1
|
Velázquez-Herrera FD, Zarazua-Aguilar Y, Garzón-Pérez AS, Álvarez-Gómez KM, Fetter G. Composites formed by layered double hydroxides with inorganic compounds: An overview of the synthesis methods and characteristics. MethodsX 2024; 13:102912. [PMID: 39280761 PMCID: PMC11402166 DOI: 10.1016/j.mex.2024.102912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
Nowadays, layered double hydroxides (LDH), sometimes referred as hydrotalcite-like compounds, have gained great attention since their composition and structure can be easily modified, so that they can be implemented in multiple fields. LDH-based composite materials based on LDH exhibit tremendously improved properties such as high specific surface area, which promotes the accessibility to a greater number of LDH active sites, considerably improving their catalytic, adsorbent and biological activities. Therefore, this review summarizes and discusses the synthesis methods of composites constituted by LDH with other inorganic compounds such as zeolites, cationic clays, hydroxyapatites, among many others, and describe the resulting characteristics of the resulting composites, emphasizing the morphology. Brief descriptions of their properties and applications are also included.
Collapse
Affiliation(s)
| | - Yohuali Zarazua-Aguilar
- Unidad Académica Profesional Acolman, Universidad Autónoma del Estado de México, Acolman, Edo Mex, Mexico
| | - Amanda S Garzón-Pérez
- Instituto de Metalurgia, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
| | - Karin Monserrat Álvarez-Gómez
- Instituto de Ciencias-Zeolitas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla, PUE, Mexico
| | - Geolar Fetter
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria, Puebla, PUE, Mexico
| |
Collapse
|
2
|
Tang T, Xu Z, Wang Y, Li X, Li L, Cheng H, Tian Y, Huang W, Feng J. Effective enrichment and separation of three flavonoids from Ohwia caudata (Thunberg) H. Ohashi using magnetic layered double hydroxide/ZIF-8 composites and pCEC. J Pharm Biomed Anal 2024; 245:116161. [PMID: 38714135 DOI: 10.1016/j.jpba.2024.116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/09/2024]
Abstract
In this study, Fe3O4@ZnCr-layered double hydroxide/zeolitic imidazolate frameworks-8 (MLDH/ZIF-8) magnetically functionalized composites were synthesized by co-precipitation and in situ growth based on the advantages of LDHs and ZIF-8 using Fe3O4 nanoparticles as a magnetic substrate to obtain adsorbents with excellent performance. Moreover, the composite was used for the efficient enrichment of flavonoids in Chinese herbal medicines. The internal structures and surface properties were characterized by SEM, Fourier transform infrared spectroscopy, X-ray diffraction and so on. MLDH/ZIF-8 exhibited a large specific surface area and good paramagnetic properties. The MLDH/ZIF-8 magnetic composite was used as a magnetic solid-phase extraction (MSPE) adsorbent, and a MLDH/ZIF-8 MSPE-pressurized capillary electrochromatography coupling method was developed for the separation and detection of flavonoids (luteolin, kaempferol and apigenin) in a sample of the Chinese herb Ohwia caudata (Thunberg) H. Ohashi. The relevant parameters affecting the extraction efficiency were optimized to determine the ideal conditions for MSPE. 5 mg of adsorbent in sample solution at pH 6, vortex extraction for 5 min, elution with 1.5 mL of ethyl acetate for 15 min. The method showed good linearity in the concentration range of 3-50 μg mL-1 with correlation coefficients of 0.9934-0.9981, and displayed a relatively LODs of 0.07-0.09 μg mL-1. The spiked recoveries of all analytes ranged from 84.5% to 122.0% with RSDs (n=3) between 4.5% and 7.7%. This method is straightforward and efficient, with promising potential in the separation and analysis of active ingredients in various Chinese herbal medicines.
Collapse
Affiliation(s)
- Tingfan Tang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, PR China; Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, Guangxi 530004, PR China
| | - Ziwei Xu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, PR China
| | - Ying Wang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, PR China
| | - Xuesong Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, PR China
| | - Lijun Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, PR China; Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, Guangxi 530004, PR China
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, PR China; Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, Guangxi 530004, PR China
| | - Yuhong Tian
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, PR China
| | - Wenyi Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, PR China; Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, Guangxi 530004, PR China.
| | - Jun Feng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, PR China.
| |
Collapse
|
3
|
Samyn P, Cosemans P. Nanocellulose Grades with Different Morphologies and Surface Modification as Additives for Waterborne Epoxy Coatings. Polymers (Basel) 2024; 16:1095. [PMID: 38675014 PMCID: PMC11054773 DOI: 10.3390/polym16081095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
While adding different micro- and nanocellulose types into epoxy coating formulations with waterborne phenalkamine crosslinker, effects on processing conditions and coating performance were systematically investigated. The variations in viscosity, thermal and thermomechanical properties, mechanical behavior, abrasive wear, water contact angles, and coating morphologies were evaluated. The selected additives include microcrystalline cellulose (MCC) at 1 to 10 wt.% and cellulose nanocrystals (CNC), cellulose nanofibers (CNF), cellulose microfibers (CMF), and hydrophobically modified cellulose microfibers (mCMF) at 0.1 to 1.5 wt.%. The viscosity profiles are determined by the inherent additive characteristics with strong shear thinning effects for epoxy/CNF, while the epoxy/mCMF provides lower viscosity and better matrix compatibility owing to the lubrication of encapsulated wax. The crosslinking of epoxy/CNF is favored and postponed for epoxy/(CNC, CMF, mCMF), as the stronger interactions between epoxy and CNF are confirmed by an increase in the glass transition temperature and reduction in the dampening factor. The mechanical properties indicate the highest hardness and impact strength for epoxy/CNF resulting in the lowest abrasion wear rates, but ductility enhances and wear rates mostly reduce for epoxy/mCMF together with hydrophobic protection. In addition, the mechanical reinforcement owing to the specific organization of a nanocellulose network at percolation threshold concentrations of 0.75 wt.% is confirmed by microscopic analysis: the latter results in a 2.6 °C (CNF) or 1.6 °C (CNC) increase in the glass transition temperature, 50% (CNF) or 20% (CNC) increase in the E modulus, 37% (CNF) or 32% (CNC) increase in hardness, and 58% (CNF) or 33% (CNC) lower abrasive wear compared to neat epoxy, while higher concentrations up to 1.5 wt.% mCMF can be added. This research significantly demonstrates that nanocellulose is directly compatible with a waterborne phenalkamine crosslinker and actively contributes to the crosslinking of waterborne epoxy coatings, changing the intrinsic glass transition temperatures and hardness properties, to which mechanical coating performance directly relates.
Collapse
Affiliation(s)
- Pieter Samyn
- Department of Innovations in Circular Economy and Renewable Materials, SIRRIS, 3001 Leuven, Belgium;
| | | |
Collapse
|
4
|
Bagherzadeh M, Salehi G, Rabiee N. Rapid and efficient removal of methylene blue dye from aqueous solutions using extract-modified Zn-Al LDH. CHEMOSPHERE 2024; 350:141011. [PMID: 38145848 DOI: 10.1016/j.chemosphere.2023.141011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/13/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Environmental pollution, particularly water pollution caused by organic substances like synthetic dyes, is a pressing global concern. This study focuses on enhancing the adsorption capacity of layered double hydroxides (LDHs) to remove methylene blue (MB) dye from water. The synthesized materials are characterized using techniques like FT-IR, XRD, SEM, TEM, TGA, EDS, BET, BJH, AFM, and UV-Vis DRS. Adsorption experiments show that Zn-Al LDH@ext exhibits a significant adsorption capacity for MB dye compared to pristine LDH. In addition, Zn-Al LDH@ext shows a significant increase in stability, which is attributed to the presence of phenolic compounds in the extract and the interactions between the functional groups of the extract and LDH. The pH and adsorbent dosage optimizations show that pH 7 and 0.7 g of Zn-Al LDH@ext are optimal conditions for efficient MB removal. The study assessed adsorption kinetics through the examination of Langmuir, Freundlich, and Temkin isotherms. Additionally, four kinetic models, namely pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich, were analyzed. The results indicated that the Temkin isotherm (R2 = 0.9927), and pseudo-second-order (R2 = 0.9999) kinetic provided the best fit to the experimental data. This study introduces a novel approach to enhance adsorption efficiency using modified LDHs, contributing to environmentally friendly and cost-effective water treatment methods.
Collapse
Affiliation(s)
- Mojtaba Bagherzadeh
- Department of Chemistry, Sharif University of Technology, P.O. Box 11155-3615, Tehran, Iran.
| | - Ghazal Salehi
- Department of Chemistry, Sharif University of Technology, P.O. Box 11155-3615, Tehran, Iran
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
5
|
Jumadilov T, Khimersen K, Haponiuk J, Totkhuskyzy B. Enhanced Lutetium Ion Sorption from Aqueous Solutions Using Activated Ion Exchangers. Polymers (Basel) 2024; 16:220. [PMID: 38257017 PMCID: PMC10818309 DOI: 10.3390/polym16020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The growing demand for rare earth elements (REE) requires the search for economically viable materials to efficiently recover REE from various solutions. Our research aims to investigate the potential of using a combination of the ion exchangers Lewatit CNP LF (in H+ form) and AV-17-8 (in OH- form) as an interpolymer system, "Lewatit CNP LF@AV-17-8" (X:Y), with varying mass ratios of X:Y to enhance the sorption efficiency of lutetium ions from nitrate solution. During the study, we used a range of analytical methodologies, including gravimetry, ultraviolet-visible (UV-VIS) spectroscopy, and inductively coupled plasma optical emission spectroscopy (ICP-OES). Our findings demonstrate that the interpolymer system "Lewatit CNP LF@AV-17-8" (X:Y), with a mass ratio of 4:2, exhibited a significantly enhanced sorption rate of Lu3+ ions (42%) compared to the individual Lewatit CNP LF (6:0) (25%) and the individual AV-17-8 (0:6) (21%) over a 48 h period. Moreover, this interpolymer system has demonstrated notable conformity to the Freundlich adsorption model, highlighting its performance as an effective sorbent for lutetium (III) ions. Notably, our study presents a novel utilization of the interpolymer system "Lewatit CNP LF@AV-17-8" (4:2), with an adsorption capacity of 221.05 mg/g, to enhance the recovery of lutetium ions. The research findings demonstrate its potential for enhancing the recovery of REE.
Collapse
Affiliation(s)
- Talkybek Jumadilov
- Bekturov Institute of Chemical Sciences, 106 Sh. Ualikhanov Str., Almaty 050010, Kazakhstan; (T.J.); (K.K.)
- School of Chemical Engineering, Kazakh-British Technical University, 59 Tole bi Str., Almaty 050000, Kazakhstan
| | - Khuangul Khimersen
- Bekturov Institute of Chemical Sciences, 106 Sh. Ualikhanov Str., Almaty 050010, Kazakhstan; (T.J.); (K.K.)
- Institute of Natural Sciences and Geography, Abai Kazakh National Pedagogical University, 13 Dostyk Ave., Almaty 050010, Kazakhstan
| | - Józef Haponiuk
- Department of Polymer Technology, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland;
| | - Bakytgul Totkhuskyzy
- Bekturov Institute of Chemical Sciences, 106 Sh. Ualikhanov Str., Almaty 050010, Kazakhstan; (T.J.); (K.K.)
- School of Pharmacy, Asfendiyarov Kazakh National Medical University, 94 Tole bi Str., Almaty 050012, Kazakhstan
| |
Collapse
|
6
|
Yu S, Lee J, Kim J, Chang H, Kang C, Sim J. Analysis of Mechanical Properties and Structural Analysis According to the Multi-Layered Structure of Polyethylene-Based Self-Reinforced Composites. Polymers (Basel) 2023; 15:4055. [PMID: 37896299 PMCID: PMC10610435 DOI: 10.3390/polym15204055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
In this research, a self-reinforced composite material was manufactured using a single polyethylene material, and this self-reinforced composite material has excellent recyclability and is environmentally friendly compared to composite materials composed of other types of material, such as glass fiber reinforced composites (GFRP) and carbon fiber reinforced composites (CFRP). In this research, the manufactured self-reinforced composite material consists of an outer layer and an inner layer. To manufacture the outer layer, low density polyethylene (LDPE) films were laminated on high density polyethylene (HDPE) fabrics and knitted fabrics, and composite materials were prepared at various temperatures using hot stamping. A 3D printing process was utilized to manufacture the inner layer. After designing a structure with a cross-sectional shape of a triangle, circle, or hexagon, the inner layer structure was manufactured by 3D printing high-density polyethylene material. As an adhesive film for bonding the outer layer and the inner layer, a polyethylene-based self-reinforced composite material was prepared using a low-density polyethylene material. Input data for simulation of self-reinforced composite materials were obtained through tensile property analysis using a universal testing machine (UTM, Shimadzu, Kyoto, Japan), and the physical property values derived as output data and actual experimental values were obtained. As a result of the comparison, the error rate between simulation data and experimental data was 5.4% when the shape of the inner layer of self-reinforced composite material was a hexagon, 3.6% when it was a circle, and 7.8% when a triangular shape showed the highest value. Simulation in a virtual space can reduce the time and cost required for actual research and can be important data for producing high-quality products.
Collapse
Affiliation(s)
- Seonghun Yu
- DYETEC (Dyeing & Finishing Technology Institute), Computer Aided Engineering (CAE) Center, Daegu 41706, Republic of Korea; (S.Y.)
| | - Junhee Lee
- DYETEC (Dyeing & Finishing Technology Institute), Computer Aided Engineering (CAE) Center, Daegu 41706, Republic of Korea; (S.Y.)
| | - Jongkyu Kim
- Department of Energy Engineering, Shinhan University, 95, Hoam-ro, Uijeongbu-si 11644, Republic of Korea
| | - Hojong Chang
- KAIST Institute for Information Technology Convergence Intergrated Sensor Team, KAIST, Daejeon 34141, Republic of Korea
| | - Chansol Kang
- Department of Advanced Materials Engineering, Shinhan University, 95, Hoam-ro, Uijeongbu-si 11644, Republic of Korea
| | - Jeehyun Sim
- DYETEC (Dyeing & Finishing Technology Institute), Computer Aided Engineering (CAE) Center, Daegu 41706, Republic of Korea; (S.Y.)
| |
Collapse
|
7
|
Addressing diffusion behavior and impact in an epoxy-amine cure system using molecular dynamics simulations. Sci Rep 2023; 13:138. [PMID: 36599868 PMCID: PMC9813372 DOI: 10.1038/s41598-022-26835-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
To deepen understanding of diffusion-controlled crosslinking, molecular dynamics (MD) simulations are carried out by taking the diffusion image of 3,3'-diamino diphenyl sulfone (3,3'-DDS) and polyethersulfone (PES) with epoxy resin varying temperatures from 393.15 to 473.15 K over crosslinking conversion of 0-85%. The diffusion of PES and 3,3'-DDS into the bulk increased with increasing the temperature as a result of enhanced mobility of the molecules when the difference between the glass-transition temperature (Tg) and the curing temperature. Beyond the onset points of the converged crosslinking conversion ratio of 3,3'-DDS and PES, their diffusion properties are obviously restricted with crosslinking conversion ratio. At low crosslinking conversion ratios (> 10%), the diffusion coefficients of triglycidyl p-aminophenol (TGAP) were 1.1 times higher than those of diglycidyl ether of bisphenol F (DGEBF) because of the lower molecular weight of TGAP. On the other hand, the diffusion coefficients of TGAP decreased when the crosslinking ratio was up to ~ 60% because, compared with DGEBF, it had more functional groups available to react with the curing agent. At higher crosslinking ratios, the diffusion coefficients of both resins converged to zero as a result of their highly crosslinked structures.
Collapse
|
8
|
Cure Kinetics of Samarium-Doped Fe3O4/Epoxy Nanocomposites. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6010029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To answer the question “How does lanthanide doping in iron oxide affect cure kinetics of epoxy-based nanocomposites?”, we synthesized samarium (Sm)-doped Fe3O4 nanoparticles electrochemically and characterized it using Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-Ray analysis (EDX), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy analyses (XPS). The magnetic particles were uniformly dispersed in epoxy resin to increase the curability of the epoxy/amine system. The effect of the lanthanide dopant on the curing reaction of epoxy with amine was explored by analyzing differential scanning calorimetry (DSC) experimental data based on a model-free methodology. It was found that Sm3+ in the structure of Fe3O4 crystal participates in cross-linking epoxy by catalyzing the reaction between epoxide rings and amine groups of curing agents. In addition, the etherification reaction of active OH groups on the surface of nanoparticles reacts with epoxy rings, which prolong the reaction time at the late stage of reaction where diffusion is the dominant mechanism.
Collapse
|
9
|
Naseem S, Wießner S, Kühnert I, Leuteritz A. Layered Double Hydroxide (MgFeAl-LDH)-Based Polypropylene (PP) Nanocomposite: Mechanical Properties and Thermal Degradation. Polymers (Basel) 2021; 13:3452. [PMID: 34641267 PMCID: PMC8512664 DOI: 10.3390/polym13193452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/01/2022] Open
Abstract
This work analyzes the thermal degradation and mechanical properties of iron (Fe)-containing MgAl layered double hydroxide (LDH)-based polypropylene (PP) nanocomposite. Ternary metal (MgFeAl) LDHs were prepared using the urea hydrolysis method, and Fe was used in two different concentrations (5 and 10 mol%). Nanocomposites containing MgFeAl-LDH and PP were prepared using the melt mixing method by a small-scale compounder. Three different loadings of LDHs were used in PP (2.5, 5, and 7.5 wt%). Rheological properties were determined by rheometer, and flammability was studied using the limiting oxygen index (LOI) and UL94 (V and HB). Color parameters (L*, a*, b*) and opacity of PP nanocomposites were measured with a spectrophotometer. Mechanical properties were analyzed with a universal testing machine (UTM) and Charpy impact test. The thermal behavior of MgFeAl-LDH/PP nanocomposites was studied using differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). The morphology of LDH/PP nanocomposites was analyzed with a scanning electron microscope (SEM). A decrease in melt viscosity and increase in burning rate were observed in the case of iron (Fe)-based PP nanocomposites. A decrease in mechanical properties interpreted as increased catalytic degradation was also observed in iron (Fe)-containing PP nanocomposites. Such types of LDH/PP nanocomposites can be useful where faster degradation or faster recycling of polymer nanocomposites is required because of environmental issues.
Collapse
Affiliation(s)
- Sajid Naseem
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (S.W.); (I.K.); (A.L.)
- Institute of Materials Science, Technische Universität Dresden, 01062 Dresden, Germany
| | - Sven Wießner
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (S.W.); (I.K.); (A.L.)
- Institute of Materials Science, Technische Universität Dresden, 01062 Dresden, Germany
| | - Ines Kühnert
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (S.W.); (I.K.); (A.L.)
| | - Andreas Leuteritz
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (S.W.); (I.K.); (A.L.)
| |
Collapse
|
10
|
Isothermal Vulcanization and Non-Isothermal Degradation Kinetics of XNBR/Epoxy/XNBR-g-Halloysite Nanotubes (HNT) Nanocomposites. MATERIALS 2021; 14:ma14112872. [PMID: 34072028 PMCID: PMC8198418 DOI: 10.3390/ma14112872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 01/25/2023]
Abstract
The effect of several concentrations of carboxylated nitrile butadiene rubber (XNBR) functionalized halloysite nanotubes (XHNTs) on the vulcanization and degradation kinetics of XNBR/epoxy compounds were evaluated using experimental and theoretical methods. The isothermal vulcanization kinetics were studied at various temperatures by rheometry and differential scanning calorimetry (DSC). The results obtained indicated that the nth order model could not accurately predict the curing performance. However, the autocatalytic approach can be used to estimate the vulcanization reaction mechanism of XNBR/epoxy/XHNTs nanocomposites. The kinetic parameters related to the degradation of XNBR/epoxy/XHNTs nanocomposites were also assessed using thermogravimetric analysis (TGA). TGA measurements suggested that the grafted nanotubes strongly enhanced the thermal stability of the nanocomposite.
Collapse
|
11
|
Imidazole-functionalized nitrogen-rich Mg-Al-CO3 layered double hydroxide for developing highly crosslinkable epoxy with high thermal and mechanical properties. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125826] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
12
|
Abd El-Lateef HM, Khalaf MM. Fabrication and characterization of alumina-silica/poly(o-toluidine) nanocomposites as novel anticorrosive epoxy coatings films on carbon steel. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
A Comparative Study on Cure Kinetics of Layered Double Hydroxide (LDH)/Epoxy Nanocomposites. JOURNAL OF COMPOSITES SCIENCE 2020. [DOI: 10.3390/jcs4030111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Layered double hydroxide (LDH) minerals are promising candidates for developing polymer nanocomposites and the exchange of intercalating anions and metal ions in the LDH structure considerably affects their ultimate properties. Despite the fact that the synthesis of various kinds of LDHs has been the subject of numerous studies, the cure kinetics of LDH-based thermoset polymer composites has rarely been investigated. Herein, binary and ternary structures, including [Mg0.75 Al0.25 (OH)2]0.25+ [(CO32−)0.25/2∙m H2O]0.25−, [Mg0.75 Al0.25 (OH)2]0.25+ [(NO3−)0.25∙m H2O]0.25− and [Mg0.64 Zn0.11 Al0.25 (OH)2]0.25+ [(CO32−)0.25/2∙m H2O]0.25−, have been incorporated into epoxy to study the cure kinetics of the resulting nanocomposites by differential scanning calorimetry (DSC). Both integral and differential isoconversional methods serve to study the non-isothermal curing reactions of epoxy nanocomposites. The effects of carbonate and nitrate ions as intercalating agents on the cure kinetics are also discussed. The activation energy of cure (Eα) was calculated based on the Friedman and Kissinger–Akahira–Sunose (KAS) methods for epoxy/LDH nanocomposites. The order of autocatalytic reaction (m) for the epoxy/Mg-Al-NO3 (0.30 and 0.254 calculated by the Friedman and KAS methods, respectively) was smaller than that of the neat epoxy, which suggested a shift of the curing mechanism from an autocatalytic to noncatalytic reaction. Moreover, a higher frequency factor for the aforementioned nanocomposite suggests that the incorporation of Mg-Al-NO3 in the epoxy composite improved the curability of the epoxy. The results elucidate that the intercalating anions and the metal constituent of LDH significantly govern the cure kinetics of epoxy by the participation of nitrate anions in the epoxide ring-opening reaction.
Collapse
|
14
|
Morphology, Thermal Stability, and Flammability Properties of Polymer-Layered Double Hydroxide (LDH) Nanocomposites: A Review. CRYSTALS 2020. [DOI: 10.3390/cryst10070612] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The utilization of layered nanofillers in polymer matrix, as reinforcement, has attracted great interest in the 21st century. This can be attributed to the high aspect ratios of the nanofillers and the attendant substantial improvement in different properties (i.e., increased flammability resistance, improved modulus and impact strength, as well as improved barrier properties) of the resultant nanocomposite when compared to the neat polymer matrix. Amongst the well-known layered nanofillers, layered inorganic materials, in the form of LDHs, have been given the most attention. LDH nanofillers have been employed in different polymers due to their flexibility in chemical composition as well as an adjustable charge density, which permits numerous interactions with the host polymer matrices. One of the most important features of LDHs is their ability to act as flame-retardant materials because of their endothermic decomposition. This review paper gives detailed information on the: preparation methods, morphology, flammability, and barrier properties as well as thermal stability of LDH/polymer nanocomposites.
Collapse
|