1
|
Anis A, Alam M, Alhamidi A, Gupta RK, Tariq M, Al-Zahrani SM. Studies on Polybenzimidazole and Methanesulfonate Protic-Ionic-Liquids-Based Composite Polymer Electrolyte Membranes. Polymers (Basel) 2023; 15:2821. [PMID: 37447466 DOI: 10.3390/polym15132821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
In the present work, different methanesulfonate-based protic ionic liquids (PILs) were synthesized and their structural characterization was performed using FTIR, 1H, and 13C NMR spectroscopy. Their thermal behavior and stability were studied using DSC and TGA, respectively, and EIS was used to study the ionic conductivity of these PILs. The PIL, which was diethanolammonium-methanesulfonate-based due to its compatibility with polybenzimidazole (PBI) to form composite membranes, was used to prepare proton-conducting polymer electrolyte membranes (PEMs) for prospective high-temperature fuel cell application. The prepared PEMs were further characterized using FTIR, DSC, TGA, SEM, and EIS. The FTIR results indicated good interaction among the PEM components and the DSC results suggested good miscibility and a plasticizing effect of the incorporated PIL in the PBI polymer matrix. All the PEMs showed good thermal stability and good proton conductivity for prospective high-temperature fuel cell application.
Collapse
Affiliation(s)
- Arfat Anis
- SABIC Polymer Research Center (SPRC), Chemical Engineering Department, King Saud University, Riyadh 11421, Saudi Arabia
| | - Manawwer Alam
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alhamidi
- SABIC Polymer Research Center (SPRC), Chemical Engineering Department, King Saud University, Riyadh 11421, Saudi Arabia
| | - Ravindra Kumar Gupta
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Tariq
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Saeed M Al-Zahrani
- SABIC Polymer Research Center (SPRC), Chemical Engineering Department, King Saud University, Riyadh 11421, Saudi Arabia
| |
Collapse
|
2
|
Ebrahimi M, Fatyeyeva K, Kujawski W. Different Approaches for the Preparation of Composite Ionic Liquid-Based Membranes for Proton Exchange Membrane Fuel Cell Applications-Recent Advancements. MEMBRANES 2023; 13:593. [PMID: 37367797 DOI: 10.3390/membranes13060593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
The use of ionic liquid-based membranes as polymer electrolyte membranes for fuel cell applications increases significantly due to the major features of ionic liquids (i.e., high thermal stability and ion conductivity, non-volatility, and non-flammability). In general, there are three major methods to introduce ionic liquids into the polymer membrane, such as incorporating ionic liquid into a polymer solution, impregnating the polymer with ionic liquid, and cross-linking. The incorporation of ionic liquids into a polymer solution is the most common method, owing to easy operation of process and quick membrane formation. However, the prepared composite membranes suffer from a reduction in mechanical stability and ionic liquid leakage. While mechanical stability may be enhanced by the membrane's impregnation with ionic liquid, ionic liquid leaching is still the main drawback of this method. The presence of covalent bonds between ionic liquids and polymer chains during the cross-linking reaction can decrease the ionic liquid release. Cross-linked membranes reveal more stable proton conductivity, although a decrease in ionic mobility can be noticed. In the present work, the main approaches for ionic liquid introduction into the polymer film are presented in detail, and the recently obtained results (2019-2023) are discussed in correlation with the composite membrane structure. In addition, some promising new methods (i.e., layer-by-layer self-assembly, vacuum-assisted flocculation, spin coating, and freeze drying) are described.
Collapse
Affiliation(s)
- Mohammad Ebrahimi
- Polymères Biopolymères Surfaces (PBS), INSA Rouen Normandie, University Rouen Normandie, UMR 6270 CNRS, 76000 Rouen, France
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Kateryna Fatyeyeva
- Polymères Biopolymères Surfaces (PBS), INSA Rouen Normandie, University Rouen Normandie, UMR 6270 CNRS, 76000 Rouen, France
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| |
Collapse
|
3
|
Li T, Yang J, Chen Q, Zhang H, Wang P, Hu W, Liu B. Construction of Highly Conductive Cross-Linked Polybenzimidazole-Based Networks for High-Temperature Proton Exchange Membrane Fuel Cells. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1932. [PMID: 36903047 PMCID: PMC10003937 DOI: 10.3390/ma16051932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
High-temperature proton exchange membrane fuel cells (HT-PEMFCs) are of great interest to researchers in industry and academia because of their wide range of applications. This review lists some creative cross-linked polybenzimidazole-based membranes that have been prepared in recent years. Based on the investigation into their chemical structure, the properties of cross-linked polybenzimidazole-based membranes and the prospect of their future applications are discussed. The focus is on the construction of cross-linked structure of various types of polybenzimidazole-based membranes and their effect on proton conductivity. This review expresses the outlook and good expectation of the future direction of cross-linked polybenzimidazole membranes.
Collapse
Affiliation(s)
- Tianyang Li
- Key Laboratory of High Performance Plastics of the Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jiayu Yang
- Key Laboratory of High Performance Plastics of the Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Qingxin Chen
- Key Laboratory of High Performance Plastics of the Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Hui Zhang
- Key Laboratory of High Performance Plastics of the Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Peng Wang
- Key Laboratory of High Performance Plastics of the Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Wei Hu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Baijun Liu
- Key Laboratory of High Performance Plastics of the Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
4
|
Nawale SM, Dlamini MM, Weng FB. Analyses of the Effects of Electrolyte and Electrode Thickness on High Temperature Proton Exchange Membrane Fuel Cell (H-TPEMFC) Quality. MEMBRANES 2022; 13:membranes13010012. [PMID: 36676819 PMCID: PMC9866212 DOI: 10.3390/membranes13010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/25/2022] [Accepted: 12/16/2022] [Indexed: 05/30/2023]
Abstract
Researchers have been striving to minimize proton exchange membrane fuel cell components thickness. This is believed to reduce the losses (active losses, ohmic losses and mass transfer losses) associated with this cell. In this study, we numerically analyze the electrodes and electrolyte thickness effects on high-temperature proton exchange membrane fuel cell (H-TPEMFC) performance. COMSOL Multiphysics is adopted to model both the impedance spectroscopy and polarization of the cell. Increased cell catalyst layer (thick electrode) improves the overall cell performance by ±10%, because of the improved reaction rate. It presents 0.89 mol m-3 lesser oxygen compared to that of the thin electrode cell. On the contrary, thick cell electrodes come with increased mass transport loss. The high reaction rate is also confirmed by the high amount of generated water, which is 0.42 mol m-3 higher than that of thin electrode cell. The experiment used to set the modeling parameter renders results with only less than 5% discrepancy to the modeling results. Also revealed is that over a limited range, electrolytes thickness variation has negligible effects on H-TPEMFC performance.
Collapse
|
5
|
Chen C, Guo Y, Zhao S, Toufouki S, Song H, Yao S. Chiral ionic liquid-multi walled carbon nanotubes composite membrane applied to the separation of amino acid enantiomers. J Chromatogr A 2022; 1685:463630. [PMID: 36347072 DOI: 10.1016/j.chroma.2022.463630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/08/2022]
Abstract
Various membranes are playing more and more important roles in the field of analytical and preparative applications of general interest, and some of them have been used in enantioresolution for amino acids (AAs) or similar bioactive molecules. In this study, a new composite membrane was prepared with chiral ionic liquid (CIL) of [BuPyro] [L-Pro] as chiral selector together with multi walled carbon nanotubes (MWCNTs) and additives through a simple way for the first time. Based on such a separation medium, the enantioresolution of amino acid enantiomers were achieved by forming ternary ligand complexes with Cu(II). It was comprehensively characterized by various ways, and key preparation conditions were discovered. After comparing the performance of three operation modes on the resolution of racemic phenylalanine, the effects of main influential factors were investigated and enantiomeric excess value (e.e.%) was 90.2% for the (D,L)-Phe aqueous solution (membrane thickness: 0.15±0.02 mm, total weight: 80 mg, CIL: 41.7%). Through effective desorption, up to 98.1% of the target was recovered. Finally, the mechanism of resolution was revealed by molecular simulation, kinetics and isotherm models, and the difference of interactive energy between ternary complexes of L-Phe-Cu(II)-CIL and D-Phe-Cu(II)-CIL was calculated as 1.56 kcal/mol. The membrane also remained stable after the post-treatment and showed good potential in chiral separation.
Collapse
Affiliation(s)
- Chen Chen
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yingying Guo
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Siyu Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Sara Toufouki
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Hang Song
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
Thangarasu S, Oh TH. Recent Developments on Bioinspired Cellulose Containing Polymer Nanocomposite Cation and Anion Exchange Membranes for Fuel Cells (PEMFC and AFC). Polymers (Basel) 2022; 14:polym14235248. [PMID: 36501640 PMCID: PMC9738973 DOI: 10.3390/polym14235248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Hydrogen fuel cell (FC) technologies are being worked on as a possible replacement for fossil fuels because they produce a lot of energy and do not pollute the air. In FC, ion-exchange membranes (IEMs) are the vital components for ion transport between two porous electrodes. However, the high production cost of commercialized membranes limits their benefits. Various research has focused on cellulose-based membranes such as IEM with high proton conductivity, and mechanical, chemical, and thermal stabilities to replace the high cost of synthetic polymer materials. In this review, we focus on and explain the recent progress (from 2018 to 2022) of cellulose-containing hybrid membranes as cation exchange membranes (CEM) and anion exchange membranes (AEM) for proton exchange membrane fuel cells (PEMFC) and alkaline fuel cells (AFC). In this account, we focused primarily on the effect of cellulose materials in various membranes on the functional properties of various polymer membranes. The development of hybrid membranes with cellulose for PEMFC and AFC has been classified based on the combination of other polymers and materials. For PEMFC, the sections are associated with cellulose with Nafion, polyaryletherketone, various polymeric materials, ionic liquid, inorganic fillers, and natural materials. Moreover, the cellulose-containing AEM for AFC has been summarized in detail. Furthermore, this review explains the significance of cellulose and cellulose derivative-modified membranes during fuel cell performance. Notably, this review shows the vital information needed to improve the ion exchange membrane in PEMFC and AFC technologies.
Collapse
|
7
|
The charge transport mechanism in Brønsted-acidic protic ionic liquid/water systems – An NMR and QENS study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Ionic (Proton) transport and molecular interaction of ionic Liquid–PBI blends for the use as electrolyte membranes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Membrane-Based Electrolysis for Hydrogen Production: A Review. MEMBRANES 2021; 11:membranes11110810. [PMID: 34832039 PMCID: PMC8625528 DOI: 10.3390/membranes11110810] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022]
Abstract
Hydrogen is a zero-carbon footprint energy source with high energy density that could be the basis of future energy systems. Membrane-based water electrolysis is one means by which to produce high-purity and sustainable hydrogen. It is important that the scientific community focus on developing electrolytic hydrogen systems which match available energy sources. In this review, various types of water splitting technologies, and membrane selection for electrolyzers, are discussed. We highlight the basic principles, recent studies, and achievements in membrane-based electrolysis for hydrogen production. Previously, the Nafion™ membrane was the gold standard for PEM electrolyzers, but today, cheaper and more effective membranes are favored. In this paper, CuCl–HCl electrolysis and its operating parameters are summarized. Additionally, a summary is presented of hydrogen production by water splitting, including a discussion of the advantages, disadvantages, and efficiencies of the relevant technologies. Nonetheless, the development of cost-effective and efficient hydrogen production technologies requires a significant amount of study, especially in terms of optimizing the operation parameters affecting the hydrogen output. Therefore, herein we address the challenges, prospects, and future trends in this field of research, and make critical suggestions regarding the implementation of comprehensive membrane-based electrolytic systems.
Collapse
|
10
|
Tellez-Cruz MM, Escorihuela J, Solorza-Feria O, Compañ V. Proton Exchange Membrane Fuel Cells (PEMFCs): Advances and Challenges. Polymers (Basel) 2021; 13:3064. [PMID: 34577965 PMCID: PMC8468942 DOI: 10.3390/polym13183064] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
The study of the electrochemical catalyst conversion of renewable electricity and carbon oxides into chemical fuels attracts a great deal of attention by different researchers. The main role of this process is in mitigating the worldwide energy crisis through a closed technological carbon cycle, where chemical fuels, such as hydrogen, are stored and reconverted to electricity via electrochemical reaction processes in fuel cells. The scientific community focuses its efforts on the development of high-performance polymeric membranes together with nanomaterials with high catalytic activity and stability in order to reduce the platinum group metal applied as a cathode to build stacks of proton exchange membrane fuel cells (PEMFCs) to work at low and moderate temperatures. The design of new conductive membranes and nanoparticles (NPs) whose morphology directly affects their catalytic properties is of utmost importance. Nanoparticle morphologies, like cubes, octahedrons, icosahedrons, bipyramids, plates, and polyhedrons, among others, are widely studied for catalysis applications. The recent progress around the high catalytic activity has focused on the stabilizing agents and their potential impact on nanomaterial synthesis to induce changes in the morphology of NPs.
Collapse
Affiliation(s)
- Miriam M. Tellez-Cruz
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, Ciudad de México 07360, Mexico; (M.M.T.-C.); (O.S.-F.)
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Omar Solorza-Feria
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, Ciudad de México 07360, Mexico; (M.M.T.-C.); (O.S.-F.)
| | - Vicente Compañ
- Departamento de Termodinámica Aplicada (ETSII), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
11
|
A Review of Recent Developments and Advanced Applications of High-Temperature Polymer Electrolyte Membranes for PEM Fuel Cells. ENERGIES 2021. [DOI: 10.3390/en14175440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review summarizes the current status, operating principles, and recent advances in high-temperature polymer electrolyte membranes (HT-PEMs), with a particular focus on the recent developments, technical challenges, and commercial prospects of the HT-PEM fuel cells. A detailed review of the most recent research activities has been covered by this work, with a major focus on the state-of-the-art concepts describing the proton conductivity and degradation mechanisms of HT-PEMs. In addition, the fuel cell performance and the lifetime of HT-PEM fuel cells as a function of operating conditions have been discussed. In addition, the review highlights the important outcomes found in the recent literature about the HT-PEM fuel cell. The main objectives of this review paper are as follows: (1) the latest development of the HT-PEMs, primarily based on polybenzimidazole membranes and (2) the latest development of the fuel cell performance and the lifetime of the HT-PEMs.
Collapse
|
12
|
Samoila P, Grecu I, Asandulesa M, Cojocaru C, Harabagiu V. Bio-based ionically cross-linked alginate composites for PEMFC potential applications. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Structural and Electrochemical Analysis of CIGS: Cr Crystalline Nanopowders and Thin Films Deposited onto ITO Substrates. NANOMATERIALS 2021; 11:nano11051093. [PMID: 33922537 PMCID: PMC8146074 DOI: 10.3390/nano11051093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 01/10/2023]
Abstract
A new approach for the synthesis of nanopowders and thin films of CuInGaSe2 (CIGS) chalcopyrite material doped with different amounts of Cr is presented. The chalcopyrite material CuInxGa1 − xSe2 was doped using Cr to form a new doped chalcopyrite with the structure CuInxCryGa1 − x − ySe2, where x = 0.4 and y = 0.0, 0.1, 0.2, or 0.3. The electrical properties of CuInx CryGa1 − x − ySe2 are highly dependent on the Cr content and results show these materials as promising dopants for the fabrication thin film solar cells. The CIGS nano-precursor powder was initially synthesized via an autoclave method, and then converted into thin films over transparent substrates. Both crystalline precursor powders and thin films deposited onto ITO substrates following a spin-coating process were subsequently characterized using XRD, SEM, HR-TEM, UV–visible and electrochemical impedance spectroscopy (EIS). EIS measurement was performed to evaluate the dc-conductivity of these novel materials as conductive films to be applied in solar cells.
Collapse
|
14
|
Fadeeva YA, Kuzmin SM, Shmukler LE, Safonova LP. Membranes based on polybenzimidazole and protic ionic liquid: preparation and properties. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3056-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Rubio Arias JJ, Bento SDS, Vieira Marques MDF, Gomes ADS. Fabrication of hybrid proton‐exchange membranes using a brandnew high temperature ionic liquid as charge transporting and clay modifier. J Appl Polym Sci 2021. [DOI: 10.1002/app.49871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jose Jonathan Rubio Arias
- Instituto de Macromoléculas Eloisa Mano, IMA‐UFRJ, Universidade Federal do Rio de Janeiro, Cidade Universitária Rio de Janeiro RJ Brazil
| | - Sabrina dos Santos Bento
- Instituto de Macromoléculas Eloisa Mano, IMA‐UFRJ, Universidade Federal do Rio de Janeiro, Cidade Universitária Rio de Janeiro RJ Brazil
| | - Maria de Fátima Vieira Marques
- Instituto de Macromoléculas Eloisa Mano, IMA‐UFRJ, Universidade Federal do Rio de Janeiro, Cidade Universitária Rio de Janeiro RJ Brazil
| | - Ailton de Souza Gomes
- Instituto de Macromoléculas Eloisa Mano, IMA‐UFRJ, Universidade Federal do Rio de Janeiro, Cidade Universitária Rio de Janeiro RJ Brazil
| |
Collapse
|
16
|
Barjola A, Escorihuela J, García-Bernabé A, Sahuquillo Ó, Giménez E, Compañ V. Diffusivity and free anion concentration of ionic liquid composite polybenzimidazole membranes. RSC Adv 2021; 11:26379-26390. [PMID: 35479428 PMCID: PMC9037350 DOI: 10.1039/d1ra05364g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/27/2021] [Indexed: 11/21/2022] Open
Abstract
PBI composite membranes containing 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMIM-NTf2) at 1, 5, 10, 20 and 50 wt% have been prepared and the conductivity has been analyzed by electrochemical impedance spectroscopy.
Collapse
Affiliation(s)
- Arturo Barjola
- Instituto de Tecnología de Materiales
- Universitat Politècnica de València
- 46022 Valencia
- Spain
| | - Jorge Escorihuela
- Departamento de Química Orgánica
- Universitat de València
- 46100 Valencia
- Spain
| | - Abel García-Bernabé
- Departamento de Termodinámica Aplicada
- Universitat Politècnica de València
- 46022 Valencia
- Spain
| | - Óscar Sahuquillo
- Instituto de Tecnología de Materiales
- Universitat Politècnica de València
- 46022 Valencia
- Spain
| | - Enrique Giménez
- Instituto de Tecnología de Materiales
- Universitat Politècnica de València
- 46022 Valencia
- Spain
| | - Vicente Compañ
- Departamento de Termodinámica Aplicada
- Universitat Politècnica de València
- 46022 Valencia
- Spain
| |
Collapse
|
17
|
Lin J, Korte C. Influence of the acid-base stoichiometry and residual water on the transport mechanism in a highly-Brønsted-acidic proton-conducting ionic liquid. RSC Adv 2020; 10:42596-42604. [PMID: 35516752 PMCID: PMC9057952 DOI: 10.1039/d0ra08969a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/16/2020] [Indexed: 11/21/2022] Open
Abstract
In this study, Brønsted-acidic proton conducting ionic liquids are considered as potential new electrolytes for polymer membrane fuel cells with operating temperatures above 100 °C. N-Methyltaurine and trifluoromethanesulfonic acid (TfOH) were mixed at various stoichiometric ratios in order to investigate the influence of an acid or base excess. The proton conductivity and self-diffusion of the “neat” and with 6 wt% water samples were investigated by following electrochemical and NMR methods. The composition change in the complete species and the relative proton transport mechanism based on the NMR results are discussed in detail. During fuel cell operation, the presence of significant amounts of residual water is unavoidable. In PEFC electrolytes, the predominating proton transfer process depends on the cooperative mechanism, when PILs are fixed on the polymer matrix within the membrane. Due to the comparable acidity of the cation [2-Sema]+ and the hydroxonium cation, with excess N-methyltaurine or H2O in the compositions, fast proton exchange reactions between the protonated [2-Sema]+ cation, N-methyltaurine and H2O can be envisaged. Thus, an increasing ratio of cooperative proton transport could be observed. Therefore, for polymer membrane fuel cells operating at elevated temperatures, the highly acidic PILs with excess bases are promising candidates for future use as electrolytes. There is a transition between prevailing vehicular and cooperative transport mechanism in base-excess Brønsted-acidic proton-conducting ionic liquids depending on stoichiometry.![]()
Collapse
Affiliation(s)
- Jingjing Lin
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research - Fuel Cells (IEK-14) Wilhelm-Johnen-Straße 52425 Jülich Germany .,RWTH Aachen University 52062 Aachen Germany
| | - Carsten Korte
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research - Fuel Cells (IEK-14) Wilhelm-Johnen-Straße 52425 Jülich Germany .,RWTH Aachen University 52062 Aachen Germany
| |
Collapse
|
18
|
Compañ V, Escorihuela J, Olvera J, García-Bernabé A, Andrio A. Influence of the anion on diffusivity and mobility of ionic liquids composite polybenzimidazol membranes. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Escorihuela J, Olvera-Mancilla J, Alexandrova L, del Castillo LF, Compañ V. Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications. Polymers (Basel) 2020; 12:E1861. [PMID: 32825111 PMCID: PMC7564738 DOI: 10.3390/polym12091861] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022] Open
Abstract
The rapid increasing of the population in combination with the emergence of new energy-consuming technologies has risen worldwide total energy consumption towards unprecedent values. Furthermore, fossil fuel reserves are running out very quickly and the polluting greenhouse gases emitted during their utilization need to be reduced. In this scenario, a few alternative energy sources have been proposed and, among these, proton exchange membrane (PEM) fuel cells are promising. Recently, polybenzimidazole-based polymers, featuring high chemical and thermal stability, in combination with fillers that can regulate the proton mobility, have attracted tremendous attention for their roles as PEMs in fuel cells. Recent advances in composite membranes based on polybenzimidazole (PBI) for high temperature PEM fuel cell applications are summarized and highlighted in this review. In addition, the challenges, future trends, and prospects of composite membranes based on PBI for solid electrolytes are also discussed.
Collapse
Affiliation(s)
- Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Jessica Olvera-Mancilla
- Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (J.O.-M.); (L.A.); (L.F.d.C.)
| | - Larissa Alexandrova
- Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (J.O.-M.); (L.A.); (L.F.d.C.)
| | - L. Felipe del Castillo
- Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (J.O.-M.); (L.A.); (L.F.d.C.)
| | - Vicente Compañ
- Departamento de Termodinámica Aplicada (ETSII), Universitat Politècnica de València, Camino de Vera. s/n, 46022 Valencia, Spain
| |
Collapse
|
20
|
Olvera-Mancilla J, Escorihuela J, Alexandrova L, Andrio A, García-Bernabé A, Del Castillo LF, Compañ V. Effect of metallacarborane salt H[COSANE] doping on the performance properties of polybenzimidazole membranes for high temperature PEMFCs. SOFT MATTER 2020; 16:7624-7635. [PMID: 32735001 DOI: 10.1039/d0sm00743a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this paper, a series of composite proton exchange membranes comprising a cobaltacarborane protonated H[Co(C2B9H11)2] named (H[COSANE]) and polybenzimidazole (PBI) for a high temperature proton exchange membrane fuel cell (PEMFC) is reported, with the aim of enhancing the proton conductivity of PBI membranes doped with phosphoric acid. The effects of the anion [Co(C2B9H11)2] concentration in three different polymeric matrices based on the PBI structure, poly(2,2'-(m-phenylene)-5,5'-bibenzimidazole) (PBI-1), poly[2,2'-(p-oxydiphenylene)-5,5'-bibenzimidazole] (PBI-2) and poly(2,2'-(p-hexafluoroisopropylidene)-5,5'-bibenzimidazole) (PBI-3), have been investigated. The conductivity, diffusivity and mobility are greater in the composite membrane poly(2,2'-(p-hexafluoroisopropylidene)-5,5'-bibenzimidazole) containing fluorinated groups, reaching a maximum when the amount of H[COSANE] was 15%. In general, all the prepared membranes displayed excellent and tunable properties as conducting materials, with conductivities higher than 0.03 S cm-1 above 140 °C. From an analysis of electrode polarization (EP) the proton diffusion coefficients and mobility have been calculated.
Collapse
Affiliation(s)
- Jessica Olvera-Mancilla
- Departamento de polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70-360, Coyoacán, Ciudad de México, 04510, Mexico
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Av. Vicente Andrés Estellés s/n, Burjassot 46100, Valencia, Spain.
| | - Larissa Alexandrova
- Departamento de polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70-360, Coyoacán, Ciudad de México, 04510, Mexico
| | - Andreu Andrio
- Departament de Física Aplicada, Universitat Jaume I, 12080, Castelló, Spain
| | - Abel García-Bernabé
- Departamento de Termodinámica Aplicada (ETSII), Universitat Politècnica de Valencia, Campus de Vera s/n, 46022 Valencia, Spain.
| | - Luis Felipe Del Castillo
- Departamento de polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70-360, Coyoacán, Ciudad de México, 04510, Mexico
| | - Vicente Compañ
- Departamento de Termodinámica Aplicada (ETSII), Universitat Politècnica de Valencia, Campus de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
21
|
Lee S, Nam KH, Seo K, Kim G, Han H. Phase Inversion-Induced Porous Polybenzimidazole Fuel Cell Membranes: An Efficient Architecture for High-Temperature Water-Free Proton Transport. Polymers (Basel) 2020; 12:polym12071604. [PMID: 32707660 PMCID: PMC7407769 DOI: 10.3390/polym12071604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 11/30/2022] Open
Abstract
To cope with the demand for cleaner alternative energy, polymer electrolyte membrane fuel cells (PEMFCs) have received significant research attention owing to their high-power density, high fuel efficiency, and low polluting by-product. However, the water requirement of these cells has necessitated research on systems that do not require water and/or use other mediums with higher boiling points. In this work, a highly porous meta-polybenzimidazole (m-PBI) membrane was fabricated through the non-solvent induced phase inversion technique and thermal cross-linking for high-temperature PEMFC (HT-PEMFC) applications. Standard non-thermally treated porous membranes are susceptible to phosphoric acid (PA) even at low concentrations and are unsuitable as polymer electrolyte membranes (PEMs). With the porous structure of m-PBI membranes, higher PA uptake and minimal swelling, which is controlled via cross-linking, was achieved. In addition, the membranes exhibited partial asymmetrical morphology and are directly applicable to fuel cell systems without any further modifications. Membranes with insufficient cross-linking resulted in an unstable performance in HT-PEMFC environments. By optimizing thermal treatment, a high-performance membrane with limited swelling and improved proton conductivity was achieved. Finally, the m-PBI membrane exhibited enhanced acid retention, proton conductivity, and fuel cell performance.
Collapse
|
22
|
Escorihuela J, García-Bernabé A, Compañ V. A Deep Insight into Different Acidic Additives as Doping Agents for Enhancing Proton Conductivity on Polybenzimidazole Membranes. Polymers (Basel) 2020; 12:E1374. [PMID: 32570990 PMCID: PMC7361977 DOI: 10.3390/polym12061374] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 11/18/2022] Open
Abstract
The use of phosphoric acid doped polybenzimidazole (PBI) membranes for fuel cell applications has been extensively studied in the past decades. In this article, we present a systematic study of the physicochemical properties and proton conductivity of PBI membranes doped with the commonly used phosphoric acid at different concentrations (0.1, 1, and 14 M), and with other alternative acids such as phytic acid (0.075 M) and phosphotungstic acid (HPW, 0.1 M). The use of these three acids was reflected in the formation of channels in the polymeric network as observed by cross-section SEM images. The acid doping enhanced proton conductivity of PBI membranes and, after doping, these conducting materials maintained their mechanical properties and thermal stability for their application as proton exchange membrane fuel cells, capable of operating at intermediate or high temperatures. Under doping with similar acidic concentrations, membranes with phytic acid displayed a superior conducting behavior when compared to doping with phosphoric acid or phosphotungstic acid.
Collapse
Affiliation(s)
- Jorge Escorihuela
- Departamento de Química Orgánica, Facultad de Farmacia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Abel García-Bernabé
- Departamento de Termodinámica Aplicada, Escuela Técnica Superior de Ingeniería Industrial, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - Vicente Compañ
- Departamento de Termodinámica Aplicada, Escuela Técnica Superior de Ingeniería Industrial, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| |
Collapse
|
23
|
Chitosan-Sulfated Titania Composite Membranes with Potential Applications in Fuel Cell: Influence of Cross-Linker Nature. Polymers (Basel) 2020; 12:polym12051125. [PMID: 32423076 PMCID: PMC7284654 DOI: 10.3390/polym12051125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/05/2020] [Accepted: 05/09/2020] [Indexed: 11/17/2022] Open
Abstract
Chitosan-sulfated titania composite membranes were prepared, characterized, and evaluated for potential application as polymer electrolyte membranes. To improve the chemical stability, the membranes were cross-linked using sulfuric acid, pentasodium triphosphate, and epoxy-terminated polydimethylsiloxane. Differences in membranes’ structure, thickness, morphology, mechanical, and thermal properties prior and after cross-linking reactions were evaluated. Membranes’ water uptake capacities and their chemical stability in Fenton reagent were also studied. As proved by dielectric spectroscopy, the conductivity strongly depends on cross-linker nature and on hydration state of membranes. The most encouraging results were obtained for the chitosan-sulfated titania membrane cross-linked with sulfuric acid. This hydrated membrane attained values of proton conductivity of 1.1 × 10−3 S/cm and 6.2 × 10−3 S/cm, as determined at 60 °C by dielectric spectroscopy and the four-probes method, respectively.
Collapse
|
24
|
Fatyeyeva K, Rogalsky S, Makhno S, Tarasyuk O, Soto Puente JA, Marais S. Polyimide/Ionic Liquid Composite Membranes for Middle and High Temperature Fuel Cell Application: Water Sorption Behavior and Proton Conductivity. MEMBRANES 2020; 10:E82. [PMID: 32353977 PMCID: PMC7281338 DOI: 10.3390/membranes10050082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 11/16/2022]
Abstract
Four water insoluble room-temperature protic ionic liquids (PILs) based on the N-alkylimidazolium cation with the alkyl chain length from 1 to 4 and bis(trifluoromethylsulfonyl)imide anion were synthesized and their chemical structure was confirmed by the 1H NMR and 19F NMR analysis. PILs were revealed to be thermally stable up to 360 and 400 °C. At the same time, the proton conductivity of PILs was found to be dependent mostly on the temperature and, to a less extent, on the type of the cation, i.e., the increase of the conductivity from ~3 × 10-4 S/cm at 25 °C to 2 × 10-2 S/cm at 150 °C was observed. The water vapour sorption capacity of PILs was evaluated as a function of relative humidity and the influence of the alkyl chain length on the phase behaviour in the PIL-water system was discussed. The composite polyimide/PILs membranes were prepared by the PIL immobilization in the porous polymer (Matrimid® 5218) film. The composite membranes showed a high level of proton conductivity (~10-3 S/cm) at elevated temperatures (up to 160 °C). The obtained results reveal that the elaborated composite polyimide/PIL membranes are promising candidates for the application as proton exchange membrane at middle and high temperatures.
Collapse
Affiliation(s)
- Kateryna Fatyeyeva
- Polymères Biopolymères Surfaces (PBS), Normandie University, UNIROUEN, INSA ROUEN, CNRS, 76000 Rouen, France
| | - Sergiy Rogalsky
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 50, Kharkivske Schose, 02160 Kyiv, Ukraine
| | - Stanislav Makhno
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17, General Naumov St., 03164 Kyiv, Ukraine
| | - Oksana Tarasyuk
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 50, Kharkivske Schose, 02160 Kyiv, Ukraine
| | - Jorge Arturo Soto Puente
- Polymères Biopolymères Surfaces (PBS), Normandie University, UNIROUEN, INSA ROUEN, CNRS, 76000 Rouen, France
| | - Stéphane Marais
- Polymères Biopolymères Surfaces (PBS), Normandie University, UNIROUEN, INSA ROUEN, CNRS, 76000 Rouen, France
| |
Collapse
|
25
|
Synthesis and Properties of Phosphoric-Acid-Doped Polybenzimidazole with Hyperbranched Cross-Linkers Decorated with Imidazolium Groups as High-Temperature Proton Exchange Membranes. Polymers (Basel) 2020; 12:polym12030515. [PMID: 32120782 PMCID: PMC7182959 DOI: 10.3390/polym12030515] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 11/17/2022] Open
Abstract
Highly phosphoric-acid (PA)-doped polybenzimidazole (PBI) membranes exhibit good proton conductivity at high temperatures; however, they suffer from reduced mechanical properties and loss of PA molecules due to the plasticity of PA and the weak interactions between PA and benzimidazoles, especially with the absorption of water. In this work, a series of PBIs with hyperbranched cross-linkers decorated with imidazolium groups (ImOPBI-x, where x is the weight ratio of the hyperbranched cross-linker) as high-temperature proton exchange membranes are designed and synthesized for the first time. We observe how the hyperbranched cross-linkers can endow the membranes with improved oxidative stability and acceptable mechanical performance, and imidazolium groups with strong basicity can stabilize the PA molecules by delocalization and hydrogen bond formation to endow the membranes with an enhanced proton conductivity and a decreased loss of PA molecules. We measured a high proton conductivity of the ImOPBI-x membranes, ranging from 0.058 to 0.089 S cm−1 at 160 °C. In addition, all the ImOPBI-x membranes displayed good mechanical and oxidative properties. At 160 °C, a fuel cell based on the ImOPBI-5 membrane showed a power density of 638 mW cm−2 and good durability under a hydrogen/oxygen atmosphere, indicating its promising use in anhydrous proton exchange membrane applications.
Collapse
|
26
|
Lin J, Wang L, Zinkevich T, Indris S, Suo Y, Korte C. Influence of residual water and cation acidity on the ionic transport mechanism in proton-conducting ionic liquids. Phys Chem Chem Phys 2020; 22:1145-1153. [PMID: 31774423 DOI: 10.1039/c9cp04723a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proton-conducting ionic liquids (PILs) are discussed herein as potential new electrolytes for polymer membrane fuel cells, suitable for operation temperatures above 100 °C. During fuel cell operation, the presence of significant amounts of residual water is unavoidable, even at these elevated temperatures. By using electrochemical and NMR methods, the impact of residual water on 2-sulfoethylmethylammonium triflate [2-Sema][TfO], 1-ethylimidazolium triflate [1-EIm][TfO] and diethylmethylammonium triflate [Dema][TfO] is analyzed. The cationic acidity of these PILs varies by over ten orders of magnitude. Appropriate amounts of the PIL and H2O were mixed at various molar ratios to obtain compositions, varying from the neat PIL to H2O-excess conditions. The conductivity of [2-Sema][TfO] exponentially increases depending on the H2O concentration. The results from 1H-NMR spectroscopy and self-diffusion coefficient measurements by 1H field-gradient NMR indicate a fast proton exchange process between [2-Sema]+ and H2O. Conversely, [1-EIm][TfO] and [Dema][TfO] show only very slow or non-significant proton exchange, respectively, with H2O during the time-scale relevant for transport. The proton conduction follows a combination of vehicle and cooperative mechanisms in highly acidic PIL, while a mostly vehicle mechanism in medium and low acidic PIL occurs. Therefore, highly acidic ionic liquids are promising new candidates for polymer electrolyte fuel cells at an elevated temperature.
Collapse
Affiliation(s)
- Jingjing Lin
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research - Fuel Cells (IEK-3), 52425 Jülich, Germany.
| | - Liming Wang
- Central Institute for Engineering, Electronics and Analytics, Analytics (ZEA-3), Jülich, Germany
| | - Tatiana Zinkevich
- Institute for Applied Materials-Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Sylvio Indris
- Institute for Applied Materials-Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Yanpeng Suo
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research - Fuel Cells (IEK-3), 52425 Jülich, Germany.
| | - Carsten Korte
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research - Fuel Cells (IEK-3), 52425 Jülich, Germany.
| |
Collapse
|
27
|
Fadeeva Y, Gruzdev M, Kudryakova N, Shmukler L, Safonova L. Physico-chemical characterization of alkyl-imidazolium protic ionic liquids. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
28
|
Preparation of Nanoporous PdIrZn Alloy Catalyst by Dissolving Excess ZnO for Cathode of High- Temperature Polymer Electrolyte Membrane Fuel Cells. ENERGIES 2019. [DOI: 10.3390/en12214155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Carbon-supported nanoporous palladium-iridium–zinc (NP-PdIrZn) electrocatalyst was prepared through the modification of the alcohol-reduction process following the selective dissolution of excess ZnO nanoparticles using NaOH solution. The electrocatalyst was applied successfully to the cathode for a high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC). X-ray diffraction (XRD) patterns of the NP-PdIrZn nanoparticles suggests formation of the ternary alloy and complete removal of ZnO without the formation of individual Pd, Ir, or Zn nanoparticles. Moreover, transmission electron microscopy (TEM) images displayed porous nanoparticles with an irregular shape, which was generated by removing the ZnO from the PdIrZn–ZnO nanocomposites, and was prepared by using the excessive Zn precursor. The electrochemical surface area (ECSA) of the NP-PdIrZn catalysts was estimated by cyclic voltammetry using a rotating disk electrode method , and the oxygen reduction reaction (ORR) activity was evaluated by a linear sweep method. The NP-PdIrZn catalysts showed larger ECSA and higher ORR activity than those of the PdIr and PdIrZn catalysts, which may be attributed to the increased exposed surface area by selective etching of the ZnO in the composites. Furthermore, the NP-PdIrZn catalyst exhibited excellent performance (0.66 V) in a single cell under the HT-PEMFC condition than those of the PdIr (0.58 V) and PdIrZn (0.62 V) catalysts, indicating that geometric and electronic control of Pd-based alloy can improve the single-cell performance for the HT-PEMFC.
Collapse
|
29
|
Escorihuela J, García-Bernabé A, Montero A, Andrio A, Sahuquillo Ó, Gimenez E, Compañ V. Proton Conductivity through Polybenzimidazole Composite Membranes Containing Silica Nanofiber Mats. Polymers (Basel) 2019; 11:E1182. [PMID: 31337094 PMCID: PMC6680558 DOI: 10.3390/polym11071182] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 12/02/2022] Open
Abstract
The quest for sustainable and more efficient energy-converting devices has been the focus of researchers' efforts in the past decades. In this study, SiO2 nanofiber mats were fabricated through an electrospinning process and later functionalized using silane chemistry to introduce different polar groups -OH (neutral), -SO3H (acidic) and -NH2 (basic). The modified nanofiber mats were embedded in PBI to fabricate mixed matrix membranes. The incorporation of these nanofiber mats in the PBI matrix showed an improvement in the chemical and thermal stability of the composite membranes. Proton conduction measurements show that PBI composite membranes containing nanofiber mats with basic groups showed higher proton conductivities, reaching values as high as 4 mS·cm-1 at 200 °C.
Collapse
Affiliation(s)
- Jorge Escorihuela
- Departamento de Termodinámica Aplicada (ETSII), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
- Departament de Química Orgànica, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain.
| | - Abel García-Bernabé
- Departamento de Termodinámica Aplicada (ETSII), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Alvaro Montero
- Departamento de Termodinámica Aplicada (ETSII), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Andreu Andrio
- Departament de Física Aplicada, Universitat Jaume I, 12080 Castelló, Spain
| | - Óscar Sahuquillo
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Enrique Gimenez
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Vicente Compañ
- Departamento de Termodinámica Aplicada (ETSII), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|