of Medicine and Pharmacy, 2-4 Campeni Street, 400217 Cluj-Napoca, Romania
| | - Mîndra Eugenia Badea
- Dental Prevention Department, Faculty of Dental Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Avram Iancu 31, 400083 Cluj-Napoca, Romania
| | - Radu Chifor
- Dental Prevention Department, Faculty of Dental Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Avram Iancu 31, 400083 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Mirchandani B, Padunglappisit C, Toneluck A, Naruphontjirakul P, Panpisut P. Effects of Sr/F-Bioactive Glass Nanoparticles and Calcium Phosphate on Monomer Conversion, Biaxial Flexural Strength, Surface Microhardness, Mass/Volume Changes, and Color Stability of Dual-Cured Dental Composites for Core Build-Up Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1897. [PMID: 35683752 PMCID: PMC9181985 DOI: 10.3390/nano12111897] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 12/10/2022]
Abstract
This study prepared composites for core build-up containing Sr/F bioactive glass nanoparticles (Sr/F-BGNPs) and monocalcium phosphate monohydrate (MCPM) to prevent dental caries. The effect of the additives on the physical/mechanical properties of the materials was examined. Dual-cured resin composites were prepared using dimethacrylate monomers with added Sr/F-BGNPs (5 or 10 wt%) and MCPM (3 or 6 wt%). The additives reduced the light-activated monomer conversion by ~10%, but their effect on the conversion upon self-curing was negligible. The conversions of light-curing or self-curing polymerization of the experimental materials were greater than that of the commercial material. The additives reduced biaxial flexural strength (191 to 155 MPa), modulus (4.4 to 3.3), and surface microhardness (53 to 45 VHN). These values were comparable to that of the commercial material or within the acceptable range of the standard. The changes in the experimental composites' mass and volume (~1%) were similar to that of the commercial comparison. The color change of the commercial material (1.0) was lower than that of the experimental composites (1.5-5.8). The addition of Sr/F-BGNPs and MCPM negatively affected the physical/mechanical properties of the composites, but the results were satisfactory except for color stability.
Collapse
Affiliation(s)
- Bharat Mirchandani
- Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (B.M.); (C.P.); (A.T.)
| | - Chawal Padunglappisit
- Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (B.M.); (C.P.); (A.T.)
| | - Arnit Toneluck
- Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (B.M.); (C.P.); (A.T.)
| | - Parichart Naruphontjirakul
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand;
| | - Piyaphong Panpisut
- Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (B.M.); (C.P.); (A.T.)
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani 12120, Thailand
| |
Collapse
|
5
|
Irie M, Okada M, Yoshimoto A, Maruo Y, Nishigawa G, Matsumoto T. Shear bond strength of resin cement on moist dentin and its relation to the flexural strength of resin cement. Dent Mater J 2022; 41:429-439. [PMID: 35135941 DOI: 10.4012/dmj.2021-278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We sought to compare the bond strength of resin cement on moist dentin to that on dry dentin, and determine the relationship between the bond strength and flexural strength of resin cement. The water content of the moist and dry dentins was estimated using infrared spectroscopy. Four adhesive and three self-adhesive resin cements were used. At three times of immediately, after one-day storage, and after 20,000 thermocycles (TC 20k), the shear bond strengths were measured. For all resin cements, both the shear bond strength and the flexural strength were the lowest immediately after setting; however, after one day of water storage or TC 20k, these resin cements had the highest values. Regardless of the condition of the dentin surface upon shear bond strength, the flexural strength of each resin cement was correlated with the shear bond strength of the dentin surface.
Collapse
Affiliation(s)
- Masao Irie
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
| | - Masahiro Okada
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
| | - Akio Yoshimoto
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science.,Yoshimoto Dental Office
| | - Yukinori Maruo
- Department of Prosthodontics, Okayama University Hospital
| | - Goro Nishigawa
- Department of Prosthodontics, Okayama University Hospital
| | - Takuya Matsumoto
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
| |
Collapse
|
6
|
Garcia IM, Balhaddad AA, Aljuboori N, Ibrahim MS, Mokeem L, Ogubunka A, Collares FM, de Melo MAS. Wear Behavior and Surface Quality of Dental Bioactive Ions-Releasing Resins Under Simulated Chewing Conditions. FRONTIERS IN ORAL HEALTH 2022; 2:628026. [PMID: 35047992 PMCID: PMC8757893 DOI: 10.3389/froh.2021.628026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Bioactive materials can reduce caries lesions on the marginal sealed teeth by providing the release of ions, such as calcium, phosphate, fluoride, zinc, magnesium, and strontium. The presence of such ions affects the dissolution balance of hydroxyapatite, nucleation, and epitaxial growth of its crystals. Previous studies mostly focused on the ion-releasing behavior of bioactive materials. Little is known about their wear behavior sealed tooth under mastication. This study aimed to evaluate the wear behavior and surface quality of dental bioactive resins under a simulated chewing model and compare them with a resin without bioactive agents. Three bioactive resins (Activa, BioCoat, and Beautifil Flow-Plus) were investigated. A resin composite without bioactive agents was used as a control group. Each resin was applied to the occlusal surface of extracted molars and subjected to in vitro chewing simulation model. We have assessed the average surface roughness (Ra), maximum high of the profile (Rt), and maximum valley depth (Rv) before and after the chewing simulation model. Vickers hardness and scanning electron microscopy (SEM) also analyzed the final material surface quality). Overall, all groups had increased surface roughness after chewing simulation. SEM analysis revealed a similar pattern among the materials. However, the resin with polymeric microcapsules doped with bioactive agents (BioCoat) showed increased surface roughness parameters. The material with Surface Pre-reacted Glass Ionomer (Beautifil Flow-Plus) showed no differences compared to the control group and improved microhardness. The addition of bioactive agents may influence surface properties, impairing resin composites' functional and biological properties. Future studies are encouraged to analyze bioactive resin composites under high chemical and biological challenges in vitro with pH cycles or in situ models.
Collapse
Affiliation(s)
- Isadora Martini Garcia
- Department of Dental Materials, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Ph.D. Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Abdulrahman A Balhaddad
- Ph.D. Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States.,Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Noorhan Aljuboori
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Maria Salem Ibrahim
- Ph.D. Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States.,Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Lamia Mokeem
- Ph.D. Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Akudo Ogubunka
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Fabrício Mezzomo Collares
- Department of Dental Materials, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mary Anne Sampaio de Melo
- Ph.D. Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States.,Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD, United States
| |
Collapse
|
7
|
Chanachai S, Chaichana W, Insee K, Benjakul S, Aupaphong V, Panpisut P. Physical/Mechanical and Antibacterial Properties of Orthodontic Adhesives Containing Calcium Phosphate and Nisin. J Funct Biomater 2021; 12:jfb12040073. [PMID: 34940552 PMCID: PMC8706961 DOI: 10.3390/jfb12040073] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
Enamel demineralization around orthodontic adhesive is a common esthetic concern during orthodontic treatment. The aim of this study was to prepare orthodontic adhesives containing monocalcium phosphate monohydrate (MCPM) and nisin to enable mineralizing and antibacterial actions. The physicomechanical properties and the inhibition of S. mutans growth of the adhesives with added MCPM (5, 10 wt %) and nisin (5, 10 wt %) were examined. Transbond XT (Trans) was used as the commercial comparison. The adhesive containing a low level of MCPM showed significantly higher monomer conversion (42–62%) than Trans (38%) (p < 0.05). Materials with additives showed lower monomer conversion (p < 0.05), biaxial flexural strength (p < 0.05), and shear bond strength to enamel than those of a control. Additives increased water sorption and solubility of the experimental materials. The addition of MCPM encouraged Ca and P ion release, and the precipitation of calcium phosphate at the bonding interface. The growth of S. mutans in all the groups was comparable (p > 0.05). In conclusion, experimental orthodontic adhesives with additives showed comparable conversion but lesser mechanical properties than the commercial material. The materials showed no antibacterial action, but exhibited ion release and calcium phosphate precipitation. These properties may promote remineralization of the demineralized enamel.
Collapse
Affiliation(s)
- Supachai Chanachai
- Division of Orthodontics, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (S.C.); (W.C.); (K.I.); (S.B.)
| | - Wirinrat Chaichana
- Division of Orthodontics, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (S.C.); (W.C.); (K.I.); (S.B.)
| | - Kanlaya Insee
- Division of Orthodontics, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (S.C.); (W.C.); (K.I.); (S.B.)
| | - Sutiwa Benjakul
- Division of Orthodontics, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (S.C.); (W.C.); (K.I.); (S.B.)
| | - Visakha Aupaphong
- Division of Oral Biology, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand;
| | - Piyaphong Panpisut
- Division of Restorative Dentistry, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani 12120, Thailand
- Correspondence:
| |
Collapse
|
8
|
The Influence of Various Photoinitiators on the Properties of Commercial Dental Composites. Polymers (Basel) 2021; 13:polym13223972. [PMID: 34833271 PMCID: PMC8622540 DOI: 10.3390/polym13223972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this article was to compare the biomechanical properties of commercial composites containing different photoinitiators: Filtek Ultimate (3M ESPE) containing camphorquinone (CQ); Estelite Σ Quick (Tokuyama Dental) with CQ in RAP Technology®; Tetric EvoCeram Bleach BLXL (Ivoclar Vivadent AG) with CQ and Lucirin TPO; and Tetric Evoceram Powerfill IVB (Ivoclar Vivadent AG) with CQ and Ivocerin TPO. All samples were cured with a polywave Valo Lamp (Ultradent Products Inc.) with 1450 mW/cm2. The microhardness, hardness by Vicker's method, diametral tensile strength, flexural strength and contraction stress with photoelastic analysis were tested. The highest hardness and microhardness were observed for Filtek Ultimate (93.82 ± 17.44 HV), but other composites also displayed sufficient values (from 52 ± 3.92 to 58,82 ± 7.33 HV). Filtek Ultimate not only demonstrated the highest DTS (48.03 ± 5.97 MPa) and FS (87.32 ± 19.03 MPa) but also the highest contraction stress (13.7 ± 0.4 MPa) during polymerization. The TetricEvoCeram Powerfill has optimal microhardness (54.27 ± 4.1 HV), DTS (32.5 ± 5.29 MPa) and FS (79.3 ± 14.37 MPa) and the lowest contraction stress (7.4 ± 1 MPa) during photopolymerization. To summarize, Filtek Ultimate demonstrated the highest microhardness, FS and DTS values; however, composites with additional photoinitiators such as Lucirin TPO and Ivocerin have the lowest polymerization shrinkage. These composites also have higher FS and DTS and microhardness than material containing CQ in Rap Technology.
Collapse
|
9
|
Flexural Property of a Composite Biomaterial in Three Applications. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5100282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resin composite is widely used in the dental field in clinics as a biomaterial. For example, it has been used as a composite material, a type of biomaterial, to repair caries and restore masticatory function, and as a luting agent to adhere the restoration to the tooth substrate. In order to demonstrate its function, we have measured the mechanical strength. From such basic research, we explain the potential of a dental material through the measurement of flexural strength and modulus of elasticity. In this research, we introduce commercial products that are actually used as composite materials suitable for tooth substrate and provide readers with their properties based on flexural strength and modulus of elasticity. In clinical performance, it might be advisable to delay polishing when a composite material is used for a luting material, a filling material and a core build-up material, as the flexural strength and the flexural modulus of elasticity were improved after 1 day of storage, and flexural strength and characteristics are considered as important mechanical properties of oral biomaterials.
Collapse
|
10
|
Monomer Conversion, Dimensional Stability, Biaxial Flexural Strength, Ion Release, and Cytotoxicity of Resin-Modified Glass Ionomer Cements Containing Methacrylate-Functionalized Polyacids and Spherical Pre-Reacted Glass Fillers. Polymers (Basel) 2021; 13:polym13162742. [PMID: 34451281 PMCID: PMC8399068 DOI: 10.3390/polym13162742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to prepare RMGICs for pulp protection that contain polyacids functionalized with methacrylate groups (CMs) to enable light-activated polymerization without the need for toxic 2-hydroxyethyl methacrylate (HEMA) monomers. The effects of using CM liquids with 0 or 5 wt% HEMA on the physical/mechanical properties and cytotoxicity of the experimental RMGICs were assessed. Spherical pre-reacted glass fillers (SPG) were used as the powder phase. The experimental RMGICs were prepared by mixing SPG with CM liquid (0 wt% HEMA, F1) or CMH liquid (5 wt% HEMA, F2). Commercial materials (Vitrebond, VB; TheraCal LC, TC) were used for the comparisons. The degree of monomer conversion and fluoride release of both F1 and F2 were significantly lower than those of VB. F1 showed comparable biaxial flexural strength with VB but higher strength than TC. The dimensional stability (mass/volume changes) of the experimental materials was comparable with that of the commercial materials. F1 and F2 exhibited higher Sr/Ca ion release and relative cell viability than VB. The use of CMH liquid reduced the strength but enhanced the fluoride release of the experimental RMGICs. In conclusion, the experimental RMGICs showed comparable strength but lower cytotoxicity compared to the commercial RMGICs. These novel materials could be used as alternative materials for pulp protection.
Collapse
|
11
|
Water Sorption and Solubility of Flowable Giomers. MATERIALS 2021; 14:ma14092399. [PMID: 34063032 PMCID: PMC8124910 DOI: 10.3390/ma14092399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 11/17/2022]
Abstract
The objective of this study is the characterization of a novel experimental flowable giomer (G) regarding water sorption, water solubility, and the microstructural characteristics, in comparison to three commercial giomers: Beautifil flow Plus X F00 (B-F00), Beautifil flow F02 (B-F02) and Beautifil flow Plus X F03 (B-F03), Shofu, Kyoto, Japan. Methods: Water sorption/solubility was performed by weighing the specimens before and after water immersion for 1, 2, 3, 14, 21 and 30 days. Data analysis was carried out with the software Origin2019b Graphing & Analysis using the ANOVA test and the Tukey test for post hoc comparison of the groups of materials. The microstructural analyses were done with a scanning electron microscope (SEM) and an atomic force microscope (AFM). The results showed significant differences between the tested materials (p < 0.05). For sorption, the Tukey test indicated differences between all four sample groups, except between B-F02 and B-F03, which exhibited no differences in any of the investigation days. The Tukey test also showed significant differences regarding solubility between all sample groups in the 30-day interval. SEM images and roughness showed that after 30 days of immersion in water, the experimental giomer G had the roughest surface.
Collapse
|
12
|
One-Year Clinical Aging of Low Stress Bulk-Fill Flowable Composite in Class II Restorations: A Case Report and Literature Review. COATINGS 2021. [DOI: 10.3390/coatings11050504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bulk-fill flowable composites provide functional and aesthetic restorations while eliminating incremental composite layering and saving time. The degradation of the adhesive interface with subsequent gap formation is a concern when adhesively luted restorations are placed. Moreover, the number of adhesive interface failures increases when they are exposed to long-term water storage. The aim of the present study was to evaluate the morphological characteristics of the tooth-composite interface in class II cavities restored with a low stress bulk-fill flowable composite after aging in an oral environment. We describe a case of a patient with class II cavities in four premolars restored with a low stress bulk-fill flowable composite Surefil SDR (Dentsply DeTrey GmbH, Konstanz, Germany). The occlusal part was restored with nano-hybrid resin composite Ceram X Mono (Dentsply DeTrey GmbH). After one year of clinical function, the teeth were extracted and examined in a scanning electron microscope (SEM). It can be concluded that the application of bulk-fill covered with conventional composite seems to provide the homogeneous and stable bond to tooth structure after one year of aging in an oral environment. However, some defects within the dentin-resin composite interface were observed.
Collapse
|
13
|
Irie M, Maruo Y, Nishigawa G, Yoshihara K, Matsumoto T. Flexural Strength of Resin Core Build-Up Materials: Correlation to Root Dentin Shear Bond Strength and Pull-Out Force. Polymers (Basel) 2020; 12:polym12122947. [PMID: 33317215 PMCID: PMC7763007 DOI: 10.3390/polym12122947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022] Open
Abstract
The aims of this study were to investigate the effects of root dentin shear bond strength and pull-out force of resin core build-up materials on flexural strength immediately after setting, after one-day water storage, and after 20,000 thermocycles. Eight core build-up and three luting materials were investigated, using 10 specimens (n = 10) per subgroup. At three time periods-immediately after setting, after one-day water storage, and after 20,000 thermocycles, shear bond strengths to root dentin and pull-out forces were measured. Flexural strengths were measured using a 3-point bending test. For all core build-up and luting materials, the mean data of flexural strength, shear bond strength and pull-out force were the lowest immediately after setting. After one-day storage, almost all the materials yielded their highest results. A weak, but statistically significant, correlation was found between flexural strength and shear bond strength (r = 0.508, p = 0.0026, n = 33). As the pull-out force increased, the flexural strength of core build-up materials also increased (r = 0.398, p = 0.0218, n = 33). Multiple linear regression analyses were conducted using these three independent factors of flexural strength, pull-out force and root dentin shear bond strength, which showed this relationship: Flexural strength = 3.264 × Shear bond strength + 1.533 × Pull out force + 10.870, p = 0.002). For all the 11 core build-up and luting materials investigated immediately after setting, after one-day storage and after 20,000 thermocycles, their shear bond strengths to root dentin and pull-out forces were correlated to the flexural strength in core build-up materials. It was concluded that the flexural strength results of the core build-up material be used in research and quality control for the predictor of the shear bond strength to the root dentin and the retentive force of the post.
Collapse
Affiliation(s)
- Masao Irie
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8525, Japan;
- Correspondence: ; Tel.: +81-86-235-6668
| | - Yukinori Maruo
- Department of Occlusion and Removable Prosthodontics, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (Y.M.); (G.N.)
| | - Goro Nishigawa
- Department of Occlusion and Removable Prosthodontics, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (Y.M.); (G.N.)
| | - Kumiko Yoshihara
- National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan;
| | - Takuya Matsumoto
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8525, Japan;
| |
Collapse
|