1
|
Jabeen N, Shahzady TG, Mohyuddin A, Amjad M, Batool F, Ulfat W, Hussain S, Goh HH, Kurniawan TA. Applicability of Ni@ZnO polymer nanocomposite as an adsorbent for removal of methylene blue dye from synthetic wastewater: Batch studies and multilinear regression (MLR) modeling. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:214. [PMID: 39888533 DOI: 10.1007/s10661-025-13614-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/03/2025] [Indexed: 02/01/2025]
Abstract
Synthetic organic dye such as methylene blue (MB) is non-biodegradable and highly toxic, released from textile wastewater. This work investigates the applicability of Ni@ZnO polymer nanocomposite for MB removal from the wastewater. To understand their differences before and after MB adsorption, composites' surface morphology was characterized by various techniques including scanning electron microscope (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), Fourier transformation infrared (FT-IR) and UV-Vis spectrophotometer. The adsorption mechanism of target pollutants by the composites was also studied based on isotherm and kinetic models. The correlation between the optimized conditions and the percentage removal was further studied by applying multi linear regression (MLR) model. At the same concentration of 100 mg/L, it was found that under optimized conditions of 1 g/L of adsorbent, pH 7.5, and 190 min of reaction time, about 94% and 98% of MB removal were attained, respectively. In spite of the promising results, treated effluents were still unable to meet the required discharge standards of less than 1 mg/L mandated by local legislation. Furthermore, the MB adsorption by the composite was based on attractive electrostatic interactions. Overall, this study not only provides insights into the adsorption efficiency, but also evaluates the recyclability and stability of the adsorbent, addressing key challenges in practical wastewater treatment. By integrating its novel aspects, this work contributes to a more nuanced understanding of the Ni@ZnO composite's potential in environmental applications, distinguishing this work from existing literature on MB adsorption.
Collapse
Affiliation(s)
- Nazish Jabeen
- Department of Chemistry, Lahore Garrison University, Lahore, 54470, Pakistan
| | | | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan.
| | - Muhammad Amjad
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Fatima Batool
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Wajad Ulfat
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Shabbir Hussain
- Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, 64200, Pakistan
| | - Hui Hwang Goh
- School of Electrical Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | | |
Collapse
|
2
|
Ma Y, Hu Y, Yang X, Shang Q, Huang Q, Hu L, Jia P, Zhou Y. Fabrication, functionalization and applications of cellulose based aerogels: A review. Int J Biol Macromol 2025; 284:138114. [PMID: 39608549 DOI: 10.1016/j.ijbiomac.2024.138114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Cellulose based aerogels have recently gained a lot of interest in the past few years because of their sustainability, biocompatibility, biodegradability, and biosafety. Cellulose is an excellent raw material for the preparation of aerogels because of its advantages of strong renewability, low cost, good biocompatibility and easy degradation. The nanoscale cellulose can be prepared by physical, chemical and biological enzyme methods for the preparation of nanocellulose based aerogels (NCBAs). As a third-generation aerogels, NCBAs have the advantages of high porosity, large specific surface area, low density, low dielectric constant and high adsorption, which have many potential applications in adsorption, insulation, energy storage, electromagnetics, and biomedical fields. Here, the recent reported preparation technology of nano-cellulose and NCBAs were reviewed, the preparation methods of cellulose nanocrystals, cellulose nanofibers, and bacterial cellulose were highlighted. Furthermore, the research progresses of manufacturing and applications of functional cellulose hydrogels in the field of dye adsorption, oil adsorption, heavy metal ion adsorption, carbon dioxide adsorption, thermal insulation applications, energy storage, electromagnetic interference application, and biomedicine application were reported comprehensively. Further insights into the future research direction of NCBAs were provided.
Collapse
Affiliation(s)
- Yufeng Ma
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Yun Hu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China
| | - Xiao Yang
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China
| | - Qianqian Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China.
| | - Qin Huang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products/Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Lihong Hu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China
| | - Puyou Jia
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China.
| | - Yonghong Zhou
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China
| |
Collapse
|
3
|
Kumar A, Indhur R, Sheik AG, Krishna SBN, Kumari S, Bux F. A review on conventional and novel adsorbents to boost the sorption capacity of heavy metals: current status, challenges and future outlook. ENVIRONMENTAL TECHNOLOGY REVIEWS 2024; 13:521-543. [DOI: 10.1080/21622515.2024.2377801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/22/2024] [Indexed: 01/12/2025]
Affiliation(s)
- Arvind Kumar
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Riona Indhur
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Abdul Gaffar Sheik
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Suresh Babu Naidu Krishna
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| |
Collapse
|
4
|
Huang Z, Wang M, Chai L, Chen H, Chen D, Li Y, Liu H, Wu Y, Yang X, He L, Xue L, Lei Y, Guo L. Glucose-responsive, self-healing, wet adhesive and multi-biofunctional hydrogels for diabetic wound healing. Mater Today Bio 2024; 27:101159. [PMID: 39149409 PMCID: PMC11325802 DOI: 10.1016/j.mtbio.2024.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Diabetic wounds are serious clinical complications which manifest wet condition due to the mass exudate, along with disturbed regulation of inflammation, severe oxidative stress and repetitive bacterial infection. Existing treatments for diabetic wounds remain unsatisfactory due to the lack of ideal dressings that encompass mechanical performance, adherence to moist tissue surfaces, quick repair, and diverse therapeutic benefits. Herein, we fabricated a wet adhesive, self-healing, glucose-responsive drug releasing hydrogel with efficient antimicrobial and pro-healing properties for diabetic wound treatment. PAE hydrogel was constructed with poly(acrylic acid-co-acrylamide) (AA-Am) integrated with a dynamic E-F crosslinker, which consisted of epigallocatechin gallate (EGCG) and 4-(2-acrylamidoethylcarbamoyl)-3-fluorophenylboronic acid (AFPBA). Due to the dynamic crosslinking nature of boronate esters, abundant catechol groups and hydrogen bonding, PAE hydrogel demonstrated excellent mechanical properties with about 1000 % elongation, robust adhesion to moist tissues, fast self-healing, and absorption of biofluids of 10 times of its own weight. Importantly, PAE hydrogel exhibited sustained and glucose-responsive release of EGCG. Together, the bioactive PAE hydrogel had effective antibacterial, antioxidative, and anti-inflammatory properties in vitro, and accelerated diabetic wound healing in rats via reducing tissue-inflammatory response, enhancing angiogenesis, and reprogramming of macrophages. Overall, this versatile hydrogel provides a straightforward solution for the treatment of diabetic wound, and shows potential for other wound-related application scenarios.
Collapse
Affiliation(s)
- Zhuo Huang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Min Wang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Langjie Chai
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hang Chen
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Danyang Chen
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yulin Li
- The Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hongtao Liu
- The Institute of Technological Science & School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - You Wu
- The Institute of Technological Science & School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Xuxia Yang
- The Institute of Technological Science & School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Lu He
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Longjian Xue
- The Institute of Technological Science & School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Yifeng Lei
- The Institute of Technological Science & School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Liang Guo
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
5
|
Grachev V, Lombardo S, Bartic C, Thielemans W. Thermodynamics of interactions between cellulose nanocrystals and monovalent counterions. Carbohydr Polym 2024; 333:121949. [PMID: 38494215 DOI: 10.1016/j.carbpol.2024.121949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/16/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
Alkali and quaternary ammonium cations interact with negatively charged cellulose nanocrystals (CNCs) bearing sulfated or carboxylated functional groups. As these are some of the most commonly occurring cations CNC encounter in applications, the thermodynamic parameters of these CNC-counterion interactions were evaluated with isothermal titration calorimetry (ITC). Whereas the adsorption of monovalent counterions onto CNCs was thermodynamically favourable at all evaluated conditions as indicated by a negative Gibbs free energy, the enthalpic and entropic contributions to the CNC-ion interactions were found to be strongly dependent on the hydration characteristics of the counterion and could be correlated with the potential barrier to water exchange of the respective ions. The adsorption of chaotropic cations onto the surface was exothermic, while the interactions with kosmotropic cations were endothermic and completely entropy-driven. The interactions of CNCs with more bulky quaternary ammonium counterions were more complex, and the mechanism of interaction shifted from electrostatic interactions with surface charged groups of CNCs towards adsorption of alkyl chains onto the CNC hydrophobic planes when the alkyl chain length increased.
Collapse
Affiliation(s)
- Vladimir Grachev
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Salvatore Lombardo
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Carmen Bartic
- Laboratory for Soft Matter Physics and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D box 2416, 3001 Leuven, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium.
| |
Collapse
|
6
|
Inphonlek S, Ruksakulpiwat C, Ruksakulpiwat Y. The Effect of Silver Nanoparticles/Titanium Dioxide in Poly(acrylic acid- co-acrylamide)-Modified, Deproteinized, Natural Rubber Composites on Dye Removal. Polymers (Basel) 2023; 16:92. [PMID: 38201757 PMCID: PMC10780644 DOI: 10.3390/polym16010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
This work aims to enhance the dye-removal performance of prepared poly(acrylic acid-co-acrylamide)-modified, deproteinized, natural rubber ((PAA-co-PAM)-DPNR) through incorporation with silver nanoparticles/titanium dioxide. The (PAA-co-PAM)-DPNR was prepared by emulsion-graft copolymerization with a grafting efficiency of 10.20 ± 2.33 to 54.26 ± 1.55%. The composites based on (PAA-co-PAM)-DPNR comprising silver nanoparticles and titanium dioxide ((PAA-co-PAM)-DPNR/Ag-TiO2) were then prepared by latex compounding using the fixed concentration of AgNO3 (0.5 phr) and varying concentrations of TiO2 at 1.0, 2.5, and 5.0 phr. The formation of silver nanoparticles was obtained by heat and applied pressure. The composites had a porous morphology as they allowed water to diffuse in their structure, allowing the high specific area to interact with dye molecules. The incorporation of silver nanoparticles/titanium dioxide improved the compressive modulus from 1.015 ± 0.062 to 2.283 ± 0.043 KPa. The (PAA-co-PAM)-DPNR/Ag-TiO2 composite with 5.0 phr of TiO2 had a maximum adsorption capacity of 206.42 mg/g, which increased by 2.02-fold compared to (PAA-co-PAM)-DPNR. The behavior of dye removal was assessed with the pseudo-second-order kinetic model and Langmuir isotherm adsorption model. These composites can maintain their removal efficiency above 90% for up to five cycles. Thus, these composites could have the potential for dye-removal applications.
Collapse
Affiliation(s)
- Supharat Inphonlek
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chaiwat Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Yupaporn Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
7
|
Li F, Xie Z, Wen J, Tang T, Jiang L, Hu G, Li M. Synthesis of Cellulose-Poly(Acrylic Acid) Using Sugarcane Bagasse Extracted Cellulose Fibres for the Removal of Heavy Metal Ions. Int J Mol Sci 2023; 24:ijms24108922. [PMID: 37240268 DOI: 10.3390/ijms24108922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
In this study, sugarcane bagasse (SCB) was treated with sodium hydroxide and bleached to separate the non-cellulose components to obtain cellulose (CE) fibres. Cross-linked cellulose-poly(sodium acrylic acid) hydrogel (CE-PAANa) was successfully synthesised via simple free-radical graft-polymerisation to remove heavy metal ions. The structure and morphology of the hydrogel display an open interconnected porous structure on the surface of the hydrogel. Various factors influencing batch adsorption capacity, including pH, contact time, and solution concentration, were investigated. The results showed that the adsorption kinetics were in good agreement with the pseudo-second-order kinetic model and that the adsorption isotherms followed the Langmuir model. The maximum adsorption capacities calculated by the Langmuir model are 106.3, 333.3, and 163.9 mg/g for Cu(II), Pb(II), and Cd(II), respectively. Furthermore, X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectrometry (EDS) results demonstrated that cationic exchange and electrostatic interaction were the main heavy metal ions adsorption mechanisms. These results demonstrate that CE-PAANa graft copolymer sorbents from cellulose-rich SCB can potentially be used for the removal of heavy metal ions.
Collapse
Affiliation(s)
- Fuchao Li
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Zhemin Xie
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Jianfeng Wen
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Tao Tang
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Li Jiang
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Guanghui Hu
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Ming Li
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
8
|
Amjad M, Mohyuddin A, Nadeem S, Ulfat W, Saeed S, Asghar N, Ahmed S. Development of biodegradable vinyl acetate and acrylic acid grafted gelatin copolymer for dye adsorption. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
9
|
Kurniawan TW, Sulistyarti H, Rumhayati B, Sabarudin A. Cellulose Nanocrystals (CNCs) and Cellulose Nanofibers (CNFs) as Adsorbents of Heavy Metal Ions. J CHEM-NY 2023. [DOI: 10.1155/2023/5037027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
The isolation of nanocellulose has been extensively investigated due to the growing demand for sustainable green materials. Cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs), which have the same chemical composition but have different morphology, particle size, crystallinity, and other properties depending on the precursor and the synthesis method used. In comparison, CNC particles have a short rod-like shape and have smaller particle dimensions when compared to CNF particles in the form of fibers. CNC synthesis was carried out chemically (hydrolysis method), and CNF synthesis was carried out mechanically (homogenization, ball milling, and grinding), and both can be modified because they have a large surface area and are rich in hydroxyl groups. Modifications were made to increase the adsorption ability of heavy metal ions. The Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric (TG), and dynamic light scattering (DLS) can reveal the characteristics and morphology of CNCs and CNFs. The success and effectiveness of the heavy metal adsorption process are influenced by a few factors. These factors include adsorbent chemical structure changes, adsorbent surface area, the availability of active sites on the adsorbent’s surface, adsorption constants, heavy metal ionic size differences, pH, temperature, adsorbent dosage, and contact time during the adsorption process. In this review, we will discuss the characteristics of CNCs and CNFs synthesized from various precursors and methods, the modification methods, and the application of CNCs and CNFs as heavy metal ion adsorbents, which includes suitable isotherm and kinetics models and the effect of pH on the selectivity of various types of heavy metal ions.
Collapse
|
10
|
Kumar A, Kumar V. A Comprehensive Review on Application of Lignocellulose Derived Nanomaterial in Heavy Metals Removal from Wastewater. CHEMISTRY AFRICA 2023; 6:39-78. [DOI: 10.1007/s42250-022-00367-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/18/2022] [Indexed: 01/12/2025]
|
11
|
Research progress on chemical modification of waste biomass cellulose to prepare heavy metal adsorbents. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
James A, Yadav D. Bioaerogels, the emerging technology for wastewater treatment: A comprehensive review on synthesis, properties and applications. ENVIRONMENTAL RESEARCH 2022; 212:113222. [PMID: 35398081 DOI: 10.1016/j.envres.2022.113222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Over the past decade use of aerogels has received much attention as an emerging technology for wastewater treatment. However, production of aerogels is not environment-friendly. Owing to its excellent properties such as porosity, three-dimensional structure, being amenable to chemical modifications, it is imperative to devise strategies for their improved production and use. Bioaerogels are non-toxic and most of their precursor compounds are biomass-derived. This review aims to present a comprehensive report on survey of existing literature published on the use of bioaerogels for removal of all major categories of water contaminants, namely, heavy metals, industrial dyes, oil, organic compounds and pharmaceuticals. It also gives critical analysis of the lacunae in the existing knowledge such as lack of studies on domestic sewage, emerging pollutants, toxicity of raw materials and adequate disposal of used adsorbents. Proposals of overcoming the limitations in the applicability of bioaerogels, like combining constructed wetlands with use of bioaerogels, among others have been discussed. In this review, emphasis has been given on production of bioaerogels, with an aim to underscore the potential of valorization of biomass waste to develop novel materials for wastewater treatment in an effort towards creating a circular and green economy.
Collapse
Affiliation(s)
- Anina James
- Department of Zoology, Deen Dayal Upadhyaya College (University of Delhi), Dwarka Sector 3, Delhi, 110078, India.
| | - Deepika Yadav
- Department of Zoology, Shivaji College, University of Delhi, Delhi, India.
| |
Collapse
|
13
|
Su Y, Wenzel M, Paasch S, Seifert M, Doert T, Brunner E, Weigand JJ. One-pot synthesis of brewer's spent grain-supported superabsorbent polymer for highly efficient uranium adsorption from wastewater. ENVIRONMENTAL RESEARCH 2022; 212:113333. [PMID: 35483410 DOI: 10.1016/j.envres.2022.113333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
High-efficient and fast adsorption of uranium is important to reduce the hazards caused by the uranium contamination of water environment due to the increased human activities. Herein, brewer's spent grain (BSG)-supported superabsorbent polymers (SAP) with different cross-linking densities are prepared as cheap and eco-friendly adsorbents for the first time via one-pot swelling and graft polymerization. A 7 wt% NaOH solution is used to swell BSG before grafting and subsequently neutralize the acrylic acid to control the reaction rate without producing alkaline wastewater. Compared with the traditional methods, swelling improves the grafting density and the utilization of raw materials due to the increased disorder degree of the BSG fibers. This results in the grafting of abundant carboxyl and amide groups onto the BSG backbone, forming a strongly hydrophilic polymer network of the BSG-SAP. Compared with the reference polymers without BSG, BSG-SAP presents higher adsorption capacity and enhanced reusability. The highly cross-linked BSG-SAP (BSG-SAP-H) shows an outstanding adsorption capacity of U(VI) (1465 mg/g at pH0 = 4.6), a fast adsorption rate (81% of equilibrium adsorption capacity in 15 min), and a high selectivity in the presence of competing ions. Adsorption mechanism studies reveal the involvement of amide groups, a bidentate binding structure between UO22+ and the carboxyl groups, and a cation exchange between Na+ and UO22+. More importantly, the adsorption capacity of BSG-SAP-H reaches 254.4 mg/g in the fixed-bed column experiment at a low initial concentration (c0(U) = 30 mg/L) and keeps 80% of the adsorption capacity after four cycles, indicating a great potential for uranium removal from wastewater. This work shows a suitable approach to explore the untreated biomass to prepare SAP with enhanced adsorption performance via a general and low-cost strategy.
Collapse
Affiliation(s)
- Yi Su
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Marco Wenzel
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Silvia Paasch
- Chair of Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Markus Seifert
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Thomas Doert
- Chair of Inorganic Chemistry II, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Eike Brunner
- Chair of Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Jan J Weigand
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany.
| |
Collapse
|
14
|
A Review on Bamboo as an Adsorbent for Removal of Pollutants for Wastewater Treatment. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1155/2022/7218759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Water and wastewater treatment are very important for obtaining clean and sanitary water as well as protecting the environment from toxic pollutants. Not only enriched with cellulose and carbon but the abundant resources of bamboo also make it suitable to be utilized as an adsorbent. With the right processing technologies and improvements, the potential of bamboo is unlimited. This study review provides knowledge on the use of bamboo-based adsorbents for the removal of contaminants and pollutants in wastewater in the form of activated carbon, biochar, and aerogel. This review highlighted bamboo utilization and its relevance as an adsorbent for wastewater treatment. The technologies for the processing and improvement of bamboo as well as the performance of the bamboo-based adsorbents are also discussed in this study. The adsorption capacity of bamboo has shown improvement with modification and good adsorption capacity achieved with some of the adsorbent being able to be recycled and reused.
Collapse
|
15
|
Nada AA, Eckstein Andicsová A, Mosnáček J. Irreversible and Self-Healing Electrically Conductive Hydrogels Made of Bio-Based Polymers. Int J Mol Sci 2022; 23:842. [PMID: 35055029 PMCID: PMC8776002 DOI: 10.3390/ijms23020842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Electrically conductive materials that are fabricated based on natural polymers have seen significant interest in numerous applications, especially when advanced properties such as self-healing are introduced. In this article review, the hydrogels that are based on natural polymers containing electrically conductive medium were covered, while both irreversible and reversible cross-links are presented. Among the conductive media, a special focus was put on conductive polymers, such as polyaniline, polypyrrole, polyacetylene, and polythiophenes, which can be potentially synthesized from renewable resources. Preparation methods of the conductive irreversible hydrogels that are based on these conductive polymers were reported observing their electrical conductivity values by Siemens per centimeter (S/cm). Additionally, the self-healing systems that were already applied or applicable in electrically conductive hydrogels that are based on natural polymers were presented and classified based on non-covalent or covalent cross-links. The real-time healing, mechanical stability, and electrically conductive values were highlighted.
Collapse
Affiliation(s)
- Ahmed Ali Nada
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Dubravska Cesta 9, 845 11 Bratislava, Slovakia;
- Pretreatment and Finishing of Cellulose Based Textiles Department, National Research Centre, Giza 12622, Egypt
| | | | - Jaroslav Mosnáček
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Dubravska Cesta 9, 845 11 Bratislava, Slovakia;
- Polymer Institute, Slovak Academy of Sciences, Dubravska Cesta 9, 845 41 Bratislava, Slovakia;
| |
Collapse
|
16
|
Wang J, Zhang D, Chu F. Wood-Derived Functional Polymeric Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2001135. [PMID: 32578276 DOI: 10.1002/adma.202001135] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 05/12/2023]
Abstract
In recent years, tremendous efforts have been dedicated to developing wood-derived functional polymeric materials due to their distinctive properties, including environmental friendliness, renewability, and biodegradability. Thus, the uniqueness of the main components in wood (cellulose and lignin) has attracted enormous interest for both fundamental research and practical applications. Herein, the emerging field of wood-derived functional polymeric materials fabricated by means of macromolecular engineering is reviewed, covering the basic structures and properties of the main components, the design principle to utilize these main components, and the resulting wood-derived functional polymeric materials in terms of elastomers, hydrogels, aerogels, and nanoparticles. In detail, the natural features of wood components and their significant roles in the fabrication of materials are emphasized. Furthermore, the utilization of controlled/living polymerization, click chemistry, dynamic bonds chemistry, etc., for the modification is specifically discussed from the perspective of molecular design, together with their sequential assembly into different morphologies. The functionalities of wood-derived polymeric materials are mainly focused on self-healing and shape-memory abilities, adsorption, conduction, etc. Finally, the main challenges of wood-derived functional polymeric materials fabricated by macromolecular engineering are presented, as well as the potential solutions or directions to develop green and scalable wood-derived functional polymeric materials.
Collapse
Affiliation(s)
- Jifu Wang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab of Forest Chemical Engineering, SFA, Key Lab of Biomass Energy and Material, Jiangsu Province, No 16, Suojin Wucun, Nanjing, 210042, China
- Institute of Forest New Technology, CAF, No 1, Dongxiaofu Haidian, Beijing, 100091, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Daihui Zhang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab of Forest Chemical Engineering, SFA, Key Lab of Biomass Energy and Material, Jiangsu Province, No 16, Suojin Wucun, Nanjing, 210042, China
- Institute of Forest New Technology, CAF, No 1, Dongxiaofu Haidian, Beijing, 100091, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Fuxiang Chu
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab of Forest Chemical Engineering, SFA, Key Lab of Biomass Energy and Material, Jiangsu Province, No 16, Suojin Wucun, Nanjing, 210042, China
- Institute of Forest New Technology, CAF, No 1, Dongxiaofu Haidian, Beijing, 100091, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
17
|
Tarasova N, Zanin A, Krivoborodov E, Toropygin I, Pascal E, Mezhuev Y. The New Approach to the Preparation of Polyacrylamide-Based Hydrogels: Initiation of Polymerization of Acrylamide with 1,3-Dimethylimidazolium (Phosphonooxy-)Oligosulphanide under Drying Aqueous Solutions. Polymers (Basel) 2021; 13:1806. [PMID: 34070935 PMCID: PMC8198900 DOI: 10.3390/polym13111806] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 01/06/2023] Open
Abstract
The new initiator of the polymerization of acrylamide, leading to the formation of crosslinked polyacrylamide, was discovered. The structure of the synthesized polyacrylamide was characterized by XRD, 1Н NMR, and 13С NMR spectroscopy. It was shown that 1,3-dimethylimidazolium (phosphonooxy-)oligosulphanide is able to initiate radical polymerization under drying aqueous solutions of acrylamide, even at room temperature. According to XRF data, the synthesized polyacrylamide gel contains 0.28 wt% of sulphur. The formed polymer network has a low crosslinking density and a high equilibrium degree of swelling. The swelling rate of polyacrylamide gel in water corresponds to the first order kinetic equation with the rate constant 6.2 × 10-2 min-1. The initiator is promising for combining acrylamide polymerization with the processes of gel molding and drying.
Collapse
Affiliation(s)
- Natalia Tarasova
- Institute of Chemistry and Problems of Sustainable Development, Dmitry Mendeleev University of Chemical Technology of Russia, 12047 Moscow, Russia; (N.T.); (E.K.); (E.P.); (Y.M.)
- Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences, 119017 Moscow, Russia
| | - Alexey Zanin
- Institute of Chemistry and Problems of Sustainable Development, Dmitry Mendeleev University of Chemical Technology of Russia, 12047 Moscow, Russia; (N.T.); (E.K.); (E.P.); (Y.M.)
| | - Efrem Krivoborodov
- Institute of Chemistry and Problems of Sustainable Development, Dmitry Mendeleev University of Chemical Technology of Russia, 12047 Moscow, Russia; (N.T.); (E.K.); (E.P.); (Y.M.)
| | - Ilya Toropygin
- V.N. Orekhovich Research Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, 119121 Moscow, Russia;
| | - Ekaterina Pascal
- Institute of Chemistry and Problems of Sustainable Development, Dmitry Mendeleev University of Chemical Technology of Russia, 12047 Moscow, Russia; (N.T.); (E.K.); (E.P.); (Y.M.)
| | - Yaroslav Mezhuev
- Institute of Chemistry and Problems of Sustainable Development, Dmitry Mendeleev University of Chemical Technology of Russia, 12047 Moscow, Russia; (N.T.); (E.K.); (E.P.); (Y.M.)
| |
Collapse
|
18
|
Abstract
A critical review on the synthesis, characterization, and modeling of polymer grafting is presented. Although the motivation stemmed from grafting synthetic polymers onto lignocellulosic biopolymers, a comprehensive overview is also provided on the chemical grafting, characterization, and processing of grafted materials of different types, including synthetic backbones. Although polymer grafting has been studied for many decades—and so has the modeling of polymer branching and crosslinking for that matter, thereby reaching a good level of understanding in order to describe existing branching/crosslinking systems—polymer grafting has remained behind in modeling efforts. Areas of opportunity for further study are suggested within this review.
Collapse
|
19
|
Liu Z, Ran Y, Xi J, Wang J. Polymeric hybrid aerogels and their biomedical applications. SOFT MATTER 2020; 16:9160-9175. [PMID: 32851389 DOI: 10.1039/d0sm01261k] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aerogels are a class of porous materials that possess extremely high specific surface area, high pore volume, high porosity, and variable chemical structures. They have been widely applied in the fields of aerospace, chemical engineering, construction, electrotechnics, and biomedicine. In recent years a great boom in aerogels has been observed, where various new aerogels with novel physicochemical properties and functions have been synthesized. Nevertheless, native aerogels with a single component normally face severe problems such as low mechanical strength and lack of functions. One strategy to solve the problems is to construct hybrid aerogels. In this study, a comprehensive review on polymer based hybrid aerogels is presented, including polymer-polymer, polymer-carbon material, and polymer-inorganic hybrid aerogels, which will be introduced and discussed in view of their chemical structures and hybrid structures. Most importantly, polymeric hybrid aerogels are classified into three different composition levels, which are molecular-level, molecular-aggregate-level, and aggregate-level, due to the fact that hybrid aerogels with the same chemical structures but with different composition levels might show quite different functions or properties. The biomedical applications of these hybrid aerogels will also be reviewed and discussed, where the polymeric components in the hybrid aerogels provide the main contribution. This review would provide creative design principles for aerogels by considering both their chemical and physical structures.
Collapse
Affiliation(s)
- Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P. R. China.
| | - Yuanyuan Ran
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P. R. China.
| | - Jianing Xi
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P. R. China.
| | - Jin Wang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China. and Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| |
Collapse
|
20
|
Robust Silica-Cellulose Composite Aerogels with a Nanoscale Interpenetrating Network Structure Prepared Using a Streamlined Process. Polymers (Basel) 2020; 12:polym12040807. [PMID: 32260248 PMCID: PMC7240684 DOI: 10.3390/polym12040807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/05/2022] Open
Abstract
Silica aerogels can be strengthened by forming a nanoscale interpenetrating network (IPN) comprising a silica gel skeleton and a cellulose nanofiber network. Previous studies have demonstrated the effectiveness of this method for improving the mechanical properties and drying of aerogels. However, the preparation process is generally tedious and time-consuming. This study aims to streamline the preparation process of these composite aerogels. Silica alcosols were directly diffused into cellulose wet gels with loose, web-like microstructures, and an IPN structure was gradually formed by regulating the gelation rate. Supercritical CO2 drying followed to obtain composite aerogels. The mechanical properties were further enhanced by a simple secondary regulation process that increased the quantity of bacterial cellulose (BC) nanofibers per unit volume of the matrix. This led to the production of aerogels with excellent bendability and a high tensile strength. A maximum breaking stress and tensile modulus of 3.06 MPa and 46.07 MPa, respectively, were achieved. This method can be implemented to produce robust and bendable silica-based composite aerogels (CAs).
Collapse
|