1
|
Raman spectroelectrochemical study on the effect of solvent processing on the active layer morphology of polymer solar cells. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2022.111700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
2
|
Hu R, Liu Y, Peng J, Jiang J, Qing M, He X, Huo MM, Zhang W. Charge Photogeneration and Recombination in Fluorine-Substituted Polymer Solar Cells. Front Chem 2022; 10:846898. [PMID: 35281555 PMCID: PMC8907822 DOI: 10.3389/fchem.2022.846898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
In this contribution, we studied the effect of fluorine substitution on photogenerated charge generation, transport, and recombination in polymer solar cells. Two conjugated polymer materials, PBDTTT-E (fluorine free) and PTB7 (one fluorine substitution), were compared thoroughly. Meanwhile, various characterization techniques, including atomic force microscopy, steady-state spectroscopy, transient absorption spectroscopy, spectroelectrochemistry, and electrical measurements, were employed to analyse the correlation between molecular structure and device performance. The results showed that the influence of fluorine substitution on both the exciton binding energy of the polymer and the carrier recombination dynamics in the ultrafast timescale on the polymer was weak. However, we found that the fluorine substitution could enhance the exciton lifetime in neat polymer film, and it also could increase the mobility of photogenerated charge. Moreover, it was found that the SOMO energy level distribution of the donor in a PTB7:PC71BM solar cell could facilitate hole transport from the donor/acceptor interface to the inner of the donor phase, showing a better advantage than the PBDTTT-E:PC71BM solar cell. Therefore, fluorine substitution played a critical role for high-efficiency polymer solar cells.
Collapse
Affiliation(s)
- Rong Hu
- School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing, China
| | - Yurong Liu
- School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing, China
| | - Jun Peng
- School of Physics and Materials Science, Guangzhou University, Guangzhou, China
| | - Jianjun Jiang
- School of Physics and Materials Science, Guangzhou University, Guangzhou, China
| | - Mengyao Qing
- School of Physics and Materials Science, Guangzhou University, Guangzhou, China
| | - Xiaochuan He
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Ming-Ming Huo
- Qingdao Branch, Naval Aeronautical University, Qingdao, China
| | - Wei Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou, China
- Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University, Guangzhou, China
- Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, China
| |
Collapse
|
3
|
Shao Y, Lu T, Li M, Lu W. Theoretical exploration of diverse electron-deficient core and terminal groups in A–DA′D–A type non-fullerene acceptors for organic solar cells. NEW J CHEM 2022. [DOI: 10.1039/d1nj04571g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The influences triggered by the structurally diverse electron-withdrawing terminal group and fuse-ring electron-deficient core on the performance of NFAs OSCs are comprehensively investigated by using DFT, TD-DFT and Marcus charge transfer theory.
Collapse
Affiliation(s)
- Yueyue Shao
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Tian Lu
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Minjie Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Lu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
4
|
Levitsky A, Schneider SA, Rabkin E, Toney MF, Frey GL. Bridging the thermodynamics and kinetics of temperature-induced morphology evolution in polymer/fullerene organic solar cell bulk heterojunction. MATERIALS HORIZONS 2021; 8:1272-1285. [PMID: 34821920 DOI: 10.1039/d0mh01805h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The performance of organic solar cells (OSC) critically depends on the morphology of the active layer. After deposition, the active layer is in a metastable state and prone to changes that lead to cell degradation. Here, a high efficiency fullerene:polymer blend is used as a model system to follow the temperature-induced morphology evolution through a series of thermal annealing treatments. Electron microscopy analysis of the nano-scale phase evolution during the early stages of thermal annealing revealed that spinodal decomposition, i.e. spontaneous phase separation with no nucleation stage, is possibly responsible for the formation of a fine scale bicontinuous structure. In the later evolution stages, large polycrystalline fullerene aggregates are formed. Optical microscopy and scattering revealed that aggregate-growth follows the Johnson-Mehl-Avrami-Kolmogorov equation indicating a heterogeneous transformation process, i.e., through nucleation and growth. These two mechanisms, spinodal decomposition vs. nucleation and growth, are mutually exclusive and their co-existence is surprising. This unexpected observation is resolved by introducing a metastable monotectic phase diagram and showing that the morphology evolution goes through two distinct and consecutive transformation processes where spinodal decomposition of the amorphous donor:acceptor blend is followed by nucleation and growth of crystalline acceptor aggregates. Finally, this unified thermodynamic and kinetic mechanism allows us to correlate the morphology evolution with OSC degradation during thermal annealing.
Collapse
Affiliation(s)
- Artem Levitsky
- Department of Material Science and Engineering, Technion Israel Institute of Technology, Haifa 3200003, Israel.
| | | | | | | | | |
Collapse
|
5
|
Hu R, Zhang L, Peng J, Zhang W. Comparative study of charge characteristics in PCPDTBT:fullerenes solar cells. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2020.111004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Zou X, Wen G, Hu R, Dong G, Zhang C, Zhang W, Huang H, Dang W. An Insight into the Excitation States of Small Molecular Semiconductor Y6. Molecules 2020; 25:E4118. [PMID: 32916920 PMCID: PMC7570483 DOI: 10.3390/molecules25184118] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/30/2020] [Accepted: 09/04/2020] [Indexed: 02/05/2023] Open
Abstract
Y6 is a new type of non-fullerene acceptor, which has led to power conversion efficiencies of single-junction polymer solar cells over 17% when combined with a careful choice of polymeric donors. However, the excited state characteristics of Y6, which is closely correlated with its opto-electronic applications, are not clear yet. In this work, we studied the excited state properties of the Y6 solution and Y6 film, by using steady-state and time-resolved spectroscopies as well as time-dependent density functional theory (TD-DFT) calculations. UV-Vis absorption and fluorescence simulation, natural transition orbitals (NTOs) and hole-electron distribution analysis of Y6 solution were performed for understanding the excitation properties of Y6 by using TD-DFT calculations. The lifetimes of the lowest singlet excited state in Y6 solution and film were estimated to be 0.98 and 0.8 ns, respectively. Combining the exciton lifetime and photoluminescence (PL) quantum yield, the intrinsic radiative decay lifetimes of Y6 in the solution and film were estimated, which were 1.3 and 10.5 ns for the Y6 solution and film, respectively. Long exciton lifetime (~0.8 ns) and intrinsic radiative decay lifetime (~10.5 ns) of Y6 film enable Y6 to be a good acceptor material for the application of polymer solar cells.
Collapse
Affiliation(s)
- Xianshao Zou
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China; (X.Z.); (G.W.); (C.Z.)
- Division of Chemical Physics, Lund University, 22100 Lund, Sweden
| | - Guanzhao Wen
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China; (X.Z.); (G.W.); (C.Z.)
| | - Rong Hu
- National Research Base of Co-Innovation Center for Micro/Nano Optoelectronic Materials and Devices, Chongqing University of Arts and Sciences, Chongqing 402160, China;
| | - Geng Dong
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China;
- Medical Informatics Research Center, Shantou University Medical College, Shantou 515041, China
| | - Chengyun Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China; (X.Z.); (G.W.); (C.Z.)
| | - Wei Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China; (X.Z.); (G.W.); (C.Z.)
| | - Hao Huang
- Hebei Key Lab of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China;
| | - Wei Dang
- Hebei Key Lab of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China;
| |
Collapse
|
7
|
Gaspar H, Figueira F, Strutyński K, Melle-Franco M, Ivanou D, Tomé JPC, Pereira CM, Pereira L, Mendes A, Viana JC, Bernardo G. Thiophene- and Carbazole-Substituted N-Methyl-Fulleropyrrolidine Acceptors in PffBT4T-2OD Based Solar Cells. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1267. [PMID: 32168798 PMCID: PMC7142714 DOI: 10.3390/ma13061267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022]
Abstract
The impact of fullerene side chain functionalization with thiophene and carbazole groups on the device properties of bulk-heterojunction polymer:fullerene solar cells is discussed through a systematic investigation of material blends consisting of the conjugated polymer poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3‴-di(2-octyldodecyl)-2,2';5',2″;5″,2‴-quaterthiophen-5,5‴-diyl)] (PffBT4T-2OD) as donor and C60 or C70 fulleropyrrolidines as acceptors. The photovoltaic performance clearly depended on the molecular structure of the fulleropyrrolidine substituents although no direct correlation with the surface morphology of the photoactive layer, as determined by atomic force microscopy, could be established. Although some fulleropyrrolidines possess favorable lowest unoccupied molecular orbital levels, when compared to the standard PC71BM, they originated OPV cells with inferior efficiencies than PC71BM-based reference cells. Fulleropyrrolidines based on C60 produced, in general, better devices than those based on C70, and we attribute this observation to the detrimental effect of the structural and energetic disorder that is present in the regioisomer mixtures of C70-based fullerenes, but absent in the C60-based fullerenes. These results provide new additional knowledge on the effect of the fullerene functionalization on the efficiency of organic solar cells.
Collapse
Affiliation(s)
- Hugo Gaspar
- IPC/i3N—Institute for Polymers and Composites, University of Minho, Campus de Azurém, 4800–058 Guimarães, Portugal; (H.G.); (J.C.V.)
| | - Flávio Figueira
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810–193 Aveiro, Portugal;
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810–193 Aveiro, Portugal; (K.S.); (M.M.-F.)
| | - Karol Strutyński
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810–193 Aveiro, Portugal; (K.S.); (M.M.-F.)
| | - Manuel Melle-Franco
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810–193 Aveiro, Portugal; (K.S.); (M.M.-F.)
| | - Dzmitry Ivanou
- LEPABE, Department of Chemical Engineering, University of Porto, 4200–465 Porto, Portugal; (D.I.); (A.M.)
| | - João P. C. Tomé
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810–193 Aveiro, Portugal;
- CQE, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, n1, 1049–001 Lisboa, Portugal
| | - Carlos M. Pereira
- Department of Chemistry, University of Porto, Rua do Campo Alegre, s/n, 4169–007 Porto, Portugal;
| | - Luiz Pereira
- Department of Physics and i3N—Institute for Nanostructures, Nanomodelling and Nanofabrication, University of Aveiro, 3810–193 Aveiro, Portugal;
| | - Adélio Mendes
- LEPABE, Department of Chemical Engineering, University of Porto, 4200–465 Porto, Portugal; (D.I.); (A.M.)
| | - Júlio C. Viana
- IPC/i3N—Institute for Polymers and Composites, University of Minho, Campus de Azurém, 4800–058 Guimarães, Portugal; (H.G.); (J.C.V.)
| | - Gabriel Bernardo
- LEPABE, Department of Chemical Engineering, University of Porto, 4200–465 Porto, Portugal; (D.I.); (A.M.)
| |
Collapse
|
8
|
Lu Q, Qiu M, Zhao M, Li Z, Li Y. Modification of NFA-Conjugated Bridges with Symmetric Structures for High-Efficiency Non-Fullerene PSCs. Polymers (Basel) 2019; 11:E958. [PMID: 31159494 PMCID: PMC6630734 DOI: 10.3390/polym11060958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 11/17/2022] Open
Abstract
As electron acceptors, non-fullerene molecules can overcome the shortcomings of fullerenes and their derivatives (such as high cost, poor co-solubility, and weak light absorption). The photoelectric properties of two potential non-fullerene polymer solar cells (PSCs) PBDB-T:IF-TN (PB:IF) and PBDB-T:IDT-TN (PB:IDT) are studied by density functional theory (DFT) and time-dependent DFT (TD-DFT). Based on the optimized structure of the ground state, the effects of the electron donor (D) and electron acceptor (A) (D/A) interfaces PBDB-T/IF-TN (PB/IF) and PBDB-T/IDT-TN (PB/IDT) are studied by a quantum-chemical method (QM) and Marcus theory. Firstly, for two non-fullerene acceptors (NFAs) IF-TN and IDT-TN, the NFA IDT-TN has better optical absorption ability and better electron transport ability than IF-TN. Secondly, for the D/A interfaces PB/IF and PB/IDT, they both have high optical absorption and electron transfer abilities, and PB/IDT has better optical absorption and lower exciton binding energy. Finally, some important parameters (open-circuit voltage, voltage loss, fill factor, and power conversion efficiency) are calculated and simulated by establishing the theoretical model. From the above analysis, the results show that the non-fullerene PSC PB:IDT has better photoelectric characteristics than PB:IF.
Collapse
Affiliation(s)
- Qiuchen Lu
- College of Science, Northeast Forestry University, Harbin 150040, China.
| | - Ming Qiu
- College of Science, Northeast Forestry University, Harbin 150040, China.
| | - Meiyu Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Zhuo Li
- College of Science, Northeast Forestry University, Harbin 150040, China.
| | - Yuanzuo Li
- College of Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|