1
|
Wu D, Zhang Q, Hou M, Yan R, Lei H, Zhou X, Du G, Pizzi A, Xi X. Preparation and properties of room temperature foaming lignin-based non-isocyanate polyurethane foams. Int J Biol Macromol 2024; 282:136892. [PMID: 39490494 DOI: 10.1016/j.ijbiomac.2024.136892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The preparation and application of biomass-based non-isocyanate polyurethane (NIPU) is an essential and meaningful hot topic research work in the field of polyurethane industry, due to its advantages of sustainability of raw materials and no highly toxic isocyanate used in the synthesis. Lignin, as the second most renewable natural polymer on earth, was used in this paper to synthesize lignin-based non-isocyanate polyurethane (L-NIPU) resins. Subsequently, L-NIPU foams were prepared by self-foaming at room temperature with the addition of maleic acid as an initiator and glutaraldehyde as a cross-linker, and their properties were investigated. Results show that L-NIPU foams are lightweight (0.11-0.18 g/cm3), have low thermal conductivity (0.033-0.04 W/m·K), and have excellent compressive strength. When the addition of maleic acid and glutaraldehyde is respectively 18 % and 25 % (based on L-NIPU resin quality), the compressive strength can be as high as 0.5 MPa, and the thermal conductivity is only 0.03559 W/m·K, so it can be used as an insulating board in buildings. In addition, FT-IR and XPS analyses showed that maleic acid and glutaraldehyde can react with the amino group in L-NIPU to form a cross-linked network structure, which ensures the favorable mechanical properties of the foam.
Collapse
Affiliation(s)
- Dan Wu
- Yunnan Key Laboratory of Wood Adhesives and Glued Products, College of Material science and Chemistry Engineering, Southwest Forestry University, 650224 Kunming, China
| | - Qianyu Zhang
- Yunnan Key Laboratory of Wood Adhesives and Glued Products, College of Material science and Chemistry Engineering, Southwest Forestry University, 650224 Kunming, China
| | - Minghui Hou
- Yunnan Key Laboratory of Wood Adhesives and Glued Products, College of Material science and Chemistry Engineering, Southwest Forestry University, 650224 Kunming, China
| | - Ranjun Yan
- Yunnan Key Laboratory of Wood Adhesives and Glued Products, College of Material science and Chemistry Engineering, Southwest Forestry University, 650224 Kunming, China
| | - Hong Lei
- School of Chemistry and Material Engineering, Zhejiang A&F University, 311300 Hangzhou, China.
| | - Xiaojian Zhou
- Yunnan Key Laboratory of Wood Adhesives and Glued Products, College of Material science and Chemistry Engineering, Southwest Forestry University, 650224 Kunming, China
| | - Guanben Du
- Yunnan Key Laboratory of Wood Adhesives and Glued Products, College of Material science and Chemistry Engineering, Southwest Forestry University, 650224 Kunming, China
| | - Antonio Pizzi
- LERMAB, University of Lorraine, 88000 Epinal, France
| | - Xuedong Xi
- Yunnan Key Laboratory of Wood Adhesives and Glued Products, College of Material science and Chemistry Engineering, Southwest Forestry University, 650224 Kunming, China.
| |
Collapse
|
2
|
Carbajo-Gordillo AI, Benito E, Galbis E, Grosso R, Iglesias N, Valencia C, Lucas R, García-Martín MG, de-Paz MV. Simultaneous Formation of Polyhydroxyurethanes and Multicomponent Semi-IPN Hydrogels. Polymers (Basel) 2024; 16:880. [PMID: 38611138 PMCID: PMC11013152 DOI: 10.3390/polym16070880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
This study introduces an efficient strategy for synthesizing polyhydroxyurethane-based multicomponent hydrogels with enhanced rheological properties. In a single-step process, 3D materials composed of Polymer 1 (PHU) and Polymer 2 (PVA or gelatin) were produced. Polymer 1, a crosslinked polyhydroxyurethane (PHU), grew within a colloidal solution of Polymer 2, forming an interconnected network. The synthesis of Polymer 1 utilized a Non-Isocyanate Polyurethane (NIPU) methodology based on the aminolysis of bis(cyclic carbonate) (bisCC) monomers derived from 1-thioglycerol and 1,2-dithioglycerol (monomers A and E, respectively). This method, applied for the first time in Semi-Interpenetrating Network (SIPN) formation, demonstrated exceptional orthogonality since the functional groups in Polymer 2 do not interfere with Polymer 1 formation. Optimizing PHU formation involved a 20-trial methodology, identifying influential variables such as polymer concentration, temperature, solvent (an aprotic and a protic solvent), and the organo-catalyst used [a thiourea derivative (TU) and 1,8-diazabicyclo [5.4.0]undec-7-ene (DBU)]. The highest molecular weights were achieved under near-bulk polymerization conditions using TU-protic and DBU-aprotic as catalyst-solvent combinations. Monomer E-based PHU exhibited higher Mw¯ than monomer A-based PHU (34.1 kDa and 16.4 kDa, respectively). Applying the enhanced methodology to prepare 10 multicomponent hydrogels using PVA or gelatin as the polymer scaffold revealed superior rheological properties in PVA-based hydrogels, exhibiting solid-like gel behavior. Incorporating monomer E enhanced mechanical properties and elasticity (with loss tangent values of 0.09 and 0.14). SEM images unveiled distinct microstructures, including a sponge-like pattern in certain PVA-based hydrogels when monomer A was chosen, indicating the formation of highly superporous interpenetrated materials. In summary, this innovative approach presents a versatile methodology for obtaining advanced hydrogel-based systems with potential applications in various biomedical fields.
Collapse
Affiliation(s)
- Ana I. Carbajo-Gordillo
- Dpto. Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain (R.L.); (M.-G.G.-M.)
| | - Elena Benito
- Dpto. Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain (R.L.); (M.-G.G.-M.)
| | - Elsa Galbis
- Dpto. Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain (R.L.); (M.-G.G.-M.)
| | - Roberto Grosso
- Dpto. Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain (R.L.); (M.-G.G.-M.)
| | - Nieves Iglesias
- Dpto. Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain (R.L.); (M.-G.G.-M.)
| | - Concepción Valencia
- Dpto. Ingeniería Química, Facultad de Ciencias Experimentales, Campus El Carmen, Universidad de Huelva, 21071 Huelva, Spain
- Pro2TecS—Chemical Process and Product Technology Research Center, Universidad de Huelva, 21071 Huelva, Spain
| | - Ricardo Lucas
- Dpto. Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain (R.L.); (M.-G.G.-M.)
| | - M.-Gracia García-Martín
- Dpto. Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain (R.L.); (M.-G.G.-M.)
| | - M.-Violante de-Paz
- Dpto. Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain (R.L.); (M.-G.G.-M.)
| |
Collapse
|
3
|
Zhao Y, Zhang Q, Lei H, Zhou X, Du G, Pizzi A, Xi X. Preparation and fire resistance modification on tannin-based non-isocyanate polyurethane (NIPU) rigid foams. Int J Biol Macromol 2024; 258:128994. [PMID: 38157632 DOI: 10.1016/j.ijbiomac.2023.128994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/06/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Non-isocyanate polyurethane (NIPU) as a new type of polyurethane material has become a hot research topic in the polyurethane industry due to its no utilization of toxic isocyanates during the synthesis process. And the developing on recyclable biomass materials has also much attention in the industrial sector, hence the preparation and application of bio-based NIPU has also become a very meaningful study work. So, in this paper, tannin as a biomass material was used to synthesize tannin based non-isocyanate polyurethanes (TNIPU) resin, and then successfully prepared a self-blowing TNIPU foam at room temperature by using formic acid as initiator and glutaraldehyde as cross-linking agent. The compressive strength of this foam as high as 0.8 MPa, which is an excellent compressive performance. Meanwhile it will return to the state before compression when removing the pressure. This indicating that the foam has good toughness. In addition, formic acid can react with the amino groups in TNIPU to form amide substances, and generated enough heat to initiate the foaming process. Glutaraldehyde, as a crosslinking agent, reacts with the amino group in TNIPU to form a network structure system. By scanning electron microscope (SEM) observation of the cell shapes, it can be seen that the foam cells were uniform in size and shape, and the cell pores showed open and closed cells. The limiting oxygen index (LOI) tested value of this TNIPU foam is 24.45 % without any flame retardant added, but compared to the LOI value of polyurethane foam (17 %-19 %), TNIPU foam reveal a better fire resistance. It has a wider application prospect.
Collapse
Affiliation(s)
- Yunsen Zhao
- Yunnan Key Laboratory of Wood Adhesives and Glue Products, College of Material science and Engineering, Southwest Forestry University, 650224 Kunming, China
| | - Qianyu Zhang
- Yunnan Key Laboratory of Wood Adhesives and Glue Products, College of Material science and Engineering, Southwest Forestry University, 650224 Kunming, China
| | - Hong Lei
- College of Chemistry and Material Engineering, Zhejiang A&F University, 311300 Hangzhou, China.
| | - Xiaojian Zhou
- International Joint Research Center for Biomass materials, Southwest Forestry University, 650224 Kunming, China
| | - Guanben Du
- Yunnan Key Laboratory of Wood Adhesives and Glue Products, College of Material science and Engineering, Southwest Forestry University, 650224 Kunming, China
| | - Antonio Pizzi
- LERMAB, University of Lorraine, 88000 Epinal, France
| | - Xuedong Xi
- Yunnan Key Laboratory of Wood Adhesives and Glue Products, College of Material science and Engineering, Southwest Forestry University, 650224 Kunming, China; Key Laboratory of Plant Fiber Functional Materials, National Forestry and Grassland Administration, Fujian Agriculture and Forestry University, 350108 Fuzhou, China.
| |
Collapse
|
4
|
Hebda E, Ozimek J, Szołdrowska K, Pielichowski K. Synthesis of Bis(cyclic carbonates) from Epoxy Resin under Microwave Irradiation: The Structural Analysis and Evaluation of Thermal Properties. Molecules 2024; 29:250. [PMID: 38202833 PMCID: PMC10781095 DOI: 10.3390/molecules29010250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
This article describes the use of microwave irradiation in the synthesis of bis(cyclo carbonate) compounds (BCCs) in bulk (without solvent) from carbon dioxide capture using an epoxidized compound-a commercial epoxy resin-and compares this process to the conventional method. CO2 cycloaddition to epoxides is an ecological and efficient method for the formation of bis(cyclic carbonates). Moreover, the introduction of gas into the reaction mixture was carried out at atmospheric pressure with a controlled flow rate, which is advantageous from an economic point of view. Progressive structural changes and the presence of characteristic chemical groups were monitored using attenuated total reflectance infrared spectroscopy with Fourier transform. The obtained crude products were purified to obtain three fractions, which were subjected to detailed structural analysis using FT-IR and 13CNMR. The formation of the main product with two cyclic carbonates was confirmed. The presence of monomers, dimers and trimers in individual fractions as well as their thermal stability were determined, and the molecular masses in individual fractions were determined using gel permeation chromatography (GPC).
Collapse
Affiliation(s)
- Edyta Hebda
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland; (J.O.); (K.S.)
| | | | | | - Krzysztof Pielichowski
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland; (J.O.); (K.S.)
| |
Collapse
|
5
|
Catalá J, Guerra I, García-Vargas JM, Ramos MJ, García MT, Rodríguez JF. Tailor-Made Bio-Based Non-Isocyanate Polyurethanes (NIPUs). Polymers (Basel) 2023; 15:polym15061589. [PMID: 36987369 PMCID: PMC10051735 DOI: 10.3390/polym15061589] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Non-isocyanate polyurethanes (NIPUs) based on biobased polyamines and polycarbonates are a sustainable alternative to conventional polyurethanes (PU). This article discloses a novel method to control the crosslinking density of fully biobased isocyanate-free polyurethanes, synthesized from triglycerides carbonated previously in scCO2 and different diamines, such as ethylenediamine (EDA), hexamethylenediamine (HMDA) and PriamineTM-1075 (derived from a dimerized fatty acid). As capping substances, water or bioalcohols are used in such a way that the crosslinking density can be adjusted to suit the requirements of the intended application. An optimization of the NIPU synthesis procedure is firstly carried out, establishing the polymerization kinetics and proposing optimal conditions set for the synthesis of the NIPUs. Then, the influence of the partial blocking of the active polymerization sites of the carbonated soybean oil (CSBO), using monofunctional amines, on the physical properties of the NIPUS is explored. Finally, the synthesis of fully biobased NIPUs with a targeted crosslinking density is achieved using hybrid NIPUs, employing partially carbonated oil and H2O or ethanol as blockers to achieve the desired physical properties in a very precise manner.
Collapse
Affiliation(s)
- Juan Catalá
- Department of Chemical Engineering, Institute of Chemical and Environmental Technology, University of Castilla-La Mancha, Avda. Camilo José Cela 12, 13071 Ciudad Real, Spain
| | - Irene Guerra
- Department of Chemical Engineering, Institute of Chemical and Environmental Technology, University of Castilla-La Mancha, Avda. Camilo José Cela 12, 13071 Ciudad Real, Spain
| | - Jesús Manuel García-Vargas
- Department of Chemical Engineering, Institute of Chemical and Environmental Technology, University of Castilla-La Mancha, Avda. Camilo José Cela 12, 13071 Ciudad Real, Spain
| | - María Jesús Ramos
- Department of Chemical Engineering, Institute of Chemical and Environmental Technology, University of Castilla-La Mancha, Avda. Camilo José Cela 12, 13071 Ciudad Real, Spain
| | - María Teresa García
- Department of Chemical Engineering, Institute of Chemical and Environmental Technology, University of Castilla-La Mancha, Avda. Camilo José Cela 12, 13071 Ciudad Real, Spain
| | - Juan Francisco Rodríguez
- Department of Chemical Engineering, Institute of Chemical and Environmental Technology, University of Castilla-La Mancha, Avda. Camilo José Cela 12, 13071 Ciudad Real, Spain
| |
Collapse
|
6
|
de Zwart FJ, Laan PCM, van Leeuwen NS, Bobylev EO, Amstalden van Hove ER, Mathew S, Yan N, Flapper J, van den Berg KJ, Reek JNH, de Bruin B. Isocyanate-Free Polyurea Synthesis via Ru-Catalyzed Carbene Insertion into the N–H Bonds of Urea. Macromolecules 2022; 55:9690-9696. [DOI: 10.1021/acs.macromol.2c01457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/04/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Felix J. de Zwart
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Petrus C. M. Laan
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Nicole S. van Leeuwen
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Eduard O. Bobylev
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Erika R. Amstalden van Hove
- Amsterdam Institute for Life and Environment, Environmental and Health, Free University of Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Simon Mathew
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Ning Yan
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jitte Flapper
- Akzo Nobel Decorative Coatings B.V., Rijksstraatweg 31, 2171 AJ Sassenheim, The Netherlands
| | | | - Joost N. H. Reek
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
7
|
Recent Advances in Fabrication of Non-Isocyanate Polyurethane-Based Composite Materials. MATERIALS 2021; 14:ma14133497. [PMID: 34201649 PMCID: PMC8269506 DOI: 10.3390/ma14133497] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/11/2021] [Accepted: 06/19/2021] [Indexed: 11/22/2022]
Abstract
Polyurethanes (PUs) are a significant group of polymeric materials that, due to their outstanding mechanical, chemical, and physical properties, are used in a wide range of applications. Conventionally, PUs are obtained in polyaddition reactions between diisocyanates and polyols. Due to the toxicity of isocyanate raw materials and their synthesis method utilizing phosgene, new cleaner synthetic routes for polyurethanes without using isocyanates have attracted increasing attention in recent years. Among different attempts to replace the conventional process, polyaddition of cyclic carbonates (CCs) and polyfunctional amines seems to be the most promising way to obtain non-isocyanate polyurethanes (NIPUs) or, more precisely, polyhydroxyurethanes (PHUs), while primary and secondary –OH groups are being formed alongside urethane linkages. Such an approach eliminates hazardous chemical compounds from the synthesis and leads to the fabrication of polymeric materials with unique and tunable properties. The main advantages include better chemical, mechanical, and thermal resistance, and the process itself is invulnerable to moisture, which is an essential technological feature. NIPUs can be modified via copolymerization or used as matrices to fabricate polymer composites with different additives, similar to their conventional counterparts. Hence, non-isocyanate polyurethanes are a new class of environmentally friendly polymeric materials. Many papers on the matter above have been published, including both original research and extensive reviews. However, they do not provide collected information on NIPU composites fabrication and processing. Hence, this review describes the latest progress in non-isocyanate polyurethane synthesis, modification, and finally processing. While focusing primarily on the carbonate/amine route, methods of obtaining NIPU are described, and their properties are presented. Ways of incorporating various compounds into NIPU matrices are characterized by the role of PHU materials in copolymeric materials or as an additive. Finally, diverse processing methods of non-isocyanate polyurethanes are presented, including electrospinning or 3D printing.
Collapse
|
8
|
Błażek K, Beneš H, Walterová Z, Abbrent S, Eceiza A, Calvo-Correas T, Datta J. Synthesis and structural characterization of bio-based bis(cyclic carbonate)s for the preparation of non-isocyanate polyurethanes. Polym Chem 2021. [DOI: 10.1039/d0py01576h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Full chemical structure characterization of cyclic carbonates from diepoxides synthesized using sustainable bio-based polyols with different molecular weights and carbon dioxide.
Collapse
Affiliation(s)
- Kamila Błażek
- Gdansk University of Technology
- Faculty of Chemistry
- Department of Polymers Technology
- 80-233 Gdansk
- Poland
| | - Hynek Beneš
- Institute of Macromolecular Chemistry
- CAS
- Praque 162 06
- Czech Republic
| | - Zuzana Walterová
- Institute of Macromolecular Chemistry
- CAS
- Praque 162 06
- Czech Republic
| | - Sabina Abbrent
- Institute of Macromolecular Chemistry
- CAS
- Praque 162 06
- Czech Republic
| | - Arantxa Eceiza
- Materials+Technologies’ Research Group (GMT)
- Department of Chemical and Environmental Engineering
- Polytechnic School
- University of the Basque Country
- Donostia-San Sebastian 20018
| | - Tamara Calvo-Correas
- Materials+Technologies’ Research Group (GMT)
- Department of Chemical and Environmental Engineering
- Polytechnic School
- University of the Basque Country
- Donostia-San Sebastian 20018
| | - Janusz Datta
- Gdansk University of Technology
- Faculty of Chemistry
- Department of Polymers Technology
- 80-233 Gdansk
- Poland
| |
Collapse
|
9
|
Affiliation(s)
- Robert H Lambeth
- US Army CCDC Army Research Laboratory Aberdeen Proving Grounds MD USA
| |
Collapse
|
10
|
|
11
|
Structural effects of dimensional nano-fillers on the properties of Sapium sebiferum oil-based polyurethane matrix: Experiments and molecular dynamics simulation. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Chen X, Li J, Xi X, Pizzi A, Zhou X, Fredon E, Du G, Gerardin C. Condensed tannin-glucose-based NIPU bio-foams of improved fire retardancy. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109121] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Tondi G, Schnabel T. Bio-Based Polymers for Engineered Green Materials. Polymers (Basel) 2020; 12:polym12040775. [PMID: 32244677 PMCID: PMC7240678 DOI: 10.3390/polym12040775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Gianluca Tondi
- Department of Land, Environment, Agriculture and Forestry, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
- Correspondence: ; Tel.: +39-043-8272776
| | - Thomas Schnabel
- Forest Products Technology & Timber Constructions Department, Salzburg University of Applied Sciences, Marktstrasse 136a, 5431 Kuchl, Austria;
| |
Collapse
|
14
|
He X, Xu X, Bo G, Yan Y. Studies on the effects of different multiwalled carbon nanotube functionalization techniques on the properties of bio-based hybrid non-isocyanate polyurethane. RSC Adv 2020; 10:2180-2190. [PMID: 35494582 PMCID: PMC9048836 DOI: 10.1039/c9ra08695a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/20/2019] [Indexed: 12/25/2022] Open
Abstract
A novel synthesis method for multiwalled carbon nanotube (MWCNT) modified bio-based hybrid non-isocyanate polyurethane (HNIPU) is proposed in this paper. Modification methods for several properties of MWCNTs-HNIPU were systematically studied. MWCNTs were grafted with carboxyl and amino groups using a condensation reflux device. Au nanoparticles were synthesized on the surface of the MWCNTs via a reduction reaction and Fe3O4 particles were decorated on the MWCNTs using a hydrothermal method. FTIR, TEM, XRD, XPS and Raman techniques were employed to confirm the compositions and structures. Then, five different types of MWCNT were utilized for blending with non-isocyanate polyurethane (NIPU) via solution methods. After curing with epoxy resin E-51, the cross-linked composites were applied as coatings. A series of tests demonstrated that HNIPU composited with MWCNTs-COOH-Au had the highest T g value, the best thermal, thermodynamic and mechanical properties, and excellent pencil hardness, adhesion, flexibility and impact strength, while HNIPU composited with MWCNTs-COOH-NH2 had the best water absorption and swelling properties. These results showed that the properties of hybrid non-isocyanate polyurethane can be adjusted via different MWCNT surface modification approaches or the addition of nanoparticles, so this kind of polyurethane has a vast development space for coating applications.
Collapse
Affiliation(s)
- Xin He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86-27-87792213 +86-27-87792213
| | - Xiaoling Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86-27-87792213 +86-27-87792213
| | - Guangxu Bo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86-27-87792213 +86-27-87792213
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86-27-87792213 +86-27-87792213
| |
Collapse
|
15
|
Xi X, Pizzi A, Gerardin C, Lei H, Chen X, Amirou S. Preparation and Evaluation of Glucose Based Non-Isocyanate Polyurethane Self-Blowing Rigid Foams. Polymers (Basel) 2019; 11:polym11111802. [PMID: 31684084 PMCID: PMC6918301 DOI: 10.3390/polym11111802] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 01/08/2023] Open
Abstract
A partially biobased self-blowing and self-hardening polyurethane foam from glucose-based non-isocyanate polyurethanes (g-NIPU) was prepared by reaction of glucose with dimethyl carbonate and hexamethylene diamine. However, these foam types generally require a high foaming temperature. In this paper, a self-blowing foam based on g-NIPU was prepared at room temperature by using maleic acid as an initiator and glutaraldehyde as a crosslinker. Water absorption, compression resistance, and fire resistance were tested. Scanning electron microscopy (SEM) was used to observe the foam cells structure. Middle infrared (ATR FT-MIR) and Matrix Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF) mass spectrometry were used to help to analyze the reactions during the foaming process. The results obtained showed that self- blowing rigid foams have good compression, this being directly proportional to the foam density. Increasing the amount of glutaraldehyde or reducing maleic acid thickens the cell walls and increases the density of the foams. MALDI-TOF analysis showed that g-NIPU reacts with both maleic acid and glutaraldehyde. The foams presented poor fire resistance indicating that, as for isocyanate based polyurethane foams, addition of a fire retardant would be necessary.
Collapse
Affiliation(s)
- Xuedong Xi
- LERMAB, University of Lorraine, 27 rue Philippe Seguin, 88000 Epinal, France.
- Yunnan Key Laboratory of Wood Adhesives and Glue Products, Southwest Forestry University, Kunming 650224, China.
| | - Antonio Pizzi
- LERMAB, University of Lorraine, 27 rue Philippe Seguin, 88000 Epinal, France.
- Department of Physics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Christine Gerardin
- LERMAB, University of Lorraine, Boulevard des Aiguillettes, 54000 Nancy, France.
| | - Hong Lei
- Yunnan Key Laboratory of Wood Adhesives and Glue Products, Southwest Forestry University, Kunming 650224, China.
| | - Xinyi Chen
- LERMAB, University of Lorraine, 27 rue Philippe Seguin, 88000 Epinal, France.
- Yunnan Key Laboratory of Wood Adhesives and Glue Products, Southwest Forestry University, Kunming 650224, China.
| | - Siham Amirou
- LERMAB, University of Lorraine, 27 rue Philippe Seguin, 88000 Epinal, France.
| |
Collapse
|