1
|
An Y, Li F, Di Y, Zhang X, Lu J, Wang L, Yan Z, Wang W, Liu M, Fei P. Hydrophobic Modification of Cellulose Acetate and Its Application in the Field of Water Treatment: A Review. Molecules 2024; 29:5127. [PMID: 39519768 PMCID: PMC11547652 DOI: 10.3390/molecules29215127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
With the inherent demand for hydrophobic materials in processes such as membrane distillation and unidirectional moisture conduction, the preparation and application development of profiles such as modified cellulose acetate membranes that have both hydrophobic functions and biological properties have become a research hotspot. Compared with the petrochemical polymer materials used in conventional hydrophobic membrane preparation, cellulose acetate, as the most important cellulose derivative, exhibits many advantages, such as a high natural abundance, good film forming, and easy modification and biodegradability, and it is a promising polymer raw material for environmental purification. This paper focuses on the research progress of the hydrophobic cellulose acetate preparation process and its current application in the water-treatment and resource-utilization fields. It provides a detailed introduction and comparison of the technical characteristics, existing problems, and development trends of micro- and nanostructure and chemical functional surface construction in the hydrophobic modification of cellulose acetate. Further review was conducted and elaborated on the applications of hydrophobic cellulose acetate membranes and other profiles in oil-water separation, brine desalination, water-repellent protective materials, and other separation/filtration fields. Based on the analysis of the technological and performance advantages of profile products such as hydrophobic cellulose acetate membranes, it is noted that key issues need to be addressed and urgently resolved for the further development of hydrophobic cellulose acetate membranes. This will provide a reference basis for the expansion and application of high-performance cellulose acetate membrane products in the environmental field.
Collapse
Affiliation(s)
- Yaxin An
- College of Textile Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Fu Li
- College of Textile Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Youbo Di
- College of Textile Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | | | - Jianjun Lu
- College of Textile Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Le Wang
- College of Textile Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Zhifeng Yan
- College of Textile Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Wei Wang
- College of Textile Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Mei Liu
- College of Textiles and Apparel, Quanzhou Normal University, Quanzhou 362000, China
| | - Pengfei Fei
- College of Textile Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| |
Collapse
|
2
|
Sun Y, Mazzotta MG, Miller CA, Apprill A, Izallalen M, Mazumder S, Perri ST, Edwards B, Reddy CM, Ward CP. Distinct microbial communities degrade cellulose diacetate bioplastics in the coastal ocean. Appl Environ Microbiol 2023; 89:e0165123. [PMID: 38054734 PMCID: PMC10734458 DOI: 10.1128/aem.01651-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/23/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Cellulose diacetate (CDA) is a promising alternative to conventional plastics due to its versatility in manufacturing and low environmental persistence. Previously, our group demonstrated that CDA is susceptible to biodegradation in the ocean on timescales of months. In this study, we report the composition of microorganisms driving CDA degradation in the coastal ocean. We found that the coastal ocean harbors distinct bacterial taxa implicated in CDA degradation and these taxa have not been previously identified in prior CDA degradation studies, indicating an unexplored diversity of CDA-degrading bacteria in the ocean. Moreover, the shape of the plastic article (e.g., a fabric, film, or foam) and plasticizer in the plastic matrix selected for different microbial communities. Our findings pave the way for future studies to identify the specific species and enzymes that drive CDA degradation in the marine environment, ultimately yielding a more predictive understanding of CDA biodegradation across space and time.
Collapse
Affiliation(s)
- Yanchen Sun
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | | | - Carolyn A. Miller
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Amy Apprill
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | | | | | | | | | - Christopher M. Reddy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Collin P. Ward
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
3
|
Rub HA, Deghles A, Hamed O, Azzaoui K, Hammouti B, Taleb M, Berisha A, Dagdag O, Mansour W, Hacıosmanoğlu GG, Can ZS, Rhazi L. Cellulose based polyurethane with amino acid functionality: Design, synthesis, computational study and application in wastewater purification. Int J Biol Macromol 2023; 239:124328. [PMID: 37019199 DOI: 10.1016/j.ijbiomac.2023.124328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Contamination in water is due to various environmental pollutants from natural and anthropogen activities. To remove toxic metals from contaminated water, we developed a novel adsorbent in foam form based on an olive industry waste material. The foam synthesis involved oxidation of cellulose extracted from the waste to dialdehyde, functionalization of the cellulose dialdehyde with an amino acid group, reacting the functionalized cellulose with hexamethylene diisocyanate and p-phenylene diisocyanate to produce the target polyurethanes Cell-F-HMDIC and Cell-F-PDIC, respectively. The optimum condition for lead(II) adsorption by Cell-F-HMDIC and Cell-F-PDIC were determined. The foams show the ability to quantitatively remove most of metal ions present in a real sample of sewage. The kinetic and thermodynamic studies confirmed a spontaneous metal ion binding to the foams with a second pseudo-order adsorption rate. The adsorption study revealed it obeys the Langmuir isotherm model. The experimental Qe values of both foams Cell-F-PDIC and Cell-F-HMDIC were 2.1929 and 2.0345 mg/g, respectively. Monte Carlo (MC) and Dynamic (MD) and simulations showed excellent affinity of both foams for lead ions with high adsorption negative energy value indicating vigorous interactions of Pb(II) with the adsorbent surface. The results indicate the usefulness of the developed foam in commercial applications. ENVIRONMENTAL IMPLICATION: Elimination of metal ions from contaminated environments is important for a number of reasons. They are toxic to humans via interaction with biomolecules, resulting in disruption of the metabolism and biological activities of many proteins. They are toxic to plants. Industrial effluents and/or wastewater discharged from production processes, contain a considerable amount of metal ions. In this work, the use of naturally produced materials, such as olive waste biomass, as adsorbents for environmental remediation has received great attention. This biomass represents unused resources and presents serious disposal problems. We demonstrated that such materials are capable of selectively adsorbing metal ions.
Collapse
|
4
|
Bose N, Rajappan K, Selvam S, Natesan G, Danagody B. CeO 2@PU sandwiched in chitosan and cellulose acetate layer as Cs-CeO 2@PU-CA triple-layered membrane for chromium removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42679-42696. [PMID: 35902527 DOI: 10.1007/s11356-022-22078-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The single or blended polymer membrane lacks a few advantages based on the durability of the membrane. The novel triple-layered sandwich membrane Cs-CeO2@PU-CA membrane is cast through the phase inversion technique for chromium removal. This approach involves an arrangement of the top layer as chitosan which acts as a protective layer, and the sandwich layer of CeO2@PU membrane which acts as source for stability, and a supportive layer of cellulose acetate is arranged accordingly. The incorporation of cerium oxide nanoparticles into the polyurethane can create pores on the surface of the membrane due to the high aspect ratio of cerium oxide. The triple-layered arrangement shows higher porosity via water contact angle, the network of pores present on the membrane which is visible through morphology, and also the intermediate sandwich layer CeO2@PU provided with better mechanical strength which would be significant for changes achieved in adsorption technique. The batch adsorption was carried out with various ppm of Cr(VI) solution. The effect of pH, contact time, initial concentration, and temperature were analyzed and optimized for determining efficiency of chromium removal. Furthermore, the suitable adsorption isotherm and kinetics of the system were also determined for better fit via Langmuir, Freundlich, Temkin, and Sips along with pseudo-first-order and pseudo-second-order. The efficiency in adsorption is due to the prominent presence of hydroxyl, carboxyl, and hydrophilic group in the prepared membrane. Thus, the resultant prepared membrane can act as a potential chromium removal substrate.
Collapse
Affiliation(s)
- Neeraja Bose
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, India
| | - Kalaivizhi Rajappan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, India.
| | - Sivasankari Selvam
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, India
| | - Gowriboy Natesan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, India
| | - Balaganesh Danagody
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, India
| |
Collapse
|
5
|
PREPARATION AND CHARACTERIZATION OF PEGDE-EDTA-MODIFIED MAGNETIC CHITOSAN MICROSPHERE AS AN ECO-FRIENDLY ADSORBENT FOR METHYLENE BLUE REMOVAL. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
6
|
Tan WB, Luo D, Song W, Lu YY, Cheng N, Zhang JB, Huang T, Wang Y. Polydopamine-assisted polyethyleneimine grafting on electrospun cellulose acetate/TiO2 fibers towards highly efficient removal of Cr(VI). Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Hazarika KK, Konwar A, Borah A, Saikia A, Barman P, Hazarika S. Cellulose nanofiber mediated natural dye based biodegradable bag with freshness indicator for packaging of meat and fish. Carbohydr Polym 2022; 300:120241. [DOI: 10.1016/j.carbpol.2022.120241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/02/2022]
|
8
|
Nisah K, Rahmi, Ramli M, Iqhrammullah M, Mitaphonna R, Hartadi BS, Abdulmadjid S, Md Sani ND, Idroes R, Safitri E. Controlling the diffusion of micro-volume Pb solution on hydrophobic polyurethane membrane for quantitative analysis using laser-induced breakdown spectroscopy (LIBS). ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
9
|
Riana U, Ramli M, Iqrammullah M, Raharjo Y, Wibisono Y. Development of Chitosan/Rice Husk-Based Silica Composite Membranes for Biodiesel Purification. MEMBRANES 2022; 12:membranes12040435. [PMID: 35448404 PMCID: PMC9027765 DOI: 10.3390/membranes12040435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023]
Abstract
Inorganic–organic composite membranes (IOCMs) are an alternative separation method developed for their straightforward process, economic benefits, and ease of scaling up. The IOCMs in this study were prepared from a biopolymer chitosan matrix and rice husk-based silica filler to remove impurities from crude biodiesel. The IOCMs were prepared through phase inversions, in which the priorly prepared silica particles were dispersed in the dope solution of chitosan. The maximum loading of the silica particles was 60%, capable of reducing the soap level, free glycerol level, and acid number from 547.9 to 12.2 mg/L, 54 to 0.041%, and 2.02 to 1.12 mgKOH/g. These reduced impurity values have satisfied the standardized quality. The chemical composition and morphology of the IOCM was characterized using Fourier-transform infrared spectroscopy and scanning electron microscope–energy dispersive X-Ray spectroscopy. The IOCM water absorption-based porosity and swelling degree were studied as well. Further investigation using isothermal modeling revealed the adsorption dependency against the Sips model equation (R2 = 0.99 and root-mean-square errors = 1.77 × 10−8). Even though regeneration is still a challenging factor in this study, the IOCM prepared from chitosan and rice husk-derived silica particles could be used in crude biodiesel purification.
Collapse
Affiliation(s)
- Ulfa Riana
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Syiah Kuala, Darussalam, Banda Aceh 23111, Indonesia; (U.R.); (M.R.)
| | - Muliadi Ramli
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Syiah Kuala, Darussalam, Banda Aceh 23111, Indonesia; (U.R.); (M.R.)
| | - Muhammad Iqrammullah
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| | - Yanuardi Raharjo
- Membrane Science and Technology Research Group, Chemistry Department, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia;
| | - Yusuf Wibisono
- Department of Bioprocess Engineering, Faculty of Agricultural Technology, Brawijaya University, Malang 65141, Indonesia;
| |
Collapse
|
10
|
Purnama A, Rizki DR, Qanita I, Iqhrammullah M, Ahmad K, Mardina V, Puspita K, Hasballah K. Molecular docking investigation of calotropone as a potential natural therapeutic agent against pancreatic cancer. J Adv Pharm Technol Res 2022; 13:44-49. [PMID: 35223440 PMCID: PMC8820343 DOI: 10.4103/japtr.japtr_143_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/01/2021] [Accepted: 12/17/2021] [Indexed: 11/12/2022] Open
Abstract
A natural bioactive compound named calotropone has been reported as a drug candidate for several cancers, including pancreatic cancers. Herein, we used molecular docking approach to test the possible mechanisms of action of calotropone in inhibiting the growth of pancreatic cell cancer with gemcitabine as the positive control. By employing AutoDock Vina, we studied the molecular interaction between calotropone and pancreatic cancer-associated proteins, namely Glucosaminyl (N-Acetyl) Transferase 3, Glutamic-Oxaloacetic Transaminase 1, Tyrosine-protein kinase Met (c-Met), peroxisome proliferator-activated receptor γ, Budding Uninhibited by Benzimidazole 1, A Disintegrin and Metalloproteinase 10, Sex-determining region Y and Nuclear Factor kappa Beta (Nf-Kβ). Higher affinity energies of calotropone toward the aforementioned proteins (ranging from ‒7.3 to ‒9.3 kcal/mol) indicate that calotropone may work in the same manner as anticancer drug gemcitabine. Highest docking score was found at the interaction of calotropone and Nf-Kβ (‒9.3 kcal/mol).
Collapse
Affiliation(s)
- Agnia Purnama
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | | | - Intan Qanita
- School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Muhammad Iqhrammullah
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Khairunnas Ahmad
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Vivi Mardina
- Department of Biology, Faculty of Engineering, Universitas Samudra. Jl. Prof. Dr. Syarief Thayeb, Meurandeh, Langsa Lama, Langsa, Aceh, Indonesia
| | - Kana Puspita
- Department of Chemistry Education, Faculty of Education and Teacher Training, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Kartini Hasballah
- Department of Pharmacology, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
11
|
Sunthar TPM, Boschetto F, Doan HN, Honma T, Kinashi K, Adachi T, Marin E, Zhu W, Pezzotti G. Antibacterial Property of Cellulose Acetate Composite Materials Reinforced with Aluminum Nitride. Antibiotics (Basel) 2021; 10:1292. [PMID: 34827230 PMCID: PMC8637303 DOI: 10.3390/antibiotics10111292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
Cellulose acetate (CA) is a synthetic compound that is derived from the acetylation of cellulose. CA is well known as it has been used for many commercial products such as textiles, plastic films, and cigarette filters. In this research, antibacterial CA composites were produced by addition of aluminum nitride (AlN) at different weight percentage, from 0 wt. % to 20 wt. %. The surface characterization was performed using laser microscope, Raman and FTIR spectroscopy. The mechanical and thermal properties of the composite were analyzed. Although the mechanical strength tended to decrease as the concentration of AlN increased and needed to be optimized, the melting temperature (Tm) and glass transition temperature (Tg) showed a shift toward higher values as the AlN concentration increased leading to an improvement in thermal properties. AlN additions in weight percentages >10 wt. % led to appreciable antibacterial properties against S. epidermidis and E. coli bacteria. Antibacterial CA/AlN composites with higher thermal stability have potential applications as alternative materials for plastic packaging in the food industry.
Collapse
Affiliation(s)
- Thefye P. M. Sunthar
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (F.B.); (T.H.); (E.M.); (W.Z.); (G.P.)
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kamigyo-ku, 465 Kajii-cho, Kawaramachi dori, Kyoto 602-0841, Japan
| | - Francesco Boschetto
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (F.B.); (T.H.); (E.M.); (W.Z.); (G.P.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan;
| | - Hoan Ngoc Doan
- Faculty of Material Science and Engineering, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.N.D.); (K.K.)
| | - Taigi Honma
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (F.B.); (T.H.); (E.M.); (W.Z.); (G.P.)
| | - Kenji Kinashi
- Faculty of Material Science and Engineering, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.N.D.); (K.K.)
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan;
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (F.B.); (T.H.); (E.M.); (W.Z.); (G.P.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan;
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (F.B.); (T.H.); (E.M.); (W.Z.); (G.P.)
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (F.B.); (T.H.); (E.M.); (W.Z.); (G.P.)
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kamigyo-ku, 465 Kajii-cho, Kawaramachi dori, Kyoto 602-0841, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 565-0871, Japan
| |
Collapse
|
12
|
Nazaruddin N, Afifah N, Bahi M, Susilawati S, Sani NDM, Esmaeili C, Iqhrammullah M, Murniana M, Hasanah U, Safitri E. A simple optical pH sensor based on pectin and Ruellia tuberosa L-derived anthocyanin for fish freshness monitoring. F1000Res 2021; 10:422. [PMID: 34527216 PMCID: PMC8366298 DOI: 10.12688/f1000research.52836.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 11/15/2023] Open
Abstract
A simple optical pH sensor using the active compound anthocyanin (ACN), derived Ruellia tuberosa L. flower immobilized in a pectin membrane matrix, was been fabricated and employed to monitor the freshness of tilapia fish at room temperature and 4 oC storage. The optimum pectin weight and ACN concentrations were 0.1% and 0.025 mg/L. The sensor showed good sensitivity at 0.03 M phosphate buffer solution. The sensor's reproducibility was evaluated using 10 replicate sensors where a standard deviation of 0.045 or relative standard deviation of 9.15 was achieved. The sensor displayed an excellent response after 10 minutes of exposure, possessing a response stability for 10 consecutive days. The decrease in pH value of the Tilapia fish from 7.3 to 5 was observed in a 48 hour test, which can be used as the parameter when monitoring fish freshness.
Collapse
Affiliation(s)
- Nazaruddin Nazaruddin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Nurul Afifah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Muhammad Bahi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Susilawati Susilawati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Nor Diyana Md. Sani
- Sanichem Resources Sdn. Bhd., Bandar Estek, Negeri Sembilan, 71060, Malaysia
| | - Chakavak Esmaeili
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, 14176-14411, Iran
| | - Muhammad Iqhrammullah
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Murniana Murniana
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Uswatun Hasanah
- Department of Fisheries, Universitas Teuku Umar, West Aceh, Aceh, 23615, Indonesia
| | - Eka Safitri
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| |
Collapse
|
13
|
Nazaruddin N, Afifah N, Bahi M, Susilawati S, Sani NDM, Esmaeili C, Iqhrammullah M, Murniana M, Hasanah U, Safitri E. A simple optical pH sensor based on pectin and Ruellia tuberosa L-derived anthocyanin for fish freshness monitoring. F1000Res 2021; 10:422. [PMID: 34527216 PMCID: PMC8366298 DOI: 10.12688/f1000research.52836.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 11/25/2022] Open
Abstract
A simple optical pH sensor using the active compound anthocyanin (ACN), derived Ruellia tuberosa L. flower immobilized in a pectin membrane matrix, was been fabricated and employed to monitor the freshness of tilapia fish at room temperature and 4 oC storage. The quantitative pH values were measured based on the UV-Vis spectroscopy absorbance. The optimum pectin weight and ACN concentrations were 0.1% and 0.025 mg/L. The sensor showed good sensitivity at 0.03 M phosphate buffer solution. The sensor's reproducibility was evaluated using 10 replicate sensors where a standard deviation of 0.045 or relative standard deviation of 9.15 was achieved. The sensor displayed an excellent response after 10 minutes of exposure, possessing a response stability for 10 consecutive days. The decrease in pH value of the Tilapia fish from 7.3 to 5 was observed in a 48 hour test, which can be used as the parameter when monitoring fish freshness. Overall, this reported optical pH sensor has a novelty as it could be used to monitor the rigor mortis phase of fish meat, which is useful in food industry.
Collapse
Affiliation(s)
- Nazaruddin Nazaruddin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Nurul Afifah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Muhammad Bahi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Susilawati Susilawati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Nor Diyana Md. Sani
- Sanichem Resources Sdn. Bhd., Bandar Estek, Negeri Sembilan, 71060, Malaysia
| | - Chakavak Esmaeili
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, 14176-14411, Iran
| | - Muhammad Iqhrammullah
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Murniana Murniana
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Uswatun Hasanah
- Department of Fisheries, Universitas Teuku Umar, West Aceh, Aceh, 23615, Indonesia
| | - Eka Safitri
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| |
Collapse
|
14
|
Optical pH Sensor Based on Immobilization Anthocyanin from Dioscorea alata L. onto Polyelectrolyte Complex Pectin-Chitosan Membrane for a Determination Method of Salivary pH. Polymers (Basel) 2021; 13:polym13081276. [PMID: 33919956 PMCID: PMC8070958 DOI: 10.3390/polym13081276] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 01/19/2023] Open
Abstract
A simple optical pH sensor based on immobilization, Dioscorea alata L. anthocyanin methanol extract, onto a pectin–chitosan polyelectrolyte complex (pectin–chitosan PEC), has been successfully fabricated. The optical pH sensor was manufactured as a membrane made of pectin–chitosan PEC and the extracted anthocyanin. This sensor has the highest sensitivity of anthocyanin content at 0.025 mg/L in phosphate buffer and 0.0375 mg/L in citrate buffer. It also has good reproducibility with a relative standard deviation (%RSD) of 7.7%, and gives a stable response at time values greater than 5 min from exposure in a buffer solution, and the sensor can be utilized within five days from its synthesis. This optical pH sensor has been employed to determine saliva pH of people of different ages and showed no significant difference when compared to a potentiometric method.
Collapse
|
15
|
One-Step Synthesis of Eu 3+-Modified Cellulose Acetate Film and Light Conversion Mechanism. Polymers (Basel) 2020; 13:polym13010113. [PMID: 33396593 PMCID: PMC7795846 DOI: 10.3390/polym13010113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022] Open
Abstract
A CA-Eu(III) complex was synthesized by the coordination reaction of cellulose acetate (CA) and Eu3+ to obtain a CA-Eu light conversion film. This product was then doped with Tb(III) to sensitize the luminescence of Eu3+, which could functionalize the CA film. FTIR and XPS showed that the oxygen atoms in C=O, C-O (O=C-O), and O-H were involved in the complexation with Eu3+ and formed a Eu-O bond. SEM revealed that Eu3+ filled in the pores of the CA film. By changing the experimental conditions, the best fluorescence performance was obtained at the CA: Eu3+ ratio of 3:1 with a reaction time of 65 min. The energy transfer between Tb3+-Eu3+ could be realized by doping Tb3+ to enhance the luminescence of Eu3+. The best fluorescence performance of the CA-Eu-Tb light conversion film was at a Eu3+:Tb3+ ratio of 3:1. Compared with the CA film, the light conversion film has high transparency, high tensile strength, and good flexibility. It can convert the ultraviolet light harmful to plants into red light that is beneficial to photosynthesis. This offers high efficiency and environmental protection in the field of agricultural films.
Collapse
|
16
|
Saiful S, Ajrina M, Wibisono Y, Marlina M. Development of Chitosan/Starch-Based Forward Osmosis Water Filtration Bags for Emergency Water Supply. MEMBRANES 2020; 10:membranes10120414. [PMID: 33322244 PMCID: PMC7763897 DOI: 10.3390/membranes10120414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022]
Abstract
A forward osmosis (FO) membrane was developed from a mixture of chitosan and Dioscorea hispida starch, cross-linked using glutaraldehyde. The cross-linked chitosan/starch membrane was revealed to have high mechanical properties with an asymmetric structure. The prepared membrane’s performance was investigated as an FO filter assembled in a polypropylene water filter bag and aluminum foil plastic. In order to study the FO process, brackish water was used as a feed solution, drawn using three types of solution (fructose, sucrose, and fructose/sucrose mixture, each with 3 M concentration). The maximum water flux (5.75 L/m2 h) was achieved using 3 M sucrose. The cross-linked membrane restrained the ions in the feed with a rejection factor value close to 100%. The water quality parameters were evaluated for the physical, chemical, and biological criteria, such as pH, salinity, conductivity, total dissolved solids (TDS), heavy metals, and Escherichia coli content. The water quality parameters for the FO-processed water met that set by the World Health Organization for drinking water. FO filter bags with cross-linked chitosan/starch membranes can be an option to produce drinking water during an emergency.
Collapse
Affiliation(s)
- Saiful Saiful
- Chemistry Department, Faculty of Mathematics and Natural Science, Syiah Kuala University, Banda Aceh 23111, Indonesia; (M.A.); (M.M.)
- Correspondence: ; Tel.: +62-813-6058-1225
| | - Maurisa Ajrina
- Chemistry Department, Faculty of Mathematics and Natural Science, Syiah Kuala University, Banda Aceh 23111, Indonesia; (M.A.); (M.M.)
| | - Yusuf Wibisono
- Department of Bioprocess Engineering, Faculty of Agricultural Technology, Brawijaya University, Malang 65141, Indonesia;
| | - Marlina Marlina
- Chemistry Department, Faculty of Mathematics and Natural Science, Syiah Kuala University, Banda Aceh 23111, Indonesia; (M.A.); (M.M.)
| |
Collapse
|
17
|
Marlina, Iqhrammullah M, Saleha S, Fathurrahmi, Maulina FP, Idroes R. Polyurethane film prepared from ball-milled algal polyol particle and activated carbon filler for NH 3-N removal. Heliyon 2020; 6:e04590. [PMID: 32904302 PMCID: PMC7452532 DOI: 10.1016/j.heliyon.2020.e04590] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/14/2020] [Accepted: 07/28/2020] [Indexed: 01/28/2023] Open
Abstract
This research offers a novel approach of free chemical preparation to obtain algae-based biopolyol through a ball milling method. The algae-based polyurethane (AlgPU) film was obtained from a casting solution made of ball-milled algal polyol particle and methylene diphenyl diisocyanate (MDI). The characteristics of the material had been investigated using Fourier Transform Infrared, Scanning Electron Microscopy – Electron Dispersive Spectroscopy, Differential Scanning Calorimetry, and Tensile Strength Analysis. The surface area was determined by Brunauer–Emmett–Teller (BET) isotherm, meanwhile the total pore volume was by Barrett-Joyner-Halenda (BJH) isotherm, based on the adsorption-desorption of N2. The addition of activated carbon contributed in the increase of functional group and surface area, which were important for the NH3–N removal. As a result, the adsorption capacity increased greatly after the addition of activated carbon (from 187.84 to 393.43 μg/g). The results also suggested AlgPU as a good matrix for immobilizing activated carbon filler. The adsorption shows a better fit with Langmuir isotherm model, with R2 = 0.97487 and root-mean-square error (RMSE) = 33.91952, compared to Freundlich isotherm model (R2 = 0.96477 and RMSE = 44.05388). This means the NH3–N adsorption followed the assumption of homogenous and monolayer adsorption, in which the maximum adsorption was found to be 797.95 μg/g. This research suggests the potential of newly developed material for NH3–N removal.
Collapse
Affiliation(s)
- Marlina
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Indonesia
| | - Muhammad Iqhrammullah
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Indonesia
| | - Sitti Saleha
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Indonesia
| | - Fathurrahmi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Indonesia
| | - Fandini Putri Maulina
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Indonesia
| | - Rinaldi Idroes
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Indonesia.,Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Indonesia
| |
Collapse
|