1
|
Rooney LP, Marshall A, Tunney MM, Tabaei SR. Phenylboronic Acid-Modified Polyethyleneimine: A Glycan-Targeting Anti-Biofilm Polymer for Inhibiting Bacterial Adhesion to Mucin and Enhancing Antibiotic Efficacy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19276-19285. [PMID: 40099915 PMCID: PMC11969427 DOI: 10.1021/acsami.4c20874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
Bacterial biofilms present significant therapeutic challenges due to their resistance to conventional antimicrobial treatment. Mucins typically serve as a protective barrier against pathogens, yet certain bacteria, such as Pseudomonas aeruginosa (P. aeruginosa), can exploit these glycoproteins as attachment sites for biofilm formation. This study introduces boronic acid-functionalized polyethyleneimine (PEI-BA) as a promising antibiofilm agent that effectively blocks bacterial adhesion to mucin-rich surfaces. Through the multivalent presentation of boronic acid groups, PEI-BA reversibly forms boronate ester bonds with mucin glycans, creating a protective barrier. Our findings show that PEI-BA prevents bacterial attachment through a nonbactericidal mechanism, potentially reducing the risk of resistance development. Notably, PEI-BA synergizes with a conventional antibiotic, tobramycin, significantly enhancing biofilm inhibition compared to either treatment alone. Systematic evaluation of PEI-BA formulations identified optimal functionalization levels, balancing glycan-binding capability with solubility. From a biomaterials design perspective, we demonstrate how rational polymer modification can transform a potent but cytotoxic antimicrobial agent (i.e., PEI) into a safe and effective antibiofilm material, opening further possibilities for managing biofilm-associated infections in clinical settings. This work establishes boronic acid-based nanomaterials as promising candidates for biofilm prevention and antibiotic enhancement, particularly in conditions like cystic fibrosis, where mucin-bacterial interactions contribute to disease progression.
Collapse
Affiliation(s)
- Lorcan
J. P. Rooney
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, U.K.
| | - Andrew Marshall
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Lisburn Road, Belfast BT9 7BL, U.K.
| | - Michael M. Tunney
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Lisburn Road, Belfast BT9 7BL, U.K.
| | - Seyed R. Tabaei
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, U.K.
| |
Collapse
|
2
|
Finotelli LD, Martins CHG, de Souza SL, Santos ALO, Santiago MB, Ambrósio SR, Sola Veneziani RC, Tame Parreira RL, Mello LA, Pereira LDF, Gonçalves Dias FG. Microbiological and toxicity analyses of the synthetic polymer polyhexamethylene guanidine hydrochloride against endodontic microorganisms. Braz J Microbiol 2025; 56:475-486. [PMID: 39812973 PMCID: PMC11885752 DOI: 10.1007/s42770-024-01603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Failures in endodontic treatments are common due to microbial resistance in the pulp canal. The study evaluated the in vitro activity of polyhexamethylene guanidine hydrochloride (PHMGH) against endodontic strains, as well as in vivo toxicity. Using minimum inhibitory concentration and minimum bactericidal concentration techniques, PHMGH was effective against all microorganisms, even at low concentrations. At 50.0 µg/mL, it inhibited Enterococcus faecalis; furthermore, when compared to chlorhexidine (CLX), it demonstrated values 19 times lower against Candida albicans. The polymer's activity was also determined by agar diffusion, evaluating products A (calcium hydroxide - Ca(OH)2, as a reference), B (Ca(OH)2 combined with physiological solution, reference with a vehicle), C (PHMGH 6.25%), D (PHMGH 3.125%), E (PHMGH 1.5625%), F (PHMGH 0.78125%), G (PHMGH 6.25% and Ca(OH)2), H (PHMGH 3.125% and Ca(OH)2), I (PHMGH 1.5625% and Ca(OH)2), J (PHMGH 0.78125% and Ca(OH)2), and K (positive control, CLX 0.12%). Products containing PHMGH were more effective than the references against all strains, and C, D, and G were more effective than CLX against Peptostreptococcus anaerobius, Actinomyces naeslundii, and Actinomyces viscosus. According to the fractional inhibitory concentration index, the combination of PHMGH and CLX showed indifference for Peptostreptococcus anaerobius, Actinomyces naeslundii, Actinomyces viscosus and Escherichia coli, antagonism for Candida albicans, and synergy for Enterococcus faecalis. The toxicity of PHMGH at different concentrations was tested in Caenorhabditis elegans and did not show lethality in nematodes, with the LC50 observed only at the highest concentration (100 µg/mL) after two days of exposure. It is suggested that PHMGH exhibited antimicrobial activity against endodontic strains and low toxicity, raising expectations for new preventive and therapeutic products in endodontics.
Collapse
Affiliation(s)
- Laila Dainize Finotelli
- Department of Postgraduate Program in Animal Science, University of Franca (UNIFRAN), Av. Dr. Armando Salles Oliveira, 201, Parque Universitário, Franca, SP, CEP 14.404-600, Brazil
| | - Carlos Henrique Gomes Martins
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, University of Uberlândia (UFU), Campus Umuarama, Av. Amazonas s/n, Uberlândia, MG, CEP 38405-320, Brazil
| | - Sara Lemes de Souza
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, University of Uberlândia (UFU), Campus Umuarama, Av. Amazonas s/n, Uberlândia, MG, CEP 38405-320, Brazil
| | - Anna Livia Oliveira Santos
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, University of Uberlândia (UFU), Campus Umuarama, Av. Amazonas s/n, Uberlândia, MG, CEP 38405-320, Brazil
| | - Mariana Brentini Santiago
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, University of Uberlândia (UFU), Campus Umuarama, Av. Amazonas s/n, Uberlândia, MG, CEP 38405-320, Brazil
| | - Sérgio Ricardo Ambrósio
- Department of Postgraduate Program in Animal Science, University of Franca (UNIFRAN), Av. Dr. Armando Salles Oliveira, 201, Parque Universitário, Franca, SP, CEP 14.404-600, Brazil
| | - Rodrigo Cássio Sola Veneziani
- Department of Postgraduate Program in Animal Science, University of Franca (UNIFRAN), Av. Dr. Armando Salles Oliveira, 201, Parque Universitário, Franca, SP, CEP 14.404-600, Brazil
| | - Renato Luis Tame Parreira
- Department of Postgraduate Program in Sciences, University of Franca (UNIFRAN), Av. Dr. Armando Salles Oliveira, 201, Parque Universitário, Franca, SP, CEP 14.404-600, Brazil
| | - Leandro Aparecido Mello
- Department of Postgraduate Program in Sciences, University of Franca (UNIFRAN), Av. Dr. Armando Salles Oliveira, 201, Parque Universitário, Franca, SP, CEP 14.404-600, Brazil
| | - Lucas de Freitas Pereira
- Department of Veterinary Medicine, University of Franca (UNIFRAN), Av. Dr. Armando Salles Oliveira, 201, Parque Universitário, Franca, SP, CEP 14.404-600, Brazil
| | - Fernanda Gosuen Gonçalves Dias
- Department of Postgraduate Program in Animal Science, University of Franca (UNIFRAN), Av. Dr. Armando Salles Oliveira, 201, Parque Universitário, Franca, SP, CEP 14.404-600, Brazil.
| |
Collapse
|
3
|
Babu DD, Saranga Pani A, Joshi SD, Naik P, Jayaprakash GK, Al-Ghorbani M, Rodrigues B, Momidi BK. Computational and experimental insights into pharmacological potential: Synthesis, in vitro evaluation, and molecular docking analysis of bioactive urea and thiourea derivatives. Microb Pathog 2025; 200:107209. [PMID: 39653284 DOI: 10.1016/j.micpath.2024.107209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/16/2024] [Accepted: 12/05/2024] [Indexed: 01/13/2025]
Abstract
This study delves into the synthesis, in vitro assessment, and molecular docking analysis of bioactive urea and thiourea derivatives, which have garnered significant attention in pharmaceutical chemistry due to their versatile chemical reactivity and potential therapeutic applications One pot synthetic approach was utilized to develop a diverse class of these compounds. Subsequent biological assessments, including antimicrobial assays, demonstrated their pharmacological potential by inhibiting pathogenic microorganisms. Molecular docking analysis offered computational insights into the interactions between these compounds and specific biomolecules, shedding light on their potential mechanisms of action. Overall, this comprehensive exploration contributes to the discovery of innovative therapeutic agents, as these bioactive urea and thiourea derivatives hold promise for addressing pressing healthcare challenges.
Collapse
Affiliation(s)
- Dickson D Babu
- Department of Chemistry, St. Thomas College, Kozhencherry, 689641, Kerala, India
| | - A Saranga Pani
- Department of Chemistry, S.V.Arts College (TTD), Tirupati, 517501, Andhra Pradesh, India
| | - Shrinivas D Joshi
- Novel Drug Design and Discovery Laboratory, Department of Pharmaceutical Chemistry, S. E. T's College of Pharmacy, Sangolli Rayanna Nagar, Dharwad, 580 002, Karnataka, India
| | - Praveen Naik
- Department of Chemistry, Nitte Meenakshi Institute of Technology, Yelahanka, Bengaluru, 560064, Karnataka, India.
| | - Gururaj Kudur Jayaprakash
- Department of Chemistry, Nitte Meenakshi Institute of Technology, Yelahanka, Bengaluru, 560064, Karnataka, India
| | - Mohammed Al-Ghorbani
- Department of Chemistry, Faculty of Science, Taibah University, Madinah 42353, Saudi Arabia
| | | | - Bharath Kumar Momidi
- Department of Chemistry, S.V.Arts College (TTD), Tirupati, 517501, Andhra Pradesh, India.
| |
Collapse
|
4
|
Parvin N, Joo SW, Mandal TK. Nanomaterial-Based Strategies to Combat Antibiotic Resistance: Mechanisms and Applications. Antibiotics (Basel) 2025; 14:207. [PMID: 40001450 PMCID: PMC11852044 DOI: 10.3390/antibiotics14020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
The rapid rise of antibiotic resistance has become a global health crisis, necessitating the development of innovative strategies to combat multidrug-resistant (MDR) pathogens. Nanomaterials have emerged as promising tools in this fight, offering unique physicochemical properties that enhance antibiotic efficacy, overcome resistance mechanisms, and provide alternative therapeutic approaches. This review explores the diverse nanomaterial-based strategies used to combat antibiotic resistance, focusing on their mechanisms of action and practical applications. Nanomaterials such as metal nanoparticles, carbon-based nanomaterials, and polymeric nanostructures exhibit antibacterial properties through various pathways, including the generation of reactive oxygen species (ROS), disruption of bacterial membranes, and enhancement of antibiotic delivery. Additionally, the ability of nanomaterials to bypass traditional resistance mechanisms, such as biofilm formation and efflux pumps, has been demonstrated in numerous studies. This review also discusses the synergistic effects observed when nanomaterials are combined with conventional antibiotics, leading to increased bacterial susceptibility and reduced required dosages. By highlighting the recent advancements and clinical applications of nanomaterial-antibiotic combinations, this paper provides a comprehensive overview of how nanomaterials are reshaping the future of antibacterial therapies. Future research directions and challenges, including toxicity and scalability, are also addressed to guide the development of safer, more effective nanomaterial-based antibacterial treatments.
Collapse
Affiliation(s)
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Tapas K. Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
5
|
Alfei S, Zuccari G. Last Fifteen Years of Nanotechnology Application with Our Contribute. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:265. [PMID: 39997828 PMCID: PMC11858446 DOI: 10.3390/nano15040265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025]
Abstract
Currently, nanotechnology is the most promising science, engineering, and technology conducted at the nanoscale (nm), which is used in several sectors. Collectively, nanotechnology is causing a new industrial revolution, and nano-based products are becoming increasingly important for the global market and economy. The interest in nanomaterials has been strongly augmented during the last two decades, and this fact can be easily evaluated by considering the number of studies present in the literature. In November 2024, they accounted for 764,279 experimental studies developed in the years 2009-2024. During such a period, our group contributed to the field of applicative nanotechnology with several experimental and review articles, which we hope could have relevantly enhanced the knowledge of the scientific community. In this new publication, an exhaustive overview regarding the main types of developed nanomaterials, the characterization techniques, and their applications has been discussed. Particular attention has been paid to nanomaterials employed for the enhancement of bioavailability and delivery of bioactive molecules and to those used for ameliorating traditional food packaging. Then, we briefly reviewed our experimental studies on the development of nanoparticles (NPs), dendrimers, micelles, and liposomes for biomedical applications by collecting inherent details in a reader-friendly table. A brief excursus about our reviews on the topic has also been provided, followed by the stinging question of nanotoxicology. Indeed, although the application of nanotechnology translates into a great improvement in the properties of non-nanosized pristine materials, there may still be a not totally predictable risk for humans, animals, and the environment associated with an extensive application of NPs. Nanotoxicology is a science in rapid expansion, but several sneaky risks are not yet fully disclosed. So, the final part of this study discusses the pending issue related to the possible toxic effects of NPs and their impact on customers' acceptance in a scenario of limited knowledge.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Via Cembrano 4, 16148 Genoa, Italy;
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), University of Genoa, Via Cembrano 4, 16148 Genoa, Italy;
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genoa, Italy
| |
Collapse
|
6
|
Awlqadr FH, Altemimi AB, Qadir SA, Hama Salih TA, Alkanan ZT, AlKaisy QH, Mohammed OA, Hesarinejad MA. Emerging trends in nano-sensors: A new frontier in food safety and quality assurance. Heliyon 2025; 11:e41181. [PMID: 39807502 PMCID: PMC11728908 DOI: 10.1016/j.heliyon.2024.e41181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
The rapid evolution of nanotechnology has catalyzed significant advancements in the design and application of nano-sensors, particularly within the food industry, where ensuring safety and quality is of paramount concern. This review explores the multifaceted role of nano-sensors constructed from diverse nanomaterials in detecting foodborne pathogens and toxins, offering a comprehensive analysis of their operational principles, sensitivity, and specificity. Nano-sensors leverage unique physical and chemical properties at the nanoscale to enhance the detection of microbial contamination, actively contributing to food safety protocols. With applications ranging from real-time monitoring of pathogenic bacteria, such as Escherichia coli and Salmonella, to assessing environmental factors affecting food quality, these innovative devices demonstrate unparalleled advantages over conventional detection methods. Recent research illustrates the integration of nano-sensors with biosensing techniques, enabling multiplex analysis and rapid detection. Furthermore, the review addresses current challenges in the commercialization and regulatory landscape of nano-sensor technology, emphasizing the need for ongoing research to optimize their performance and facilitate widespread adoption in food safety systems. Overall, the incorporation of nano-sensors represents a transformative approach to safeguarding public health by proactively managing food safety risks and enhancing the efficiency of food quality assurance processes.
Collapse
Affiliation(s)
- Farhang Hameed Awlqadr
- Food Science and Quality control, Halabja Technical College of Applied Science, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| | - Ammar B. Altemimi
- Food Science Department, College of Agriculture, University of Basrah, 61004, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Syamand Ahmed Qadir
- Medical Laboratory Techniques Department, Halabja Technical Institute, Research center/Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| | - Tablo Azad Hama Salih
- Food Science and Quality control, Halabja Technical College of Applied Science, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| | - Zina T. Alkanan
- Food Science Department, College of Agriculture, University of Basrah, 61004, Iraq
| | - Qausar Hamed AlKaisy
- Department of Dairy Science and technology, College of Food science, Al-Qasim Green University, Iraq
| | - Othman Abdulrahman Mohammed
- Medical Laboratory Science Department, Halabja Technical College of Applied Sciences, Sulaimani Polytechnic, Iraq
| | - Mohammad Ali Hesarinejad
- Department of Food Sensory and Cognitive Science, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
7
|
Zhang X, Jiang Y, Guo Y, Zhou W, Qiao W, Zhu H, Qi Z. Safety evaluation of ceftazidime/avibactam based on FAERS database. Infection 2024; 52:2195-2205. [PMID: 38842750 DOI: 10.1007/s15010-024-02248-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/25/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVE To explore adverse event (AE) signals of Ceftazidime/avibactam (CZA) based on the FDA Adverse Event Reporting System (FAERS) database. METHODS AE reports primarily associated with CZA were retrieved from the FAERS database from the second quarter of 2015 to the second quarter of 2023. Signal detection was conducted using the reporting odds ratio (ROR), proportional reporting ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Multi-item Gamma Poisson Shrinker (MGPS) methods. RESULTS A total of 750 AEs reports with CZA as the preferred suspected drug were obtained, identifying 66 preferred terms (PTs) involving 24 system organ classes (SOCs). Besides, the AEs already mentioned in the drug label, this study also revealed some new, clinically valuable potential AEsignals, such as Cholestasis (n = 14, ROR 29.39, PRR 29.15, IC 3.34, EBGM 29.11), Drug-induced liver injury (n = 8, ROR 9.05, PRR 9.01, IC 2.25, EBGM 9.01), Hepatocellular injury (n = 7, ROR 13.90, PRR 13.84, IC 2.41, EBGM 13.63), Haemolytic anaemia (n = 5, ROR 24.29, PRR 24.22, IC 2.42, EBGM 40.53), etc. Additionally, AE signals with higher intensity were identified, such as Hypernatraemia (n = 5, ROR 40.73, PRR 40.61, IC 2.31, EBGM 24.19), Toxic epidermal necrolysis (n = 4, ROR 11.58, PRR 11.55, IC 1.89, EBGM 11.54). Therefore, special vigilance for these potential AEs is warranted when using CZA clinically. CONCLUSION This study highlights the potential AEs and risks associated with the clinical use of CZA, particularly the risks related to Cholestasis, Drug-induced liver injury, Haemolytic anaemia, Hypernatraemia, and Toxic epidermal necrolysis.
Collapse
Affiliation(s)
- Xiuhong Zhang
- Department of Pharmacy, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Ying Jiang
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Yating Guo
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Wenbo Zhou
- Department of Pharmacy, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Weizhen Qiao
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Haohao Zhu
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China.
| | - Zhigang Qi
- Department of Pharmacy, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
8
|
Geioushy RA, El-Sherbiny S, Mohamed ET, Fouad OA, Samir M. Mechanical characteristics and antibacterial activity against Staphylococcus aureus of sustainable cellulosic paper coated with Ag and Cu modified ZnO nanoparticles. Sci Rep 2024; 14:29722. [PMID: 39613804 DOI: 10.1038/s41598-024-79265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024] Open
Abstract
In this study, zinc oxide (ZnO) nanoparticles were prepared and modified using a wet chemical method with different concentrations of Ag and Cu nanoparticles. The objective was to improve the mechanical, optical, and antibacterial properties of the coated paper by using the prepared pigments. The long-term antimicrobial effects of the coated paper were evaluated over 25 years. The successful synthesis of a hexagonal structure of ZnO nanoparticles decorated with spherical Ag and Cu nanoparticles ranging from 20 to 50 nm was confirmed using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM). By increasing the concentrations of Ag and Cu from 0.01% to 1.0%, the mechanical properties of the coated paper were enhanced. The tensile strength reached a maximum of 6.77 kN/m and 7.03 kN/m, elongation increased to 1.69% and 1.70%, tensile energy absorption improved to approximately 77 and 80 J/m2, and burst strength rose to 218 and 219 kPa, respectively. The use of Ag-modified ZnO maintains the optical properties, while Cu-modified ZnO reduces brightness and whiteness without affecting opacity. The antimicrobial inhibition activity was improved with higher silver (Ag) and copper (Cu) content. The formulations containing 1% Ag/ZnO and 1%Cu/ZnO showed long-lasting antibacterial effects against gram-positive Staphylococcus aureus bacteria. Even after 25 years of aging, they maintained inhibition rates of 92.2% and 62.2%, respectively. The molecular docking and GeneMANIA analysis revealed the potential of ZnO, Ag-modified ZnO, and Cu-modified ZnO nanoparticles to disrupt the S. aureus cell wall biosynthesis pathway by targeting the MurA enzyme and associated cell wall synthesis genes.
Collapse
Affiliation(s)
- Ramadan A Geioushy
- Central Metallurgical Research and Development Institute, Helwan, P.O. Box: 87, Cairo, 11421, Egypt.
| | - Samya El-Sherbiny
- Paper and Printing Laboratory, Chemistry Department, Faculty of Science, Helwan University, Helwan, Egypt
| | - Eslam T Mohamed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Egypt
| | - Osama A Fouad
- Central Metallurgical Research and Development Institute, Helwan, P.O. Box: 87, Cairo, 11421, Egypt
| | - Marwa Samir
- Paper and Printing Laboratory, Chemistry Department, Faculty of Science, Helwan University, Helwan, Egypt.
| |
Collapse
|
9
|
Kim J, Keum H, Albadawi H, Zhang Z, Graf EH, Cevik E, Oklu R. Multi-Functional Biomaterial for the Treatment and Prevention of Central Line-Associated Bloodstream Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405805. [PMID: 39148150 PMCID: PMC11567798 DOI: 10.1002/adma.202405805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/01/2024] [Indexed: 08/17/2024]
Abstract
Central venous catheters are among the most used medical devices in hospitals today. Despite advances in modern medicine, catheter infections remain prevalent, causing significant morbidity and mortality worldwide. Here, SteriGel is reported, which is a multifunctional hydrogel engineered to prevent and treat central line-associated bloodstream infections (CLABSI). The mechanical properties of SteriGel are optimized to ensure appropriate gelation kinetics, bio-adhesiveness, stretchability, and recoverability to promote durability upon application and to provide persistent protection against infection. In vitro assays demonstrated that SteriGel exhibits long-term antimicrobial efficacy and has bactericidal effects against highly resistant patient-derived pathogens known to be frequently associated with CLABSI. SteriGel outperformed Biopatch, which is a clinically used device for CLABSI, in ex vivo cadaver studies that simulate clinical scenarios. Furthermore, SteriGel has biocompatible, pro-healing, and anti-inflammatory properties in vitro and in a rat subcutaneous injection model, suggesting a potential synergistic effect in the prevention and treatment of CLABSI. SteriGel is a multifunctional adherent biomaterial with potent antimicrobial effects for sustained sterility while promoting healing of the catheter incision site to protect against infection.
Collapse
Affiliation(s)
- Jinjoo Kim
- The Laboratory for Patient-Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Hyeongseop Keum
- The Laboratory for Patient-Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Hassan Albadawi
- The Laboratory for Patient-Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Zefu Zhang
- The Laboratory for Patient-Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Erin H. Graf
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, Arizona 85054, USA
| | - Enes Cevik
- The Laboratory for Patient-Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Rahmi Oklu
- The Laboratory for Patient-Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
- Division of Vascular & Interventional Radiology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, Arizona 85054, USA
| |
Collapse
|
10
|
Kasapgil E, Garay-Sarmiento M, Rodriguez-Emmenegger C. Advanced Antibacterial Strategies for Combatting Biomaterial-Associated Infections: A Comprehensive Review. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2018. [PMID: 39654369 DOI: 10.1002/wnan.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024]
Abstract
Biomaterial-associated infections (BAIs) pose significant challenges in modern medical technologies, being a major postoperative complication and leading cause of implant failure. These infections significantly risk patient health, resulting in prolonged hospitalization, increased morbidity and mortality rates, and elevated treatment expenses. This comprehensive review examines the mechanisms driving bacterial adhesion and biofilm formation on biomaterial surfaces, offering an in-depth analysis of current antimicrobial strategies for preventing BAIs. We explore antimicrobial-eluting biomaterials, contact-killing surfaces, and antifouling coatings, emphasizing the application of antifouling polymer brushes on medical devices. Recent advancements in multifunctional antimicrobial biomaterials, which integrate multiple mechanisms for superior protection against BAIs, are also discussed. By evaluating the advantages and limitations of these strategies, this review aims to guide the design and development of highly efficient and biocompatible antimicrobial biomaterials. We highlight potential design routes that facilitate the transition from laboratory research to clinical applications. Additionally, we provide insights into the potential of synthetic biology as a novel approach to combat antimicrobial resistance. This review aspires to inspire future research and innovation, ultimately improving patient outcomes and advancing medical device technology.
Collapse
Affiliation(s)
- Esra Kasapgil
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Bakircay University, Izmir, Turkey
- Bioinspired Interactive Materials and Protocellular Systems Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Manuela Garay-Sarmiento
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
- Department of Biotechnology, RWTH Aachen University, Aachen, Germany
- Department of Chemical and Biological Engineering, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - César Rodriguez-Emmenegger
- Bioinspired Interactive Materials and Protocellular Systems Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials and Nanomedicine, The Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Gao W, Zhao J, Gui J, Wang Z, Chen J, Yue Z. Comprehensive Assessment of BERT-Based Methods for Predicting Antimicrobial Peptides. J Chem Inf Model 2024; 64:7772-7785. [PMID: 39316765 DOI: 10.1021/acs.jcim.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
In recent years, the prediction of antimicrobial peptides (AMPs) has gained prominence due to their high antibacterial activity and reduced susceptibility to drug resistance, making them potential antibiotic substitutes. To advance the field of AMP recognition, an increasing number of natural language processing methods are being applied. These methods exhibit diversity in terms of pretraining models, pretraining data sets, word vector embeddings, feature encoding methods, and downstream classification models. Here, we provide a comprehensive survey of current BERT-based methods for AMP prediction. An independent benchmark test data set is constructed to evaluate the predictive capabilities of the surveyed tools. Furthermore, we compared the predictive performance of these computational methods based on six different AMP public databases. LM_pred (BFD) outperformed all other surveyed tools due to abundant pretraining data set and the unique vector embedding approach. To avoid the impact of varying training data sets used by different methods on prediction performance, we performed the 5-fold cross-validation experiments using the same data set, involving retraining. Additionally, to explore the applicability and generalization ability of the models, we constructed a short peptide data set and an external data set to test the retrained models. Although these prediction methods based on BERT can achieve good prediction performance, there is still room for improvement in recognition accuracy. With the continuous enhancement of protein language model, we proposed an AMP prediction method based on the ESM-2 pretrained model called iAMP-bert. Experimental results demonstrate that iAMP-bert outperforms other approaches. iAMP-bert is freely accessible to the public at http://iamp.aielab.cc/.
Collapse
Affiliation(s)
- Wanling Gao
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jun Zhao
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jianfeng Gui
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zehan Wang
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jie Chen
- National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Zhenyu Yue
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
12
|
Qin X, Cai X, Wang Y, Chen L, Zhao J, Zhang Y, Bi S, Zhou Y, Zhu Q, Cheng Y, Liu Y. A water-resistant egg white/chitosan/pectin blending film with spherical-linear molecular interpenetrating network strengthened by multifunctional tannin-nisin nanoparticles. Int J Biol Macromol 2024; 277:134548. [PMID: 39116973 DOI: 10.1016/j.ijbiomac.2024.134548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Edible films are effective alternatives to plastic packaging, however, the hydrophilicity of edible films based on protein and polysaccharide limits the application. Therefore, we fabricated a water-stable hybrid film with a linear-spherical interpenetrating molecular topology network using egg white (EW), chitosan (CS), and pectin. Meanwhile, the nisin-tannin acid self-assembly complex nanoparticles were employed as a multifunctional cross-linker, antibacterial and antioxidant agent to improve the performance of films. The FTIR, XRD, and SEM analysis revealed that the conformation and crystalline structure rearrangement of chitosan induced by the alkaline environment provided by egg white enhanced the network structure of films, effectively avoided the addition of modifying reagents. The proposed hybrid films exhibited excellent properties, with EW/TNPCS3 showing the best overall performance. The water contact angle (WCA) increased to 105.27 ± 1.62°, and its dissolution and swelling rates were significantly lower than pure egg white and pure chitosan films. Moreover, tannin-nisin (TN) nanoparticles endowed the films with excellent antimicrobial activity against the common Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. Thus, the prepared blending films have great application potential in food preservation, especially to maintain stable performance in high humidity environment.
Collapse
Affiliation(s)
- Xianmin Qin
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Xue Cai
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Yilin Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Linqin Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Jingjing Zhao
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Yifan Zhang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Shenghui Bi
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Ying Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Qiujin Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Yuxin Cheng
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China.
| | - Yuanyuan Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China.
| |
Collapse
|
13
|
Harini K, Girigoswami K, Thirumalai A, Girigoswami A. Polymer-Based Antimicrobial Peptide Mimetics for Treating Multi-drug Resistant Infections: Therapy and Toxicity Evaluation. Int J Pept Res Ther 2024; 30:64. [DOI: 10.1007/s10989-024-10648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 01/03/2025]
|
14
|
Alfei S, Zuccari G, Bacchetti F, Torazza C, Milanese M, Siciliano C, Athanassopoulos CM, Piatti G, Schito AM. Synthesized Bis-Triphenyl Phosphonium-Based Nano Vesicles Have Potent and Selective Antibacterial Effects on Several Clinically Relevant Superbugs. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1351. [PMID: 39195389 DOI: 10.3390/nano14161351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
The increasing emergence of multidrug-resistant (MDR) pathogens due to antibiotic misuse translates into obstinate infections with high morbidity and high-cost hospitalizations. To oppose these MDR superbugs, new antimicrobial options are necessary. Although both quaternary ammonium salts (QASs) and phosphonium salts (QPSs) possess antimicrobial effects, QPSs have been studied to a lesser extent. Recently, we successfully reported the bacteriostatic and cytotoxic effects of a triphenyl phosphonium salt against MDR isolates of the Enterococcus and Staphylococcus genera. Here, aiming at finding new antibacterial devices possibly active toward a broader spectrum of clinically relevant bacteria responsible for severe human infections, we synthesized a water-soluble, sterically hindered quaternary phosphonium salt (BPPB). It encompasses two triphenyl phosphonium groups linked by a C12 alkyl chain, thus embodying the characteristics of molecules known as bola-amphiphiles. BPPB was characterized by ATR-FTIR, NMR, and UV spectroscopy, FIA-MS (ESI), elemental analysis, and potentiometric titrations. Optical and DLS analyses evidenced BPPB tendency to self-forming spherical vesicles of 45 nm (DLS) in dilute solution, tending to form larger aggregates in concentrate solution (DLS and optical microscope), having a positive zeta potential (+18 mV). The antibacterial effects of BPPB were, for the first time, assessed against fifty clinical isolates of both Gram-positive and Gram-negative species. Excellent antibacterial effects were observed for all strains tested, involving all the most concerning species included in ESKAPE bacteria. The lowest MICs were 0.250 µg/mL, while the highest ones (32 µg/mL) were observed for MDR Gram-negative metallo-β-lactamase-producing bacteria and/or species resistant also to colistin, carbapenems, cefiderocol, and therefore intractable with currently available antibiotics. Moreover, when administered to HepG2 human hepatic and Cos-7 monkey kidney cell lines, BPPB showed selectivity indices > 10 for all Gram-positive isolates and for clinically relevant Gram-negative superbugs such as those of E. coli species, thus being very promising for clinical development.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genoa, Italy
| | - Francesca Bacchetti
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
| | - Carola Torazza
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
| | - Marco Milanese
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Carlo Siciliano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | | | - Gabriella Piatti
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy
| |
Collapse
|
15
|
Blosi M, Brigliadori A, Ortelli S, Zanoni I, Gardini D, Vineis C, Varesano A, Ballarin B, Perucca M, Costa AL. Re-designing nano-silver technology exploiting one-pot hydroxyethyl cellulose-driven green synthesis. Front Chem 2024; 12:1432546. [PMID: 39206438 PMCID: PMC11349673 DOI: 10.3389/fchem.2024.1432546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Re-designing existing nano-silver technologies to optimize efficacy and sustainability has a tangible impact on preventing infections and limiting the spread of pathogenic microorganisms. Advancements in manufacturing processes could lead to more cost-effective and scalable production methods, making nano-silver-based antimicrobial products more accessible in various applications, such as medical devices, textiles, and water purification systems. In this paper, we present a new, versatile, and eco-friendly one-pot process for preparing silver nanoparticles (AgNPs) at room temperature by using a quaternary ammonium salt of hydroxyethyl cellulose (HEC), a green ingredient, acting as a capping and reducing agent. The resulting nano-hybrid phase, AgHEC, consists of AgNPs embedded into a hydrogel matrix with a tunable viscosity depending on the conversion grade, from ions to nanoparticles, and on the pH. To investigate the synthesis kinetics, we monitored the reaction progress within the first 24 h by analyzing the obtained NPs in terms of particle size (dynamic light scattering (DLS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM)), Z-potential (ELS), surface plasmon resonance (UV-VIS), crystallographic phase (XRD), viscosity, and reaction yield (inductively coupled plasma-optical emission spectrometry (ICP-OES)). To explore the design space associated with AgHEC synthesis, we prepared a set of sample variants by changing two independent key parameters that affect nucleation and growth steps, thereby impacting the physicochemical properties and the investigated antimicrobial activity. One of the identified design alternatives pointed out an improved antimicrobial activity in the suspension, which was confirmed after application as a coating on nonwoven cellulose fabrics. This enhancement was attributed to a lower particle size distribution and a positive synergistic effect with the HEC matrix.
Collapse
Affiliation(s)
- M. Blosi
- National Research Council of Italy, Institute of Science, Technology and Sustainability for Ceramics, (CNR-ISSMC), Faenza (RA), Italy
| | - A. Brigliadori
- National Research Council of Italy, Institute of Science, Technology and Sustainability for Ceramics, (CNR-ISSMC), Faenza (RA), Italy
| | - S. Ortelli
- National Research Council of Italy, Institute of Science, Technology and Sustainability for Ceramics, (CNR-ISSMC), Faenza (RA), Italy
| | - I. Zanoni
- National Research Council of Italy, Institute of Science, Technology and Sustainability for Ceramics, (CNR-ISSMC), Faenza (RA), Italy
| | - D. Gardini
- National Research Council of Italy, Institute of Science, Technology and Sustainability for Ceramics, (CNR-ISSMC), Faenza (RA), Italy
| | - C. Vineis
- National Research Council of Italy, Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (CNR-STIIMA), Biella, Italy
| | - A. Varesano
- National Research Council of Italy, Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (CNR-STIIMA), Biella, Italy
| | - B. Ballarin
- Department of Industrial Chemistry “Toso Montanari”, Bologna, Italy
| | | | - A. L. Costa
- National Research Council of Italy, Institute of Science, Technology and Sustainability for Ceramics, (CNR-ISSMC), Faenza (RA), Italy
| |
Collapse
|
16
|
Rackov S, Pilić B, Janković N, Kosanić M, Petković M, Vraneš M. From Synthesis to Functionality: Tailored Ionic Liquid-Based Electrospun Fibers with Superior Antimicrobial Properties. Polymers (Basel) 2024; 16:2094. [PMID: 39125121 PMCID: PMC11314316 DOI: 10.3390/polym16152094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 08/12/2024] Open
Abstract
Herein, we report an efficient and facile strategy for the preparation of imidazolium-based ionic liquid (IL) monomers ([CnVIm][Br], n = 2, 4, 6, 8, 10, and 12) and their corresponding polymeric ionic liquids (PILs) with potent antimicrobial activities against Gram-negative and Gram-positive bacteria and fungi. The electrospinning technique was utilized to tailor the polymers with the highest antimicrobial potency into porous membranes that can be easily implemented into diverse systems and extend their practical bactericidal application. The antimicrobial mechanism of obtained ILs, polymers, and nanomaterials is considered concerning the bearing chain length, polymerization process, and applied processing technique that provides a unique fibrous structure. The structure composition was selected due to the well-established inherent amphiphilicity that 1-alkylimidazolium ILs possess, coupled with proven antimicrobial, antiseptic, and antifungal behavior. The customizable nature of ILs and PILs complemented with electrospinning is exploited for the development of innovative antimicrobial performances born from the intrinsic polymer itself, offering solutions to the increasing challenge of bacterial resistance. This study opens up new prospects toward designer membranes providing a complete route in their designing and revolutionizing the approach of fabricating multi-functional systems with tunable physicochemical, surface properties, and interesting morphology.
Collapse
Affiliation(s)
- Sanja Rackov
- Faculty of Technology Novi Sad, Department of Materials Engineering, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Branka Pilić
- Faculty of Technology Novi Sad, Department of Materials Engineering, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Nenad Janković
- Institute for Information Technologies Kragujevac, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia;
| | - Marijana Kosanić
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia;
| | - Marijana Petković
- Department of Atomic Physics, “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia;
| | - Milan Vraneš
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia;
| |
Collapse
|
17
|
Alfei S, Schito GC, Schito AM, Zuccari G. Reactive Oxygen Species (ROS)-Mediated Antibacterial Oxidative Therapies: Available Methods to Generate ROS and a Novel Option Proposal. Int J Mol Sci 2024; 25:7182. [PMID: 39000290 PMCID: PMC11241369 DOI: 10.3390/ijms25137182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The increasing emergence of multidrug-resistant (MDR) pathogens causes difficult-to-treat infections with long-term hospitalizations and a high incidence of death, thus representing a global public health problem. To manage MDR bacteria bugs, new antimicrobial strategies are necessary, and their introduction in practice is a daily challenge for scientists in the field. An extensively studied approach to treating MDR infections consists of inducing high levels of reactive oxygen species (ROS) by several methods. Although further clinical investigations are mandatory on the possible toxic effects of ROS on mammalian cells, clinical evaluations are extremely promising, and their topical use to treat infected wounds and ulcers, also in presence of biofilm, is already clinically approved. Biochar (BC) is a carbonaceous material obtained by pyrolysis of different vegetable and animal biomass feedstocks at 200-1000 °C in the limited presence of O2. Recently, it has been demonstrated that BC's capability of removing organic and inorganic xenobiotics is mainly due to the presence of persistent free radicals (PFRs), which can activate oxygen, H2O2, or persulfate in the presence or absence of transition metals by electron transfer, thus generating ROS, which in turn degrade pollutants by advanced oxidation processes (AOPs). In this context, the antibacterial effects of BC-containing PFRs have been demonstrated by some authors against Escherichia coli and Staphylococcus aureus, thus giving birth to our idea of the possible use of BC-derived PFRs as a novel method capable of inducing ROS generation for antimicrobial oxidative therapy. Here, the general aspects concerning ROS physiological and pathological production and regulation and the mechanism by which they could exert antimicrobial effects have been reviewed. The methods currently adopted to induce ROS production for antimicrobial oxidative therapy have been discussed. Finally, for the first time, BC-related PFRs have been proposed as a new source of ROS for antimicrobial therapy via AOPs.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| | - Gian Carlo Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| |
Collapse
|
18
|
Gomes SIL, Zanoni I, Blosi M, Costa AL, Hristozov D, Scott-Fordsmand JJ, Amorim MJB. Safe and sustainable by design Ag nanomaterials: A case study to evaluate the bio-reactivity in the environment using a soil model invertebrate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171860. [PMID: 38518823 DOI: 10.1016/j.scitotenv.2024.171860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Safe-and-sustainable-by-design (SSbD) nanomaterials (NMs) or NM-containing products are a priority. Silver (Ag) NMs have a vast array of applications, including biomedical and other products, even as nanopesticides. Thus, their release to the environment is expected to increase. The aim of the present study was to assess the ecotoxicity of the SSbD Ag NM to the soil model species Enchytraeus crypticus (Oligochaeta). The Ag NM tested consists in a SSbD Ag with biomedical applications, a hydroxyethyl cellulose (HEC) coated Ag NMs (AgHEC) and its toxicity was compared to the naked Ag NMs (Ag-Sigma), an Ag-based biomedical product (PLLA-Ag: Poly l-Lactide microfibers doped with Ag), and AgNO3. Effects were assessed both in soil and aqueous media, following the standard OECD guideline in soil (28 days) and the OECD extension (56 days), and short-term pulse (5 days) in aqueous media: reconstituted water (ISO water) and soil:water (S:W) extracts, followed by a 21-days recovery period in soil. Ag materials were thoroughly characterized as synthesized and during the test in media and animals. Results in S:W showed AgHEC was more toxic than Ag-Sigma (ca. 150 times) and PLLA-Ag (ca. 2.5 times), associated with a higher Ag uptake. Higher toxicity was related to a smaller hydrodynamic size and higher suspension stability, which in turn resulted in a higher bioavailability of Ag NMs and released ions, particularly in S:W. Toxicity was correlated with the main physicochemical features, providing useful prediction of AgNMs bioactivity. The ability to test E. crypticus in a range of media with different and/or increasing complexity (water, S:W extracts, soil) provided an excellent source to interpret results and is here recommended.
Collapse
Affiliation(s)
- Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ilaria Zanoni
- National Research Council of Italy (CNR) - Institute of Science Technology and Sustainability for Ceramics (ISSMC), Via Granolo 64, I-48018 Faenza, Italy
| | - Magda Blosi
- National Research Council of Italy (CNR) - Institute of Science Technology and Sustainability for Ceramics (ISSMC), Via Granolo 64, I-48018 Faenza, Italy
| | - Anna L Costa
- National Research Council of Italy (CNR) - Institute of Science Technology and Sustainability for Ceramics (ISSMC), Via Granolo 64, I-48018 Faenza, Italy
| | - Danail Hristozov
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172 Venice, Italy
| | | | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
19
|
Paul S, Verma S, Chen YC. Peptide Dendrimer-Based Antibacterial Agents: Synthesis and Applications. ACS Infect Dis 2024; 10:1034-1055. [PMID: 38428037 PMCID: PMC11019562 DOI: 10.1021/acsinfecdis.3c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Pathogenic bacteria cause the deaths of millions of people every year. With the development of antibiotics, hundreds and thousands of people's lives have been saved. Nevertheless, bacteria can develop resistance to antibiotics, rendering them insensitive to antibiotics over time. Peptides containing specific amino acids can be used as antibacterial agents; however, they can be easily degraded by proteases in vivo. To address these issues, branched peptide dendrimers are now being considered as good antibacterial agents due to their high efficacy, resistance to protease degradation, and low cytotoxicity. The ease with which peptide dendrimers can be synthesized and modified makes them accessible for use in various biological and nonbiological fields. That is, peptide dendrimers hold a promising future as antibacterial agents with prolonged efficacy without bacterial resistance development. Their in vivo stability and multivalence allow them to effectively target multi-drug-resistant strains and prevent biofilm formation. Thus, it is interesting to have an overview of the development and applications of peptide dendrimers in antibacterial research, including the possibility of employing machine learning approaches for the design of AMPs and dendrimers. This review summarizes the synthesis and applications of peptide dendrimers as antibacterial agents. The challenges and perspectives of using peptide dendrimers as the antibacterial agents are also discussed.
Collapse
Affiliation(s)
- Suchita Paul
- Institute
of Semiconductor Technology, National Yang
Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Sandeep Verma
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
- Gangwal
School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Yu-Chie Chen
- Institute
of Semiconductor Technology, National Yang
Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
20
|
Ribeiro de Carvalho G, Kudaka AM, Fares Sampar J, Alvares LE, Delarmelina C, Duarte MCT, Lona LMF. Quaternization of cassava starch and determination of antimicrobial activity against bacteria and coronavirus. Carbohydr Res 2024; 538:109098. [PMID: 38527408 DOI: 10.1016/j.carres.2024.109098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
This study describes the novel development of quaternized cassava starch (Q-CS) with antimicrobial and antiviral properties, particularly effective against the MHV-3 coronavirus. The preparation of Q-CS involved the reaction of cassava starch (CS) with glycidyltrimethylammonium chloride (GTMAC) in an alkaline solution. Q-CS physicochemical properties were determined by FTIR, NMR, elemental analysis, zeta potential, TGA, and moisture sorption. FTIR and NMR spectra confirmed the introduction of cationic groups in the CS structure. The elemental analysis revealed a degree of substitution (DS) of 0.552 of the cationic reagent on the hydroxyl groups of CS. Furthermore, Q-CS exhibited a positive zeta potential value (+28.6 ± 0.60 mV) attributed to the high positive charge density shown by the quaternary ammonium groups. Q-CS demonstrated lower thermal stability and higher moisture sorption compared to CS. The antimicrobial activity of Q-CS was confirmed against Escherichia coli (MIC = 0.156 mg mL-1) and Staphylococcus aureus (MIC = 0.312 mg mL-1), along with a remarkable ability to inactivate 99% of MHV-3 coronavirus after only 1 min of direct contact. Additionally, Q-CS showed high cell viability (close to 100%) and minimal cytotoxicity effects, guaranteeing its safe use. Therefore, these findings indicate the potential use of Q-CS as a raw material for antiseptic biomaterials.
Collapse
Affiliation(s)
- Guilherme Ribeiro de Carvalho
- Department of Bioprocesses and Materials Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Amanda Miki Kudaka
- Department of Bioprocesses and Materials Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Jórdan Fares Sampar
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Lúcia Elvira Alvares
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Camila Delarmelina
- Chemical, Biological and Agricultural Pluridisciplinary Research Center, University of Campinas (UNICAMP), Paulínia, SP, Brazil
| | - Marta Cristina Teixeira Duarte
- Chemical, Biological and Agricultural Pluridisciplinary Research Center, University of Campinas (UNICAMP), Paulínia, SP, Brazil
| | - Liliane Maria Ferrareso Lona
- Department of Bioprocesses and Materials Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
21
|
Bacchetti F, Schito AM, Milanese M, Castellaro S, Alfei S. Anti Gram-Positive Bacteria Activity of Synthetic Quaternary Ammonium Lipid and Its Precursor Phosphonium Salt. Int J Mol Sci 2024; 25:2761. [PMID: 38474008 DOI: 10.3390/ijms25052761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Organic ammonium and phosphonium salts exert excellent antimicrobial effects by interacting lethally with bacterial membranes. Particularly, quaternary ammonium lipids have demonstrated efficiency both as gene vectors and antibacterial agents. Here, aiming at finding new antibacterial devices belonging to both classes, we prepared a water-soluble quaternary ammonium lipid (6) and a phosphonium salt (1) by designing a synthetic path where 1 would be an intermediate to achieve 6. All synthesized compounds were characterized by Fourier-transform infrared spectroscopy and Nuclear Magnetic Resonance. Additionally, potentiometric titrations of NH3+ groups 1 and 6 were performed to further confirm their structure by determining their experimental molecular weight. The antibacterial activities of 1 and 6 were assessed first against a selection of multi-drug-resistant clinical isolates of both Gram-positive and Gram-negative species, observing remarkable antibacterial activity of both compounds against Gram-positive isolates of Enterococcus and Staphylococcus genus. Further investigations on a wider variety of strains of these species confirmed the remarkable antibacterial effects of 1 and 6 (MICs = 4-16 and 4-64 µg/mL, respectively), while 24 h-time-killing experiments carried out with 1 on different S. aureus isolates evidenced a bacteriostatic behavior. Moreover, both compounds 1 and 6, at the lower MIC concentration, did not show significant cytotoxic effects when exposed to HepG2 human hepatic cell lines, paving the way for their potential clinical application.
Collapse
Affiliation(s)
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
| | - Marco Milanese
- Department of Pharmacy, University of Genoa, 16148 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Sara Castellaro
- Department of Pharmacy, University of Genoa, 16148 Genoa, Italy
| | - Silvana Alfei
- Department of Pharmacy, University of Genoa, 16148 Genoa, Italy
| |
Collapse
|
22
|
Ji S, An F, Zhang T, Lou M, Guo J, Liu K, Zhu Y, Wu J, Wu R. Antimicrobial peptides: An alternative to traditional antibiotics. Eur J Med Chem 2024; 265:116072. [PMID: 38147812 DOI: 10.1016/j.ejmech.2023.116072] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/04/2023] [Accepted: 12/17/2023] [Indexed: 12/28/2023]
Abstract
As antibiotic-resistant bacteria and genes continue to emerge, the identification of effective alternatives to traditional antibiotics has become a pressing issue. Antimicrobial peptides are favored for their safety, low residue, and low resistance properties, and their unique antimicrobial mechanisms show significant potential in combating antibiotic resistance. However, the high production cost and weak activity of antimicrobial peptides limit their application. Moreover, traditional laboratory methods for identifying and designing new antimicrobial peptides are time-consuming and labor-intensive, hindering their development. Currently, novel technologies, such as artificial intelligence (AI) are being employed to develop and design new antimicrobial peptide resources, offering new opportunities for the advancement of antimicrobial peptides. This article summarizes the basic characteristics and antimicrobial mechanisms of antimicrobial peptides, as well as their advantages and limitations, and explores the application of AI in antimicrobial peptides prediction amd design. This highlights the crucial role of AI in enhancing the efficiency of antimicrobial peptide research and provides a reference for antimicrobial drug development.
Collapse
Affiliation(s)
- Shuaiqi Ji
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, PR China
| | - Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, PR China
| | - Taowei Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, PR China
| | - Mengxue Lou
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, PR China
| | - Jiawei Guo
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, PR China
| | - Kexin Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, PR China
| | - Yi Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, PR China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, PR China.
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, PR China.
| |
Collapse
|
23
|
Cao Z, Qin Z, Duns GJ, Huang Z, Chen Y, Wang S, Deng R, Nie L, Luo X. Repair of Infected Bone Defects with Hydrogel Materials. Polymers (Basel) 2024; 16:281. [PMID: 38276689 PMCID: PMC10820481 DOI: 10.3390/polym16020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Infected bone defects represent a common clinical condition involving bone tissue, often necessitating surgical intervention and antibiotic therapy. However, conventional treatment methods face obstacles such as antibiotic resistance and susceptibility to postoperative infections. Hydrogels show great potential for application in the field of tissue engineering due to their advantageous biocompatibility, unique mechanical properties, exceptional processability, and degradability. Recent interest has surged in employing hydrogels as a novel therapeutic intervention for infected bone repair. This article aims to comprehensively review the existing literature on the anti-microbial and osteogenic approaches utilized by hydrogels in repairing infected bones, encompassing their fabrication techniques, biocompatibility, antimicrobial efficacy, and biological activities. Additionally, the potential opportunities and obstacles in their practical implementation will be explored. Lastly, the limitations presently encountered and the prospective avenues for further investigation in the realm of hydrogel materials for the management of infected bone defects will be deliberated. This review provides a theoretical foundation and advanced design strategies for the application of hydrogel materials in the treatment of infected bone defects.
Collapse
Affiliation(s)
- Zhenmin Cao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Z.C.); (Z.Q.); (Z.H.); (Y.C.); (S.W.); (R.D.)
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China;
| | - Zuodong Qin
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Z.C.); (Z.Q.); (Z.H.); (Y.C.); (S.W.); (R.D.)
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China;
| | - Gregory J. Duns
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China;
| | - Zhao Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Z.C.); (Z.Q.); (Z.H.); (Y.C.); (S.W.); (R.D.)
| | - Yao Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Z.C.); (Z.Q.); (Z.H.); (Y.C.); (S.W.); (R.D.)
| | - Sheng Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Z.C.); (Z.Q.); (Z.H.); (Y.C.); (S.W.); (R.D.)
| | - Ruqi Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Z.C.); (Z.Q.); (Z.H.); (Y.C.); (S.W.); (R.D.)
| | - Libo Nie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Z.C.); (Z.Q.); (Z.H.); (Y.C.); (S.W.); (R.D.)
| | - Xiaofang Luo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Z.C.); (Z.Q.); (Z.H.); (Y.C.); (S.W.); (R.D.)
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China;
| |
Collapse
|
24
|
Hasnain M, Kanwal T, Rehman K, Rehman SRU, Aslam S, Roome T, Perveen S, Zaidi MB, Saifullah S, Yasmeen S, Hasan A, Shah MR. Microarray needles comprised of arginine-modified chitosan/PVA hydrogel for enhanced antibacterial and wound healing potential of curcumin. Int J Biol Macromol 2023; 253:126697. [PMID: 37673138 DOI: 10.1016/j.ijbiomac.2023.126697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Wound healing is a multifaceted and complex process that includes inflammation, hemostasis, remodeling, and granulation. Failures in any link may cause the healing process to be delayed. As a result, wound healing has always been a main research focus across the entire medical field, posing significant challenges and financial burdens. Hence, the current investigation focused on the design and development of arginine-modified chitosan/PVA hydrogel-based microneedles (MNs) as a curcumin (CUR) delivery system for improved wound healing and antibacterial activity. The substrate possesses exceptional swelling capabilities that allow tissue fluid from the wound to be absorbed, speeding up wound closure. The antibacterial activity of MNs was investigated against S. aureus and E. coli. The results revealed that the developed CUR-loaded MNs had increased antioxidant activity and sustained drug release behavior. Furthermore, after being loaded in the developed MNs, it revealed improved antibacterial activity of CUR. Wound healing potential was assessed by histopathological analysis and wound closure%. The observed results suggest that the CUR-loaded MNs greatly improved wound healing potential via tissue regeneration and collagen deposition, demonstrating the potential of developed MNs patches to be used as an effective carrier for wound healing in healthcare settings.
Collapse
Affiliation(s)
- Muhammad Hasnain
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Tasmina Kanwal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khadija Rehman
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Syed Raza Ur Rehman
- Mechanical and Industrial Engineering, Qatar University, 2713, Doha, Qatar; Biomedical Research Center, Qatar University, 2713, Doha, Qatar.
| | - Shazmeen Aslam
- Dow Institute for Advanced Biological and Animal Research, Dow International Medical College, Dow University of Health Sciences, Karachi 74200, Pakistan.
| | - Talat Roome
- Dow Institute for Advanced Biological and Animal Research, Dow International Medical College, Dow University of Health Sciences, Karachi 74200, Pakistan; Molecular Pathology Section, Department of Pathology, Dow Diagnostic Reference and Research Laboratory, Dow University of Health Sciences, Karachi 74200, Pakistan.
| | - Samina Perveen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Midhat Batool Zaidi
- Dow Institute for Advanced Biological and Animal Research, Dow International Medical College, Dow University of Health Sciences, Karachi 74200, Pakistan.
| | - Salim Saifullah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Pakistan Forest Institute Peshawar, Pakistan
| | - Saira Yasmeen
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Anwarul Hasan
- Mechanical and Industrial Engineering, Qatar University, 2713, Doha, Qatar; Biomedical Research Center, Qatar University, 2713, Doha, Qatar
| | - Muhammad Raza Shah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
25
|
de Barros RA, Rodrigues MA, Ambrósio SR, SolaVeneziani RC, Júnior DP, Parreira RLT, Ambrósio MALV, de Souza Silva T, de Freitas Pereira L, Pessinato MG, da Silva Cardoso de Brito VJ, Branco CH, Dias FGG. Polyhexamethylene guanidine hydrochloride as promising active ingredient for oral antiseptic products to eliminate microorganisms threatening the health of endangered wild cats: a comparative study with chlorhexidine digluconate. Braz J Microbiol 2023; 54:3211-3220. [PMID: 37651088 PMCID: PMC10689303 DOI: 10.1007/s42770-023-01107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
The aim of this study was to evaluate the antimicrobial efficacy of polyhexamethylene hydrochloride guanidine (PHMGH) compared to chlorhexidine digluconate (CLX) for use as an oral antiseptic during dental procedures in wild cats. This research is crucial due to limited information on the diversity of oral microorganisms in wild cats and the detrimental local and systemic effects of oral diseases, which highlights the importance of improving prevention and treatment strategies. Samples were collected from the oral cavities of four Puma concolor, one Panthera onca, and one Panthera leo, and the number of colony-forming units per milliliter (CFU/mL) was counted and semi-automatically identified. The antimicrobial susceptibility profile of bacterial isolates was determined using minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and time-kill kinetics of PHMGH and CLX. A total of 16 bacterial isolates were identified, consisting of six Gram-positive and 10 Gram-negative. PHMGH displayed MIC and MBC from 0.24 to 125.00 μg/mL, lower than those of CLX against three isolates. Time-kill kinetics showed that PHMGH reduced the microbial load by over 90% for all microorganisms within 30 min, whereas CLX did not. Only two Gram-positive isolates exposed to the polymer showed incomplete elimination after 60 min of contact. The results could aid in the development of effective prevention and treatment strategies for oral diseases in large felids. PHMGH showed promising potential at low concentrations and short contact times compared to the commercial product CLX, making it a possible active ingredient in oral antiseptic products for veterinary use in the future.
Collapse
Affiliation(s)
- Renata Alves de Barros
- Department of Postgraduate Program in Animal Science, University of Franca (UNIFRAN), Av. Dr. Armando Salles Oliveira, 201, Parque Universitário, CEP 14, Franca, SP, 404-600, Brazil
| | - Marcela Aldrovani Rodrigues
- Department of Postgraduate Program in Animal Science, University of Franca (UNIFRAN), Av. Dr. Armando Salles Oliveira, 201, Parque Universitário, CEP 14, Franca, SP, 404-600, Brazil
| | - Sérgio Ricardo Ambrósio
- Department of Postgraduate Program in Animal Science, University of Franca (UNIFRAN), Av. Dr. Armando Salles Oliveira, 201, Parque Universitário, CEP 14, Franca, SP, 404-600, Brazil
| | - Rodrigo Cássio SolaVeneziani
- Department of Postgraduate Program in Animal Science, University of Franca (UNIFRAN), Av. Dr. Armando Salles Oliveira, 201, Parque Universitário, CEP 14, Franca, SP, 404-600, Brazil
| | - Daniel Paulino Júnior
- Department of Postgraduate Program in Animal Science, University of Franca (UNIFRAN), Av. Dr. Armando Salles Oliveira, 201, Parque Universitário, CEP 14, Franca, SP, 404-600, Brazil
| | - Renato Luis Tame Parreira
- Department of Postgraduate Program in Sciences, University of Franca (UNIFRAN), Av. Dr. Armando Salles Oliveira, 201, Parque Universitário, CEP 14, Franca, SP, 404-600, Brazil
| | - Maria Anita Lemos Vasconcelos Ambrósio
- Department of Postgraduate Program in Sciences, University of Franca (UNIFRAN), Av. Dr. Armando Salles Oliveira, 201, Parque Universitário, CEP 14, Franca, SP, 404-600, Brazil
| | - Thayná de Souza Silva
- Department of Postgraduate Program in Sciences, University of Franca (UNIFRAN), Av. Dr. Armando Salles Oliveira, 201, Parque Universitário, CEP 14, Franca, SP, 404-600, Brazil
| | - Lucas de Freitas Pereira
- Department of Veterinary Medicine, University of Franca (UNIFRAN), Av. Dr. Armando Salles Oliveira, 201, Parque Universitário, CEP 14, Franca, SP, 404-600, Brazil
| | - Messias Gonçalves Pessinato
- Department of Veterinary Medicine, University of Franca (UNIFRAN), Av. Dr. Armando Salles Oliveira, 201, Parque Universitário, CEP 14, Franca, SP, 404-600, Brazil
| | - Vinícius José da Silva Cardoso de Brito
- Department of Postgraduate Program in Animal Science in the Tropics, Federal University of Bahia (UFBA), Av. Milton Santos, s/n° - Ondina, CEP, Salvador, BA, 40170-110, Brazil
| | - César Henrique Branco
- Fábio Barreto Municipal Zoo Forest, Rua da Liberdade, s/n°, Campos Elísios, CEP, Ribeirão Preto, SP, 14085-250, Brazil
| | - Fernanda Gosuen Gonçalves Dias
- Department of Postgraduate Program in Animal Science, University of Franca (UNIFRAN), Av. Dr. Armando Salles Oliveira, 201, Parque Universitário, CEP 14, Franca, SP, 404-600, Brazil.
| |
Collapse
|
26
|
Burmeister N, Zorn E, Preuss L, Timm D, Scharnagl N, Rohnke M, Wicha SG, Streit WR, Maison W. Low-Fouling and Antibacterial Polymer Brushes via Surface-Initiated Polymerization of a Mixed Zwitterionic and Cationic Monomer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38033196 DOI: 10.1021/acs.langmuir.3c02657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The use of surface-grafted polymer brushes with combined low-fouling and antibacterial functionality is an attractive strategy to fight biofilm formation. This report describes a new styrene derivative combining a quaternary ammonium group with a sulfobetaine group in one monomer. Surface-initiated polymerization of this monomer on titanium and a polyethylene (PE) base material gave bifunctional polymer brush layers. Grafting was achieved via surface-initiated atom transfer radical polymerization from titanium or heat-induced free-radical polymerization from plasma-activated PE. Both techniques gave charged polymer layers with a thickness of over 750 nm, as confirmed by ToF-SIMS-SPM measurements. The chemical composition of the brush polymers was confirmed by XPS and FT-IR analysis. The surface charge, characterized by the ζ potential, was positive at different pH values, and the number of solvent-accessible excess ammonium groups was found to be ∼1016 N+/cm2. This led to strong antibacterial activity against Gram-positive and Gram-negative bacteria that was superior to a structurally related contact-active polymeric quaternary ammonium brush. In addition to this antibacterial activity, good low-fouling properties of the dual-function polymer brushes against Gram-positive and Gram-negative bacteria were found. This dual functionality is most likely due to the combination of antibacterial quaternary ammonium groups with antifouling sulfobetaines. The combination of both groups in one monomer allows the preparation of bifunctional brush polymers with operationally simple polymerization techniques.
Collapse
Affiliation(s)
- Nils Burmeister
- Department of Chemistry, Universität Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Eilika Zorn
- Department of Chemistry, Universität Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Lena Preuss
- Department of Microbiology and Biotechnology, Universität Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Donovan Timm
- Department of Chemistry, Universität Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Nico Scharnagl
- Helmholtz-Zentrum Hereon GmbH, Institute of Surface Science, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - Marcus Rohnke
- Justus-Liebig-Universität Gießen, Institute of Physical Chemistry, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Sebastian G Wicha
- Department of Chemistry, Universität Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, Universität Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Wolfgang Maison
- Department of Chemistry, Universität Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany
| |
Collapse
|
27
|
Whitehead KA, Lynch S, Amin M, Deisenroth T, Liauw CM, Verran J. Effects of Cationic and Anionic Surfaces on the Perpendicular and Lateral Forces and Binding of Aspergillus niger Conidia. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2932. [PMID: 37999286 PMCID: PMC10674310 DOI: 10.3390/nano13222932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023]
Abstract
The binding of conidia to surfaces is a prerequisite for biofouling by fungal species. In this study, Aspergillus niger subtypes 1957 and 1988 were used which produced differently shaped conidia (round or spikey respectively). Test surfaces were characterised for their surface topography, wettability, and hardness. Conidial assays included perpendicular and lateral force measurements, as well as attachment, adhesion and retention assays. Anionic surfaces were less rough (Ra 2.4 nm), less wettable (54°) and harder (0.72 GPa) than cationic surfaces (Ra 5.4 nm, 36° and 0.5 GPa, respectively). Perpendicular and lateral force assays demonstrated that both types of conidia adhered with more force to the anionic surfaces and were influenced by surface wettability. Following the binding assays, fewer A. niger 1957 and A. niger 1988 conidia bound to the anionic surface. However, surface wettability affected the density and dispersion of the conidia on the coatings, whilst clustering was affected by their spore shapes. This work demonstrated that anionic surfaces were more repulsive to A. niger 1998 spores than cationic surfaces were, but once attached, the conidia bound more firmly to the anionic surfaces. This work informs on the importance of understanding how conidia become tightly bound to surfaces, which can be used to prevent biofouling.
Collapse
Affiliation(s)
- Kathryn A. Whitehead
- Microbiology at Interfaces, Manchester Metropolitan University, Chester St., Manchester M1 5GD, UK; (M.A.); (C.M.L.)
| | - Stephen Lynch
- Department of Computing and Mathematics, Manchester Metropolitan University, Chester St., Manchester M1 5GD, UK;
| | - Mohsin Amin
- Microbiology at Interfaces, Manchester Metropolitan University, Chester St., Manchester M1 5GD, UK; (M.A.); (C.M.L.)
| | - Ted Deisenroth
- BASF Corporation (Formerly Ciba Speciality Chemicals Inc.), Tarrytown, NY 10591, USA;
| | - Christopher M. Liauw
- Microbiology at Interfaces, Manchester Metropolitan University, Chester St., Manchester M1 5GD, UK; (M.A.); (C.M.L.)
| | - Joanna Verran
- Microbiology at Interfaces, Manchester Metropolitan University, Chester St., Manchester M1 5GD, UK; (M.A.); (C.M.L.)
| |
Collapse
|
28
|
Nakatsuji M, Sato N, Sakamoto S, Watanabe K, Teruuchi Y, Takeuchi M, Inui T, Ishihara H. Non-electrostatic interactions associated with aggregate formation between polyallylamine and Escherichia coli. Sci Rep 2023; 13:14793. [PMID: 37684326 PMCID: PMC10491771 DOI: 10.1038/s41598-023-42120-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/05/2023] [Indexed: 09/10/2023] Open
Abstract
Bacterial aggregation by mixing with polymers is applied as pretreatment to identify pathogens in patients with infectious diseases. However, the detailed interaction between polymers and bacteria has yet to be fully understood. Here, we investigate the interaction between polyallylamine and Escherichia coli by isothermal titration calorimetry. Aggregation was observed at pH 10 and the binding was driven by favorable enthalpic gain such as the electrostatic interaction. Neither aggregation nor the apparent heat of binding was observed at pH 4.0, despite the strong positive charge of polyallylamine. These results suggest that intermolecular repulsive forces of the abundant positive charge of polyallylamine cause an increased loss of conformational entropy by binding. Non-electrostatic interaction plays a critical role for aggregation.
Collapse
Affiliation(s)
- Masatoshi Nakatsuji
- Research and Development Headquarters, Nitto Boseki Co., Ltd., 2-4-1 Kojimachi, Chiyoda-ku, Tokyo, 102-8489, Japan
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Natsuki Sato
- Research and Development Headquarters, Nitto Boseki Co., Ltd., 2-4-1 Kojimachi, Chiyoda-ku, Tokyo, 102-8489, Japan
| | - Shiho Sakamoto
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Koji Watanabe
- Specialty Chemicals Division, Nittobo Medical Co., Ltd., 1 Shiojima, Fukuhara, Fukuyama, Koriyama, Fukushima, 963-8061, Japan
| | - Yoko Teruuchi
- Specialty Chemicals Division, Nittobo Medical Co., Ltd., 1 Shiojima, Fukuhara, Fukuyama, Koriyama, Fukushima, 963-8061, Japan
| | - Minoru Takeuchi
- Research and Development Headquarters, Nitto Boseki Co., Ltd., 2-4-1 Kojimachi, Chiyoda-ku, Tokyo, 102-8489, Japan
| | - Takashi Inui
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
- Laboratory of Biological Macromolecules, Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
| | - Hideki Ishihara
- Research and Development Headquarters, Nitto Boseki Co., Ltd., 2-4-1 Kojimachi, Chiyoda-ku, Tokyo, 102-8489, Japan.
| |
Collapse
|
29
|
Guo M, Zhang X, Ismail BB, He Q, Yang Z, Xianyu Y, Liu W, Zhou J, Ye X, Liu D. Super Antibacterial Capacity and Cell Envelope-Disruptive Mechanism of Ultrasonically Grafted N-Halamine PBAT/PBF Films against Escherichia coli. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38910-38929. [PMID: 37550824 DOI: 10.1021/acsami.3c05378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Antibacterial materials are urgently needed to combat bacterial contamination, growth, or attachment on contact surfaces, as bacterial infections remain a public health crisis worldwide. Here, a novel ultrasound-assisted method is utilized for the first time to fabricate oxidative chlorine-loaded AH@PBAT/PBF-Cl films with more superior grafting efficiency and rechargeable antibacterial effect than those from conventional techniques. The films remarkably inactivate 99.9999% Escherichia coli and Staphylococcus aureus cells, inducing noticeable cell deformations and mechanical instability. The specific antibacterial mechanism against E. coli used as a model organism is unveiled using several cell envelope structural and functional analyses combined with proteomics, peptidoglycomics, and fluorescence probe techniques. Film treatment partially neutralizes the bacterial surface charge, induces oxidative stress and cytoskeleton deformity, alters membrane properties, and disrupts the expression of key proteins involved in the synthesis and transport of the lipopolysaccharide and peptidoglycan, indicating the cell envelope as the primary target. The films specifically target lipopolysaccharides, resulting in structural impairment of the polysaccharide and lipid A components, and inhibit peptidoglycan precursor synthesis. Together, these lead to metabolic disorders, membrane dysfunction, structural collapse, and eventual death. Given the films' antibacterial effects via the disruption of key cell envelope components, they can potentially combat a wide range of bacteria. These findings lay a theoretical basis for developing efficient antibacterial materials for food safety or biomedical applications.
Collapse
Affiliation(s)
- Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Zhehao Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jianwei Zhou
- School of Mechatronics and Energy Engineering, NingboTech University, Ningbo 315100, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
30
|
Venezia V, Verrillo M, Avallone PR, Silvestri B, Cangemi S, Pasquino R, Grizzuti N, Spaccini R, Luciani G. Waste to Wealth Approach: Improved Antimicrobial Properties in Bioactive Hydrogels through Humic Substance-Gelatin Chemical Conjugation. Biomacromolecules 2023. [PMID: 37167573 DOI: 10.1021/acs.biomac.3c00143] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Exploring opportunities for biowaste valorization, herein, humic substances (HS) were combined with gelatin, a hydrophilic biocompatible and bioavailable polymer, to obtain 3D hydrogels. Hybrid gels (Gel HS) were prepared at different HS contents, exploiting physical or chemical cross-linking, through 1-ethyl-(3-3-dimethylaminopropyl)carbodiimide (EDC) chemistry, between HS and gelatin. Physicochemical features were assessed through rheological measurements, X-ray diffraction, attenuated total reflectance (ATR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and scanning electron microscopy (SEM). ATR and NMR spectroscopies suggested the formation of an amide bond between HS and Gel via EDC chemistry. In addition, antioxidant and antimicrobial features toward both Gram(-) and Gram(+) strains were evaluated. HS confers great antioxidant and widespread antibiotic performance to the whole gel. Furthermore, the chemical cross-linking affects the viscoelastic behavior, crystalline structures, water uptake, and functional performance and produces a marked improvement of biocide action.
Collapse
Affiliation(s)
- Virginia Venezia
- DICMaPI, Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples 80125, Italy
- DiSt, Department of Structures for Engineering and Architecture, University of Naples Federico II, Naples 80125, Italy
| | - Mariavittoria Verrillo
- Department of Agricultural Science, University of Naples Federico II, Portici 80125, Italy
| | - Pietro Renato Avallone
- DICMaPI, Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples 80125, Italy
| | - Brigida Silvestri
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Naples 80125, Italy
| | - Silvana Cangemi
- Department of Agricultural Science, University of Naples Federico II, Portici 80125, Italy
| | - Rossana Pasquino
- DICMaPI, Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples 80125, Italy
| | - Nino Grizzuti
- DICMaPI, Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples 80125, Italy
| | - Riccardo Spaccini
- Department of Agricultural Science, University of Naples Federico II, Portici 80125, Italy
| | - Giuseppina Luciani
- DICMaPI, Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples 80125, Italy
| |
Collapse
|
31
|
Kanakari E, Dendrinou-Samara C. Fighting Phytopathogens with Engineered Inorganic-Based Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2388. [PMID: 36984268 PMCID: PMC10052108 DOI: 10.3390/ma16062388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The development of effective and ecofriendly agrochemicals, including bactericides, fungicides, insecticides, and nematicides, to control pests and prevent plant diseases remains a key challenge. Nanotechnology has provided opportunities for the use of nanomaterials as components in the development of anti-phytopathogenic agents. Indeed, inorganic-based nanoparticles (INPs) are among the promising ones. They may play an effective role in targeting and killing microbes via diverse mechanisms, such as deposition on the microbe surface, destabilization of cell walls and membranes by released metal ions, and the induction of a toxic mechanism mediated by the production of reactive oxygen species. Considering the lack of new agrochemicals with novel mechanisms of action, it is of particular interest to determine and precisely depict which types of INPs are able to induce antimicrobial activity with no phytotoxicity effects, and which microbe species are affected. Therefore, this review aims to provide an update on the latest advances in research focusing on the study of several types of engineered INPs, that are well characterized (size, shape, composition, and surface features) and show promising reactivity against assorted species (bacteria, fungus, virus). Since effective strategies for plant protection and plant disease management are urgently needed, INPs can be an excellent alternative to chemical agrochemical agents as indicated by the present studies.
Collapse
|
32
|
Wang G, Cui Y, Liu H, Tian Y, Li S, Fan Y, Sun S, Wu D, Peng C. Antibacterial peptides-loaded bioactive materials for the treatment of bone infection. Colloids Surf B Biointerfaces 2023; 225:113255. [PMID: 36924650 DOI: 10.1016/j.colsurfb.2023.113255] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Bacterial bone infection in open fractures is an urgent problem to solve in orthopedics. Antimicrobial peptides (AMPs), as a part of innate immune defense, have good biocompatibility. Their antibacterial mechanism and therapeutic application against bacteria have been widely studied. Compared with traditional antibiotics, AMPs do not easily cause bacterial resistance and can be a reliable substitute for antibiotics in the future. Therefore, various physical and chemical strategies have been developed for the combined application of AMPs and bioactive materials to infected sites, which are conducive to maintaining the local stability of AMPs, reducing many complications, and facilitating bone infection resolution. This review explored the molecular structure, function, and direct and indirect antibacterial mechanisms of AMPs, introduced two important AMPs (LL-37 and β-defensins) in bone tissues, and reviewed advanced AMP loading strategies and different bioactive materials. Finally, the latest progress and future development of AMPs-loaded bioactive materials for the promotion of bone infection repair were discussed. This study provided a theoretical basis and application strategy for the treatment of bone infection with AMP-loaded bioactive materials.
Collapse
Affiliation(s)
- Gan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yutao Cui
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yuhang Tian
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Shaorong Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yi Fan
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Shouye Sun
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Dankai Wu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China.
| | - Chuangang Peng
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China.
| |
Collapse
|
33
|
Pyrazole-Enriched Cationic Nanoparticles Induced Early- and Late-Stage Apoptosis in Neuroblastoma Cells at Sub-Micromolar Concentrations. Pharmaceuticals (Basel) 2023; 16:ph16030393. [PMID: 36986492 PMCID: PMC10056113 DOI: 10.3390/ph16030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Neuroblastoma (NB) is a severe form of tumor occurring mainly in young children and originating from nerve cells found in the abdomen or next to the spine. NB needs more effective and safer treatments, as the chance of survival against the aggressive form of this disease are very small. Moreover, when current treatments are successful, they are often responsible for unpleasant health problems which compromise the future and life of surviving children. As reported, cationic macromolecules have previously been found to be active against bacteria as membrane disruptors by interacting with the negative constituents of the surface of cancer cells, analogously inducing depolarization and permeabilization, provoking lethal damage to the cytoplasmic membrane, and cause loss of cytoplasmic content and consequently, cell death. Here, aiming to develop new curative options for counteracting NB cells, pyrazole-loaded cationic nanoparticles (NPs) (BBB4-G4K and CB1H-P7 NPs), recently reported as antibacterial agents, were assayed against IMR 32 and SHSY 5Y NB cell lines. Particularly, while BBB4-G4K NPs demonstrated low cytotoxicity against both NB cell lines, CB1H-P7 NPs were remarkably cytotoxic against both IMR 32 and SHSY 5Y cells (IC50 = 0.43–0.54 µM), causing both early-stage (66–85%) and late-stage apoptosis (52–65%). Interestingly, in the nano-formulation of CB1H using P7 NPs, the anticancer effects of CB1H and P7 were increased by 54–57 and 2.5–4-times, respectively against IMR 32 cells, and by 53–61 and 1.3–2 times against SHSY 5Y cells. Additionally, based on the IC50 values, CB1H-P7 was also 1-12-fold more potent than fenretinide, an experimental retinoid derivative in a phase III clinical trial, with remarkable antineoplastic and chemopreventive properties. Collectively, due to these results and their good selectivity for cancer cells (selectivity indices = 2.8–3.3), CB1H-P7 NPs represent an excellent template material for developing new treatment options against NB.
Collapse
|
34
|
Ozsoy F, Ozay O. Phosphazene-based nanostructures modified with gold nanoparticles as drug and gene carrier materials with antibacterial and antifungal properties. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2022.2163642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Fatma Ozsoy
- Department of Bioengineering, School of Graduate Studies, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Ozgur Ozay
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| |
Collapse
|
35
|
Alfei S, Zuccari G, Russo E, Villa C, Brullo C. Hydrogel Formulations of Antibacterial Pyrazoles Using a Synthesized Polystyrene-Based Cationic Resin as a Gelling Agent. Int J Mol Sci 2023; 24:ijms24021109. [PMID: 36674627 PMCID: PMC9862678 DOI: 10.3390/ijms24021109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Here, to develop new topical antibacterial formulations to treat staphylococcal infections, two pyrazoles (3c and 4b) previously reported as antibacterial agents, especially against staphylococci, were formulated as hydrogels (R1-HG-3c and R1HG-4b) using a cationic polystyrene-based resin (R1) and here synthetized and characterized as gelling agents. Thanks to the high hydrophilicity, high-level porosity, and excellent swelling capabilities of R1, R1HG-3c and R1HG-4b were achieved with an equilibrium degree of swelling (EDS) of 765% (R1HG-3c) and 675% (R1HG-4b) and equilibrium water content (EWC) of 88% and 87%, respectively. The chemical structure of soaked and dried gels was investigated by PCA-assisted attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy, while their morphology was investigated by optical microscopy. Weight loss studies were carried out with R1HG-3c and R1HG-4b to investigate their water release profiles and the related kinetics, while their stability was evaluated over time both by monitoring their inversion properties to detect possible impairments of the 3D network and by PCA-assisted ATR-FTIR spectroscopy to detect possible structural changes. The flow and dynamic rheological characterization of the gels was assessed by determining their viscosity vs. shear rate, applying the Cross rheological equation to achieve the curves of shear stress vs. shear rate, and carrying out amplitude and frequency sweep experiments. Finally, their content in NH3+ groups was determined by potentiometric titrations. Due to their favorable physicochemical characteristic and the antibacterial effects of 3c and 4b possibly improved by the cationic R1, the pyrazole-enriched gels reported here could represent new weapons to treat severe skin and wound infections sustained by MDR bacteria of staphylococcal species.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, Section of Chemistry and Pharmaceutical and Food Technologies, University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
- Correspondence: (S.A.); (G.Z.); Tel.: +39-010-355-2296 (S.A.)
| | - Guendalina Zuccari
- Department of Pharmacy, Section of Chemistry and Pharmaceutical and Food Technologies, University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
- Correspondence: (S.A.); (G.Z.); Tel.: +39-010-355-2296 (S.A.)
| | - Eleonora Russo
- Department of Pharmacy (DIFAR), Section of Medicinal Chemistry and Cosmetic Product, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Carla Villa
- Department of Pharmacy (DIFAR), Section of Medicinal Chemistry and Cosmetic Product, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Chiara Brullo
- Department of Pharmacy (DIFAR), Section of Medicinal Chemistry and Cosmetic Product, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| |
Collapse
|
36
|
Elgamal AM, Abu Elella MH, Saad GR, Abd El-Ghany NA. Synthesis, characterization and swelling behavior of high-performance antimicrobial biocompatible copolymer based on carboxymethyl xanthan. MATERIALS TODAY COMMUNICATIONS 2022; 33:104209. [DOI: 10.1016/j.mtcomm.2022.104209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
37
|
A Self-Forming Hydrogel from a Bactericidal Copolymer: Synthesis, Characterization, Biological Evaluations and Perspective Applications. Int J Mol Sci 2022; 23:ijms232315092. [PMID: 36499417 PMCID: PMC9741259 DOI: 10.3390/ijms232315092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Objects touched by patients and healthcare workers in hospitals may harbor pathogens, including multi-drug resistant (MDR) staphylococci, enterococci (VRE), Escherichia coli, Acinetobacter, and Pseudomonas species. Medical devices contaminated by these pathogens may also act as a source of severe and difficult-to-treat human infections, thus becoming a critical public health concern requiring urgent resolutions. To this end, we recently reported the bactericidal effects of a cationic copolymer (CP1). Here, aiming at developing a bactericidal formulation possibly to be used either for surfaces disinfection or to treat skin infections, CP1 was formulated as a hydrogel (CP1_1.1-Hgel). Importantly, even if not cross-linked, CP1 formed the gel upon simple dispersion in water, without requiring gelling agents or other additives which could be skin-incompatible or interfere with CP1 bactericidal effects in possible future topical applications. CP1_1.1-Hgel was characterized by attenuated-total-reflectance Fourier transform infrared (ATR-FTIR) and UV-Vis spectroscopy, as well as optic and scanning electron microscopy (OM and SEM) to investigate its chemical structure and morphology. Its stability was assessed by monitoring its inversion properties over time at room temperature, while its mechanical characteristics were assessed by rheological experiments. Dose-dependent cytotoxicity studies performed on human fibroblasts for 24 h with gel samples obtained by diluting CP_1.1-Hgel at properly selected concentrations established that the 3D network formation did not significantly affect the cytotoxic profile of CP1. Also, microbiologic investigations carried out on two-fold serial dilutions of CP1-gel confirmed the minimum inhibitory concentrations (MICs) previously reported for the not formulated CP1.Selectivity indices values up to 12 were estimated by the values of LD50 and MICs determined here on gel samples.
Collapse
|
38
|
Rangel-Núñez C, Molina-Pinilla I, Ramírez-Trujillo C, Suárez-Cruz A, Martínez SB, Bueno-Martínez M. Tackling Antibiotic Resistance: Influence of Aliphatic Branches on Broad-Spectrum Antibacterial Polytriazoles against ESKAPE Group Pathogens. Pharmaceutics 2022; 14:pharmaceutics14112518. [PMID: 36432710 PMCID: PMC9692804 DOI: 10.3390/pharmaceutics14112518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
One of the most important threats to public health is the appearance of multidrug-resistant pathogenic bacteria, since they are the cause of a high number of deaths worldwide. Consequently, the preparation of new effective antibacterial agents that do not generate antimicrobial resistance is urgently required. We report on the synthesis of new linear cationic antibacterial polytriazoles that could be a potential source of new antibacterial compounds. These polymers were prepared by thermal- or copper-catalyzed click reactions of azide and alkyne functions. The antibacterial activity of these materials can be modulated by varying the size or nature of their side chains, as this alters the hydrophilic/hydrophobic balance. Antibacterial activity was tested against pathogens of the ESKAPE group. The P3TD polymer, which has butylated side chains, was found to have the highest bactericidal activity. The toxicity of selected polytriazoles was investigated using human red blood cells and a human gingival fibroblast cell line. The propensity of prepared polytriazoles to induce resistance in certain bacteria was studied. Some of them were found to not produce resistance in methicillin-resistant Staphylococcus aureus or Pseudomonas aeruginosa. The interaction of these polytriazoles with the Escherichia coli membrane produces both depolarization and disruption of the membrane.
Collapse
Affiliation(s)
- Cristian Rangel-Núñez
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | - Inmaculada Molina-Pinilla
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | - Cristina Ramírez-Trujillo
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | - Adrián Suárez-Cruz
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | | | - Manuel Bueno-Martínez
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
- Correspondence:
| |
Collapse
|
39
|
Mutual Jellification of Two Bactericidal Cationic Polymers: Synthesis and Physicochemical Characterization of a New Two-Component Hydrogel. Pharmaceutics 2022; 14:pharmaceutics14112444. [PMID: 36432635 PMCID: PMC9692830 DOI: 10.3390/pharmaceutics14112444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Here, a new two-component hydrogel (CP1OP2-Hgel) was developed, simply by dispersing in water two cationic bactericidal polymers (CP1 and OP2) effective against several multidrug-resistant (MDR) clinical isolates of the most relevant Gram-positive and Gram-negative species. Interestingly, while OP2 acts only as an antibacterial ingredient when in gel, CP1 works as both an antibacterial and a gelling agent. To verify whether it would be worthwhile to use CP1 and OP2 as bioactive ingredients of a new hydrogel supposed for a future treatment of skin infections, dose-dependent cytotoxicity studies with CP1 and OP2 were performed on human fibroblasts for 24 h, before preparing the formulation. Although a significant cytotoxicity at concentrations > 2 µM was evidenced for both polymers, selectivity indices (SIs) over 12 (CP1) and up to six (OP2) were determined, due to the powerful antibacterial properties of the two polymers, thus supporting the rationale for their formulation as a hydrogel. The chemical structure and morphology of CP1OP2-Hgel were investigated by PCA-assisted attenuated total reflectance (ATR) Fourier-transform infrared (FTIR) analysis and scanning electron microscopy (SEM), while its rheological properties were assessed by determining its dynamic viscosity. The cumulative weight loss and swelling percentage curves, the porosity, and the maximum swelling capability of CP1OP2-Hgel were also determined and reported. Overall, due to the potent bactericidal effects of CP1 and OP2 and their favorable selectivity indices against several MDR pathogens, good rheological properties, high porosity, and strong swelling capability, CP1OP2-Hgel may, in the future, become a new weapon for treating severe nosocomial skin infections or infected chronic wounds. Further investigations in this sense are currently being carried out.
Collapse
|
40
|
Schito AM, Caviglia D, Piatti G, Alfei S. A Highly Efficient Polystyrene-Based Cationic Resin to Reduce Bacterial Contaminations in Water. Polymers (Basel) 2022; 14:polym14214690. [PMID: 36365682 PMCID: PMC9654381 DOI: 10.3390/polym14214690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Nowadays, new water disinfection materials attract a lot of attention for their cost-saving and ease of application. Nevertheless, the poor durability of the matrices and the loss of physically incorporated or chemically attached antibacterial agents that can occur during water purification processes considerably limit their prolonged use. In this study, a polystyrene-based cationic resin (R4) with intrinsic broad-spectrum antibacterial effects was produced without needing to be enriched with additional antibacterial agents that could detach during use. Particularly, R4 was achieved by copolymerizing 4-ammonium-butyl-styrene (4-ABSTY) with N,N-dimethylacrylamide (DMAA) and using N-(2-acryloylamino-ethyl)-acrylamide (AAEA) as a cross-linker. The R4 obtained showed a spherical morphology, micro-dimensioned particles, high hydrophilicity, high-level porosity, and excellent swelling capabilities. Additionally, the swollen R4 to its maximum swelling capability, when dried with gentle heating for 3 h, released water following the Higuchi’s kinetics, thus returning to the original structure. In time–kill experiments on the clinical isolates of multidrug-resistant (MDR) pathogens of fecal origin, such as enterococci, Group B Salmonella species, and Escherichia coli, R4 showed rapid bactericidal effects on enterococci and Salmonella, and reduced E. coli viable cells by 99.8% after 4 h. When aqueous samples artificially infected by a mixture of the same bacteria of fecal origin were exposed for different times to R4 in a column, simulating a water purification system, 4 h of contact was sufficient for R4 to show the best bacterial killing efficiency of 99%. Overall, thanks to its physicochemical properties, killing efficiency, low costs of production, and scalability, R4 could become a cost-effective material for building systems to effectively reduce bacterial, even polymicrobial, water contamination.
Collapse
Affiliation(s)
- Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy
- Correspondence: (A.M.S.); (S.A.); Tel.: +39-010-355-2296 (S.A.)
| | - Debora Caviglia
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy
| | - Gabriella Piatti
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy
| | - Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
- Correspondence: (A.M.S.); (S.A.); Tel.: +39-010-355-2296 (S.A.)
| |
Collapse
|
41
|
Takahashi H, Sovadinova I, Yasuhara K, Vemparala S, Caputo GA, Kuroda K. Biomimetic antimicrobial polymers—Design, characterization, antimicrobial, and novel applications. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1866. [PMID: 36300561 DOI: 10.1002/wnan.1866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Biomimetic antimicrobial polymers have been an area of great interest as the need for novel antimicrobial compounds grows due to the development of resistance. These polymers were designed and developed to mimic naturally occurring antimicrobial peptides in both physicochemical composition and mechanism of action. These antimicrobial peptide mimetic polymers have been extensively investigated using chemical, biophysical, microbiological, and computational approaches to gain a deeper understanding of the molecular interactions that drive function. These studies have helped inform SARs, mechanism of action, and general physicochemical factors that influence the activity and properties of antimicrobial polymers. However, there are still lingering questions in this field regarding 3D structural patterning, bioavailability, and applicability to alternative targets. In this review, we present a perspective on the development and characterization of several antimicrobial polymers and discuss novel applications of these molecules emerging in the field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Haruko Takahashi
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Hiroshima Japan
| | - Iva Sovadinova
- RECETOX, Faculty of Science Masaryk University Brno Czech Republic
| | - Kazuma Yasuhara
- Division of Materials Science, Graduate School of Science and Technology Nara Institute of Science and Technology Nara Japan
- Center for Digital Green‐Innovation Nara Institute of Science and Technology Nara Japan
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences CIT Campus Chennai India
- Homi Bhabha National Institute Training School Complex Mumbai India
| | - Gregory A. Caputo
- Department of Chemistry & Biochemistry Rowan University Glassboro New Jersey USA
| | - Kenichi Kuroda
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
42
|
Luo X, Song Y, Cao Z, Qin Z, Dessie W, He N, Wang Z, Tan Y. Evaluation of the antimicrobial activities and mechanisms of synthetic antimicrobial peptide against food-borne pathogens. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
43
|
Basavegowda N, Baek KH. Combination Strategies of Different Antimicrobials: An Efficient and Alternative Tool for Pathogen Inactivation. Biomedicines 2022; 10:2219. [PMID: 36140320 PMCID: PMC9496525 DOI: 10.3390/biomedicines10092219] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the discovery and development of an array of antimicrobial agents, multidrug resistance poses a major threat to public health and progressively increases mortality. Recently, several studies have focused on developing promising solutions to overcome these problems. This has led to the development of effective alternative methods of controlling antibiotic-resistant pathogens. The use of antimicrobial agents in combination can produce synergistic effects if each drug invades a different target or signaling pathway with a different mechanism of action. Therefore, drug combinations can achieve a higher probability and selectivity of therapeutic responses than single drugs. In this systematic review, we discuss the combined effects of different antimicrobial agents, such as plant extracts, essential oils, and nanomaterials. Furthermore, we review their synergistic interactions and antimicrobial activities with the mechanism of action, toxicity, and future directions of different antimicrobial agents in combination. Upon combination at an optimum synergistic ratio, two or more drugs can have a significantly enhanced therapeutic effect at lower concentrations. Hence, using drug combinations could be a new, simple, and effective alternative to solve the problem of antibiotic resistance and reduce susceptibility.
Collapse
Affiliation(s)
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38451, Korea
| |
Collapse
|
44
|
Alfei S, Caviglia D, Piatti G, Zuccari G, Schito AM. Synthesis, Characterization and Broad-Spectrum Bactericidal Effects of Ammonium Methyl and Ammonium Ethyl Styrene-Based Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162743. [PMID: 36014607 PMCID: PMC9416641 DOI: 10.3390/nano12162743] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 05/14/2023]
Abstract
Untreatable infections, growing healthcare costs, and increasing human mortality due to the rising resistance of bacteria to most of the available antibiotics are global phenomena that urgently require the discovery of new and effective antimicrobial agents. Cationic macromolecules, acting as membrane disruptors, are widely studied, and several compounds, including two styrene-based copolymers developed by us (P5 and P7), have proved to possess potent broad-spectrum antibacterial effects, regardless of the resistance profiles of the bacteria. Here, we first reported the synthesis and physicochemical characterization of new cationic nanoparticles (NPs) (CP1 and OP2), obtained by polymerizing the monomers 4-ammoniummethylstyrene (4-AMSTY) and 4-ammoniumethylstyrene (4-AESTY) hydrochlorides, whose structures were designed using the cationic monomers of P5 and P7 as template compounds. The antibacterial activity of CP1 and OP2 was assessed against several Gram-positive and Gram-negative multi-drug resistant (MDR) pathogens, observing potent antibacterial effects for both CP1 (MICs = 0.1-0.8 µM) and OP2 (MICs = 0.35-2.8 µM) against most of the tested isolates. Additionally, time-killing studies carried out with CP1 and OP2 on different strains of the most clinically relevant MDR species demonstrated that they kill pathogens rapidly. Due to their interesting physicochemical characteristics, which could enable their mutual formulation as hydrogels, CP1 and OP2 could represent promising ingredients for the development of novel antibacterial dosage forms for topical applications, capable of overcoming severe infections sustained by bacteria resistant to the presently available antibiotics.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
| | - Debora Caviglia
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV-6, 16132 Genoa, Italy
| | - Gabriella Piatti
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV-6, 16132 Genoa, Italy
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV-6, 16132 Genoa, Italy
| |
Collapse
|
45
|
Colonic delivery of surface charge decorated nanocarrier for IBD therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Lin ZI, Tsai HL, Liu GL, Lu XH, Cheng PW, Chi PL, Wang CK, Tsai TH, Wang CC, Yang JHC, Ko BT, Chen CK. Preparation of CO 2 -based Cationic Polycarbonate/Polyacrylonitrile Nanofibers with an Optimal Fibrous Microstructure for Antibacterial Applications. Macromol Biosci 2022; 22:e2200178. [PMID: 35902381 DOI: 10.1002/mabi.202200178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/24/2022] [Indexed: 11/12/2022]
Abstract
Utilizing CO2 as one of the monomer resource, poly(vinylcyclohexene carbonates) (PVCHCs) are used as the precursor for preparing cationic PVCHCs (CPVCHCs) via thiol-ene click functionalization. Through the functionalization, CPVCHC-43 with a tertiary amine density of 43% relative to the backbone is able to display a significantly antibacterial ability against Staphylococcus aureus (S. aureus). Blending CPVCHC-43 with polyacrylonitrile (PAN), CPVCHC/PAN nanofiber meshes (NFMs) have been successfully prepared by electrospinning. More importantly, two crucial fibrous structural factors including CPVCHC/PAN weight ratio and fiber diameter have been systematically investigated for the effects on the antibacterial performance of the NFMs. Sequentially, a quaternization treatment has been employed on the NFMs with an optimal fibrous structure to enhance the antibacterial ability. The resulting quaternized NFMs have demonstrated the great biocidal effects against Gram-positive and Gram-negative bacteria. Moreover, the excellent biocompatibility of the quaternized NFMs have also been thoroughly evaluated and verified. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Han-Lin Tsai
- Division of Cardiology and Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, 60002, Taiwan
| | - Guan-Lin Liu
- Department of Chemistry, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Xie-Hong Lu
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan.,Department of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Pei-Ling Chi
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Chih-Kuang Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Tzu-Hsien Tsai
- Division of Cardiology and Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, 60002, Taiwan
| | - Chih-Chia Wang
- Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, 33509, Taiwan.,System Engineering and Technology Program, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Jason Hsiao Chun Yang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Bao-Tsan Ko
- Department of Chemistry, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
47
|
Corti MB, Campagno LP, Romero VL, Gutierrez S, Alovero FL. Cationic polymer contributes to broaden the spectrum of vancomycin activity achieving eradication of Pseudomonas aeruginosa. Arch Microbiol 2022; 204:507. [PMID: 35859215 DOI: 10.1007/s00203-022-03117-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 01/24/2023]
Abstract
Vancomycin (VAN) is unable to penetrate the outer membrane of Gram-negative bacteria and reach the target site. One approach to overcome this limitation is to associate it with compounds with permeabilizing or antimicrobial properties. Eudragit E100® (Eu) is a cationic polymer insufficiently characterized for its potential antimicrobial action. Eu-VAN combinations were characterized, the antimicrobial efficacy against Pseudomonas aeruginosa was evaluated and previous studies on the effects of Eu on bacterial envelopes were extended. Time-kill assays showed eradication of P. aeruginosa within 3-6 h exposure to Eu-VAN, whilst VAN was ineffective. Eu showed regrowth in 24 h and delayed colony pigmentation. Although permeabilization of bacterial envelopes or morphological alterations observed by TEM and flow cytometry after exposure to Eu were insufficient to cause bacterial death, they allowed access of VAN to the target site, since Eu-VAN/Van-FL-treated cultures showed fluorescent staining in all bacterial cells, indicating Van-FL internalization. Consequently, Eu potentiated the activity of an otherwise inactive antibiotic against P. aeruginosa. Moreover, Eu-VAN combinations exhibited improved physicochemical properties and could be used in the development of therapeutic alternatives in the treatment of bacterial keratitis.
Collapse
Affiliation(s)
- Melisa B Corti
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba and Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Medina Allende y Haya de la Torre, Edificio Ciencias II, X5000HUA, Ciudad Universitaria, Córdoba, Argentina
| | - Luciana P Campagno
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba and Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Medina Allende y Haya de la Torre, Edificio Ciencias II, X5000HUA, Ciudad Universitaria, Córdoba, Argentina
| | - Verónica L Romero
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba and Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Medina Allende y Haya de la Torre, Edificio Ciencias II, X5000HUA, Ciudad Universitaria, Córdoba, Argentina
- Instituto de Farmacología Experimental de Córdoba (IFEC), CONICET and Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Silvina Gutierrez
- Centro de Microscopia Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Fabiana L Alovero
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba and Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Medina Allende y Haya de la Torre, Edificio Ciencias II, X5000HUA, Ciudad Universitaria, Córdoba, Argentina.
| |
Collapse
|
48
|
Valenti GE, Alfei S, Caviglia D, Domenicotti C, Marengo B. Antimicrobial Peptides and Cationic Nanoparticles: A Broad-Spectrum Weapon to Fight Multi-Drug Resistance Not Only in Bacteria. Int J Mol Sci 2022; 23:ijms23116108. [PMID: 35682787 PMCID: PMC9181033 DOI: 10.3390/ijms23116108] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
In the last few years, antibiotic resistance and, analogously, anticancer drug resistance have increased considerably, becoming one of the main public health problems. For this reason, it is crucial to find therapeutic strategies able to counteract the onset of multi-drug resistance (MDR). In this review, a critical overview of the innovative tools available today to fight MDR is reported. In this direction, the use of membrane-disruptive peptides/peptidomimetics (MDPs), such as antimicrobial peptides (AMPs), has received particular attention, due to their high selectivity and to their limited side effects. Moreover, similarities between bacteria and cancer cells are herein reported and the hypothesis of the possible use of AMPs also in anticancer therapies is discussed. However, it is important to take into account the limitations that could negatively impact clinical application and, in particular, the need for an efficient delivery system. In this regard, the use of nanoparticles (NPs) is proposed as a potential strategy to improve therapy; moreover, among polymeric NPs, cationic ones are emerging as promising tools able to fight the onset of MDR both in bacteria and in cancer cells.
Collapse
Affiliation(s)
- Giulia E. Valenti
- Department of Experimental Medicine (DIMES), General Pathology Section, University of Genoa, 16132 Genoa, Italy; (G.E.V.); (B.M.)
| | - Silvana Alfei
- Department of Pharmacy, University of Genoa, 16148 Genoa, Italy;
| | - Debora Caviglia
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy;
| | - Cinzia Domenicotti
- Department of Experimental Medicine (DIMES), General Pathology Section, University of Genoa, 16132 Genoa, Italy; (G.E.V.); (B.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
- Correspondence: ; Tel.: +39-010-353-8830
| | - Barbara Marengo
- Department of Experimental Medicine (DIMES), General Pathology Section, University of Genoa, 16132 Genoa, Italy; (G.E.V.); (B.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| |
Collapse
|
49
|
Fahrina A, Arahman N, Aprilia S, Bilad MR, Silmina S, Sari WP, Sari IM, Gunawan P, Pasaoglu ME, Vatanpour V, Koyuncu I, Rajabzadeh S. Functionalization of PEG-AgNPs Hybrid Material to Alleviate Biofouling Tendency of Polyethersulfone Membrane. Polymers (Basel) 2022; 14:polym14091908. [PMID: 35567077 PMCID: PMC9102394 DOI: 10.3390/polym14091908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 01/25/2023] Open
Abstract
Membrane-based processes are a promising technology in water and wastewater treatments, to supply clean and secure water. However, during membrane filtration, biofouling phenomena severely hamper the performance, leading to permanent detrimental impacts. Moreover, regular chemical cleaning is ineffective in the long-run for overcoming biofouling, because it weakens the membrane structure. Therefore, the development of a membrane material with superior anti-biofouling performance is seen as an attractive option. Hydrophilic-anti-bacterial precursor polyethylene glycol-silver nanoparticles (PEG-AgNPs) were synthesized in this study, using a sol-gel method, to mitigate biofouling on the polyethersulfone (PES) membrane surface. The functionalization of the PEG-AgNP hybrid material on a PES membrane was achieved through a simple blending technique. The PES/PEG-AgNP membrane was manufactured via the non-solvent induced phase separation method. The anti-biofouling performance was experimentally measured as the flux recovery ratio (FRR) of the prepared membrane, before and after incubation in E. coli culture for 48 h. Nanomaterial characterization confirmed that the PEG-AgNPs had hydrophilic-anti-bacterial properties. The substantial improvements in membrane performance after adding PEG-AgNPs were evaluated in terms of the water flux and FRR after the membranes experienced biofouling. The results showed that the PEG-AgNPs significantly increased the water flux of the PES membrane, from 2.87 L·m−2·h−1 to 172.84 L·m−2·h−1. The anti-biofouling performance of the PES pristine membrane used as a benchmark showed only 1% FRR, due to severe biofouling. In contrast, the incorporation of PEG-AgNPs in the PES membrane decreased live bacteria by 98%. It enhanced the FRR of anti-biofouling up to 79%, higher than the PES/PEG and PES/Ag membranes.
Collapse
Affiliation(s)
- Afrillia Fahrina
- Doctoral Program, School of Engineering, Post Graduate Program, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia;
- Department of Chemical Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia; (S.A.); (S.S.); (W.P.S.); (I.M.S.)
| | - Nasrul Arahman
- Department of Chemical Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia; (S.A.); (S.S.); (W.P.S.); (I.M.S.)
- Graduate School of Environmental Management, Universitas Syiah Kuala, Jl. Tgk. Chik Pante Kulu No. 5, Banda Aceh 23111, Indonesia
- Research Center for Environmental and Natural Resources, Universitas Syiah Kuala, Jl. Hamzah Fansuri, No. 4, Banda Aceh 23111, Indonesia
- Atsiri Research Center, PUI, Universitas Syiah Kuala, Jl. Syeh A Rauf, No. 5, Banda Aceh 23111, Indonesia
- Correspondence:
| | - Sri Aprilia
- Department of Chemical Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia; (S.A.); (S.S.); (W.P.S.); (I.M.S.)
- Graduate School of Environmental Management, Universitas Syiah Kuala, Jl. Tgk. Chik Pante Kulu No. 5, Banda Aceh 23111, Indonesia
| | - Muhammad Roil Bilad
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam;
| | - Silmina Silmina
- Department of Chemical Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia; (S.A.); (S.S.); (W.P.S.); (I.M.S.)
| | - Widia Puspita Sari
- Department of Chemical Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia; (S.A.); (S.S.); (W.P.S.); (I.M.S.)
| | - Indah Maulana Sari
- Department of Chemical Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia; (S.A.); (S.S.); (W.P.S.); (I.M.S.)
| | - Poernomo Gunawan
- School of Chemical and Biomedical Engineering, Nanyang Technological, University Singapore, Singapore 627833, Singapore;
| | - Mehmet Emin Pasaoglu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (M.E.P.); (V.V.); (I.K.)
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Vahid Vatanpour
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (M.E.P.); (V.V.); (I.K.)
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (M.E.P.); (V.V.); (I.K.)
| | - Saeid Rajabzadeh
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Rokkodai-Cho 1-1, Nadaku, Kobe 657-0000, Japan;
| |
Collapse
|
50
|
Potent and Broad-Spectrum Bactericidal Activity of a Nanotechnologically Manipulated Novel Pyrazole. Biomedicines 2022; 10:biomedicines10040907. [PMID: 35453657 PMCID: PMC9029483 DOI: 10.3390/biomedicines10040907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 12/11/2022] Open
Abstract
The antimicrobial potency of the pyrazole nucleus is widely reported these days, and pyrazole derivatives represent excellent candidates for meeting the worldwide need for new antimicrobial compounds against multidrug-resistant (MDR) bacteria. Consequently, 3-(4-chlorophenyl)-5-(4-nitrophenylamino)-1H-pyrazole-4-carbonitrile (CR232), recently reported as a weak antiproliferative agent, was considered to this end. To overcome the CR232 water solubility issue and allow for the determination of reliable minimum inhibitory concentration values (MICs), we initially prepared water-soluble and clinically applicable CR232-loaded nanoparticles (CR232-G5K NPs), as previously reported. Here, CR232-G5K NPs have been tested on several clinically isolates of Gram-positive and Gram-negative species, including MDR strains. While for CR232 MICs ≥ 128 µg/mL (376.8 µM) were obtained, very low MICs (0.36–2.89 µM) were observed for CR232-G5K NPs against all of the considered isolates, including colistin-resistant isolates of MDR Pseudomonas aeruginosa and Klebsiella pneumoniae carbapenemases (KPCs)-producing K. pneumoniae (0.72 µM). Additionally, in time–kill experiments, CR232-G5K NPs displayed a rapid bactericidal activity with no significant regrowth after 24 h on all isolates tested, regardless of their difficult-to-treat resistance. Conjecturing a clinical use of CR232-G5K NPs, cytotoxicity experiments on human keratinocytes were performed, determining very favorable selectivity indices. Collectively, due to its physicochemical and biological properties, CR232-G5K NPs could represent a new potent weapon to treat infections sustained by broad spectrum MDR bacteria.
Collapse
|